Skip to main content

External Defibrillation

  • Chapter
  • 1343 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The history of applying electrical shocks to the heart began in the 1700s with direct current derived from a Leyden jar. In 1775, Abildgard described having shocked a chicken into lifelessness and on repeating the shock, bringing the bird back to life (1). Transthoracic defibrillation was first performed clinically in the mid-1950s when Zoll introduced the alternating current (AC) defibrillator (2). Several years later, Lown introduced the direct current (DC) defibrillator as an improvement on Zoll’s device in several important areas, specifically that it caused less damage to the patient and that it could be made portable (3). Today, internal cardioverter defibrillators are the size of a small bar of soap and can monitor and correct a patient’s rhythm for several years between replacements. Likewise, the external defibrillator has been made smaller and so much simpler to operate that sixth graders can use the device successfully.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lown B. Defibrillation and cardioversion. Cardiovasc Res 2002; 55:220–224.

    Article  PubMed  CAS  Google Scholar 

  2. Zoll P, Linenthal AJ, Gibson W, Paul MH, Norman LR. Termination of ventricular fibrillation in man by externally applied countershock. NEJM YEAR 1956; 254:727.

    CAS  Google Scholar 

  3. Lown B, Amarasingham R, Neuman J, Berkovits B. Comparison of alternating current with direct current electroshock across the closed chest. JACC 1962; 10:223.

    CAS  Google Scholar 

  4. Chattipakorn N, KenKnight BH, Smith WM, Ideker RE. The isoelectric window after defibrillation shocks: Is it truly electrically quiescent? JACC 1997; 29(Suppl A):195A.

    Google Scholar 

  5. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks [in process citation]. J Cardiovasc Electrophysiol 1998; 9:529–552.

    Article  PubMed  CAS  Google Scholar 

  6. Efimov IR, Cheng YN, Biermann M, Van Wagoner DR, Mazgalev TN, Tchou PJ. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shocks delivered by an implantable electrode. JCELEP 1997; 8:1031–1045.

    CAS  Google Scholar 

  7. Usui M, Walcott GP, Strickberger SA, Rollins DL, Smith WM, Ideker RE. Effects of polarity for monophasic and biphasic shocks on defibrillation efficacy with an endocardial system. PACE 1996; 19: 65–71.

    PubMed  CAS  Google Scholar 

  8. Chen P-S, Wolf PD, Claydon FJ, III, et al. The potential gradient field created by epicardial defibrillation electrodes in dogs. CIRC 1986; 74:626–636.

    CAS  Google Scholar 

  9. Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. CIRCRES 1993; 72:145–160.

    CAS  Google Scholar 

  10. Zipes DP, Fischer J, King RM, Nicoll A, Jolly WW. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. AJC 1975; 36:37–44.

    CAS  Google Scholar 

  11. Tung L. A bidomain model for describing ischemic myocardial DC potentials. Phd, Cambridge, MA: MIT, 1978.

    Google Scholar 

  12. Trayanova N, Skouibine K, Aguel F. The role of cardiac tissue structure in defibrillation. Chaos 1998; 8:221–233.

    Article  PubMed  Google Scholar 

  13. Eason J, Trayanova N. The effects of fiber curvature in a bidomain tissue with irregular boundaries. Proc. 15th Annu. Int. Conf. IEEE Eng. Med Biol. Soc, 1993, pp. 744–745.

    Google Scholar 

  14. Clark DM, Pollard AE, Ideker RE, Knisley SB. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks. JICE 1999; 3:109–120.

    CAS  Google Scholar 

  15. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circulation Research 1998; 82:918–25. English.

    PubMed  CAS  Google Scholar 

  16. Chen P-S, Shibata N, Wolf PD, et al. Epicardial activation during successful and unsuccessful ventricular defibrillation in open chest dogs. CRP 1986; 7:625–648.

    Google Scholar 

  17. Mower MM, Mirowski M, Spear JF, Moore EN. Patterns of ventricular activity during catheter defibrillation. CIRC 1974; 49:858–861.

    CAS  Google Scholar 

  18. Wiggers CJ. The physiologic basis for cardiac resuscitation from ventricular fibrillation: Method for serial defibrillation. AHJ 1940; 20:413–422.

    Article  Google Scholar 

  19. Dillon SM, Mehra R. Prolongation of ventricular refractoriness by defibrillation shocks may be due to additional depolarization of the action potential. JCELEP 1992; 3:442–456.

    Google Scholar 

  20. Tovar OH, Jones JL. Relationship between “extension of refractoriness” and probability of successful defibrillation. AJP 1997; 272(Heart Circ Physiol 41):H1011–H1019.

    CAS  Google Scholar 

  21. Dillon SM, Mehra R. Prolongation of ventricular refractoriness by defibrillation shocks may be due to additional depolarization of the action potential. JCELEP 1992; 3:442–456.

    Google Scholar 

  22. Knisley SB. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res 1995; 77:1229–1239.

    PubMed  CAS  Google Scholar 

  23. Kwaku KF, Dillon SM. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation. CIRCRES 1996; 79:957–973.

    CAS  Google Scholar 

  24. Chen PS, Shibata N, Dixon EG, et al. Activation during ventricular defibrillation in open-chest dogs. evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. Journal of Clinical Investigation 1986; 77:810–23. English.

    CAS  Google Scholar 

  25. Shibata N, Chen PS, Dixon EG, et al. Epicardial activation after unsuccessful defibrillation shocks in dogs. American Journal of Physiology 1988; 255(Pt 2):H902–H909. English.

    PubMed  CAS  Google Scholar 

  26. Frazier DW, Wolf PD, Wharton JM, et al. Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium. JCI 1989; 83:1039–1052.

    PubMed  CAS  Google Scholar 

  27. Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight reentry in the isolated rabbit heart. Circ Res 1999; 85:742–752.

    PubMed  CAS  Google Scholar 

  28. Witkowski FX, Penkoske PA, Plonsey R. Mechanism of cardiac defibrillation in open-chest dogs with unipolar dc-coupled simultaneous activation and shock potential recordings. CIRC 1990; 82:244–260.

    CAS  Google Scholar 

  29. Chen P-S, Wolf PD, Melnick SD, Danieley ND, Smith WM, Ideker RE. Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open chest dogs. CIRCRES 1990; 66: 1544–1560.

    CAS  Google Scholar 

  30. Wiggers CJ, Wégria R. Ventricular fibrillation due to single, localized induction and condenser shocks applied during the vulnerable phase of ventricular systole. AJP 1940; 128:500–505.

    Google Scholar 

  31. Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res 1993; 72:145–60.

    PubMed  CAS  Google Scholar 

  32. Usui M, Callihan RL, Walker RG, et al. Early activation sites after monophasic and biphasic shocks of equal voltage with an endocardial lead system. PACE 1995; 18(Part II):904.

    Google Scholar 

  33. Chattipakorn N, Rogers JM, Ideker RE. Influence of postshock epicardial activation patterns on the initiation of ventricular fibrillation by shocks near the upper limit of vulnerability. CIRCRES 1998; submitted.

    Google Scholar 

  34. Cao JM, Qu Z, Kim YH, et al. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circulation Research 1999; 84:1318–1331. English.

    PubMed  CAS  Google Scholar 

  35. Bardy GH, Ivey TD, Allen M, Johnson G, Mehra R, Green HL. A prospective, randomized evaluation of biphasic vs monophasic pulses on epicardial defibrillation efficacy in man. CIRC 1988; 78:II–219.

    Google Scholar 

  36. Block M, Hammel D, Böcker D, et al. A prospective randomized cross-over comparison on mono-and biphasic defibrillation using nonthoracotomy lead configurations in humans. J Cardiovasc Electrophysiol 1994; 5: 581–590.

    Article  PubMed  CAS  Google Scholar 

  37. Chapman PD, Vetter JW, Souza JJ, Wetherbee JN, Troup PJ. Comparison of monophasic with single and dual capacitor biphasic waveforms for nonthoracotomy canine internal defibrillation. JACC 1989; 14:242–245.

    PubMed  CAS  Google Scholar 

  38. Dixon EG, Tang ASL, Wolf PD, et al. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. CIRC 1987; 76:1176–1184.

    CAS  Google Scholar 

  39. Gurvich NL, Markarychev VA. Defibrillation of the heart with biphasic electrical impulses. Kardiologiia 1967; 7:109–112.

    PubMed  CAS  Google Scholar 

  40. Walcott GP, Melnick SB, Chapman FW, Jones JL, Smith WM, Ideker RE. The relative efficacy of monophasic and biphasic waveforms for transthoracic defibrillation after short and long durations of ventricular fibrillation. CIRC 1998; 98:2210–2215.

    CAS  Google Scholar 

  41. Feeser SA, Tang AS, Kavanagh KM, et al. Strength-duration and probability of success curves for defibrillation with biphasic waveforms. Circulation 1990; 82:2128–2141.

    PubMed  CAS  Google Scholar 

  42. Tang AS, Yabe S, Wharton JM, Dolker M, Smith WM, Ideker RE. Ventricular defibrillation using biphasic waveforms: the importance of phasic duration. J Am Coll Cardiol 1989; 13:207–214.

    PubMed  CAS  Google Scholar 

  43. Kroll MW. A minimal model of the single capacitor biphasic defibrillation waveform. PACE 1994; 17(Part 1):1782–1792.

    PubMed  CAS  Google Scholar 

  44. Kroll MW. A minimal model of the monophasic defibrillation pulse. PACE 1993; 16:769–777.

    PubMed  CAS  Google Scholar 

  45. Swerdlow CD, Fan W, Brewer JE. Charge-burping theory correctly predicts optimal ratios of phase duration for biphasic defibrillation waveforms. CIRC 1996; 94:2278–2284.

    CAS  Google Scholar 

  46. Walcott GP, Walker RG, Cates AW, Krassowska W, Smith WM, Ideker RE. Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. JCELEP 1995; 6:737–750.

    CAS  Google Scholar 

  47. Blair HA. On the intensity-time relations for stimulation by electric currents. ii. JGENPH 1932; 15: 731–755.

    CAS  Google Scholar 

  48. Lapicque L. L’Excitabilite en Fonction du Temps. Paris, France: Libraire J. Gilbert, 1926.

    Google Scholar 

  49. Mouchawar GA, Geddes LA, Bourland JD, Pearce JA. Ability of the lapicque and blair strength-duration curves to fit experimentally obtained data from the dog heart. TBME 1989; 36:971–974.

    CAS  Google Scholar 

  50. Irnich W. The fundamental law of electrostimulation and its application to defibrillation. PACE 1990; 13:1433–1447.

    PubMed  CAS  Google Scholar 

  51. Sweeney RJ, Gill RM, Jones JL, Reid PR. Defibrillation using a high-frequency series of monophasic rectangular pulses: observations and model predictions. JCELEP 1996; 7:134–143.

    CAS  Google Scholar 

  52. Zhou X, Smith WM, Justice RK, Wayland JL, Ideker RE. Transmembrane potential changes caused by monophasic and biphasic shocks. Am J Physiol 1998; 275(Pt 2):H1798–H1807.

    PubMed  CAS  Google Scholar 

  53. Mowrey KA, Cheng Y, Tchou PJ, Efimov R. Kinetics of defibrillation shock-induced response: design implications for the optimal defibrillation waveform. Europace 2002; 4:27–39.

    Article  PubMed  CAS  Google Scholar 

  54. Gold MR, Khalighi K, Kavesh MG, Daly D, Peters RW, Shorofsky SR. Clinical predictors of transvenous biphasic defibrillation thresholds. American Journal of Cardiology 1997; 79:1623–1627. English.

    Article  PubMed  CAS  Google Scholar 

  55. Schuder JC, Stoeckle H, West JA, Keskar PY. Transthoracic ventricular defibrillation in the dog with truncated and untruncated exponential stimuli. TBME 1971; 18:410–415.

    CAS  Google Scholar 

  56. Hillsley RE, Walker RG, Swanson DK, Rollins DL, Wolf PD, Smith WM, Ideker RE. Is the second phase of a biphasic defibrillation waveform the defibrillating phase? PACE 1993; 16:1401–1411.

    PubMed  CAS  Google Scholar 

  57. Walcott GP, Melnick SB, Chapman FW, Smith WM, Ideker RE. Comparison of damped sinusoidal and truncated exponential waveforms for external defibrillation. JACC 1996; 27(2[Suppl A]):237A.

    Google Scholar 

  58. Schuder JC, Rahmoeller GA, Stoeckle H. Transthoracic ventricular defibrillation with triangular and trapezoidal waveforms. CIRCRES 1966; 19:689–694.

    Google Scholar 

  59. Kerber RE, Martins JB, Kienzle MB, et al. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. Circulation 1988; 77: 1038–1046.

    PubMed  CAS  Google Scholar 

  60. Lerman BB, Deale OC. Relation between transcardiac and transthoracic current during defibrillation in humans. Circ Res 1990; 67:1420–1426.

    PubMed  CAS  Google Scholar 

  61. Kirchhof P, Eckardt L, Loh P, et al. Anterior-posterior versus anterior-lateral electrode positions for external cardioversion of atrial fibrillation: a randomised trial. Lancet 2002; 360:1275–1279.

    Article  PubMed  Google Scholar 

  62. Schuder JC, McDaniel WC, Stoeckle H. Defibrillation of 100-kg calves with asymmetrical, bidirectional, rectangular pulses. CARDRES 1984; 18:419–426.

    CAS  Google Scholar 

  63. Walker RG, Walcott GP, Smith WM, Ideker RE. Sites of earliest activation following transvenous defibrillation. CIRC 1994; 90(Part 2):I–447.

    Google Scholar 

  64. Cates AW, Wolf PD, Hillsley RE, Souza JJ, Smith WM, Ideker RE. The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength. PACE 1994; 17: 1208–1217.

    PubMed  CAS  Google Scholar 

  65. Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE. Conduction disturbances caused by high current density electric fields. Circ Res 1990; 66:1190–1203.

    PubMed  CAS  Google Scholar 

  66. Jones JL, Jones RE. Decreased defibrillator-induced dysfunction with biphasic rectangular waveforms. AJP 1984; 247:H792–H796.

    CAS  Google Scholar 

  67. Reddy RK, Gleva MJ, Gliner BE, et al. Biphasic transthoracic defibrillation causes fewer ecg st-segment changes after shock. Annals of Emergency Medicine 1997; 30:127–34.

    Article  PubMed  CAS  Google Scholar 

  68. DeBruin KA, Krassowska W. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. ANBE 1998; 26:584–596.

    CAS  Google Scholar 

  69. Schuder JC, Gold JH, Stoeckle H, McDaniel WC, Cheung KN. Transthoracic ventricular defibrillation in the 100 kg calf with symmetrical one-cycle bidirectional rectangular wave stimuli. TBME 1983; 30: 415–422.

    CAS  Google Scholar 

  70. Weaver WD, Cobb LA, Copass MK, Hallstrom AP. Ventricular defibrillation-a comparative trial using 175-J and 320-J shocks. N Engl J Med 1982; 307:1101–1106.

    Article  PubMed  CAS  Google Scholar 

  71. Schneider T, Martens PR, Paschen H, et al. Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200-to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Optimized Response to Cardiac Arrest (ORCA) Investigators. Circulation 2000; 102: 1780–1787.

    PubMed  CAS  Google Scholar 

  72. Grubb NR, Fox KA, Cawood P. Resuscitation from out-of-hospital cardiac arrest: implications for cardiac enzyme estimation. Resuscitation 1996; 33:35–41.

    Article  PubMed  CAS  Google Scholar 

  73. Mullner M, Oschatz E, Sterz F, et al. The influence of chest compressions and external defibrillation on the release of creatine kinase-mb and cardiac troponin t in patients resuscitated from out-of-hospital cardiac arrest. Resuscitation 1998; 38:99–105.

    Article  PubMed  CAS  Google Scholar 

  74. Jones JL, Swartz JF, Jones RE, Fletcher R. Increasing fibrillation duration enhances relative asymmetrical biphasic versus monophasic defibrillator waveform efficacy. Circ Res 1990; 67:376–384.

    PubMed  CAS  Google Scholar 

  75. Higgins SL, Herre JM, Epstein AM, et al. A comparison of biphasic and monophasic shocks for external defibrillation. physio-control biphasic investigators. Prehosp Emerg Care 2000; 4:305–313.

    Article  PubMed  CAS  Google Scholar 

  76. Bardy GH, Marchlinski FE, Sharma AD, et al. Multicenter comparison of truncated biphasic shocks and standard damped sine wave monophasic shocks for transthoracic ventricular defibrillation. transthoracic investigators. Circulation 1996; 94:2507–2514.

    PubMed  CAS  Google Scholar 

  77. Babbs CF, Paris RL, Tacker, WA, Jr., Bourland JD. Effects of myocardial infarction on catheter defibrillation threshold. Medical Instrumentation 1983; 17:18–20. English.

    PubMed  CAS  Google Scholar 

  78. Tacker WA, Jr., Geddes LA, Cabler PS, Moore AG. Electrical threshold for defibrillation of canine ventricles following myocardial infarction. American Heart Journal 1974; 88:476–481. English.

    Article  PubMed  Google Scholar 

  79. Kerber RE, Pandian NG, Hoyt R, et al. Effect of ischemia, hypertrophy, hypoxia, acidosis, and alkalosis on canine defibrillation. American Journal of Physiology 1983; 244:H825–H831. English.

    PubMed  CAS  Google Scholar 

  80. Ruffy R, Schwartz DJ, Hieb BR. Influence of acute coronary artery occlusion on direct ventricular defibrillation in dogs. Medical Instrumentation 1980; 14:23–26. English.

    PubMed  CAS  Google Scholar 

  81. Jones DL, Sohla A, Klein GJ. Internal cardiac defibrillation threshold: effects of acute ischemia. Pacing annd Clinical Electrophysiology 1986; 9:322–331. English.

    Article  CAS  Google Scholar 

  82. Ouyang P, Brinker JA, Bulkley BH, Jugdutt BI, Varghese PJ. Ischemic ventricular fibrillation: the importance of being spontaneous. American Journal of Cardiology 1981; 48:455–9. English.

    Article  PubMed  CAS  Google Scholar 

  83. Walcott GP, Killingsworth CR, Smith WM, Ideker RE. Biphasic waveform external defibrillation thresholds for spontaneous ventricular fibrillation secondary to acute ischemia. J Am Coll Cardiol 2002; 39:359–65.

    Article  PubMed  Google Scholar 

  84. Qin H, Walcott GP, Killingsworth CR, Rollins DL, Smith WM, Ideker RE. Impact of myocardial ischemia and reperfusion on ventricular defibrillation patterns, energy requirements, and detection of recovery. Circulation 2002; 105:2537–2542.

    Article  PubMed  Google Scholar 

  85. Jones DL, Klein GJ, Guiraudon GM, et al. Sequential pulse defibrillation in man: comparison of thresholds in normal subjects and those with cardiac disease. Medical Instrumentation 1987; 21:166–169. English.

    PubMed  CAS  Google Scholar 

  86. Chang MS, Inoue H, Kallok MJ, Zipes DP. Double and triple sequential shocks reduce ventricular defibrillation threshold in dogs with and without myocardial infarction. Journal of the American College of Cardiology 1986; 8:1393–1405. English.

    Article  PubMed  CAS  Google Scholar 

  87. Wharton JM, Richard VJ, Murry CE, et al. Electrophysiological effects of monophasic and biphasic stimuli in normal and infarcted dogs. Pacing and Clinical Electrophysiology 1990; 13:1158–1172. English.

    Article  PubMed  CAS  Google Scholar 

  88. Cinca J, Blanch P, Carreño A, Mont L, García-Burillo A, Soler-Soler J. Acute ischemic ventricular arrhythmias in pigs with healed myocardial infarction-comparative effects of ischemia at a distance and ischemia at the infarct zone. Circ 1997; 96:653–658.

    CAS  Google Scholar 

  89. Geddes LA, Tacker WA, Rosborough JP, Moore AG, Cabler PS. Electrical dose for ventricular defibrillation of large and small animals using precordial electrodes. J Clin Invest 1974; 53:310–319.

    Article  PubMed  CAS  Google Scholar 

  90. Tacker WA, Jr., Galioto FM, Jr., Giuliani E, Geddes LA, McNamara DG. Energy dosage for human trans-chest electrical ventricular defibrillation. N Engl J Med 1974; 290:214,215.

    Article  PubMed  Google Scholar 

  91. Zhang Y, Clark C, Davies L, Karlsson G, Zimmerman M, Kerber R. Body weight is a predictor of biphasic shock success for low energy transthoracic defibrillation. Resuscitation 2002; 54:281.

    Article  PubMed  Google Scholar 

  92. Killingsworth CR, Melnick SB, Chapman FW, et al. Defibrillation threshold and cardiac responses using an external biphasic defibrillator with pediatric and adult adhesive patches in pediatric-sized piglets. Resuscitation 2002; 55:177–85.

    Article  PubMed  Google Scholar 

  93. Gutgesell HP, Tacker WA, Geddes LA, Davis S, Lie JT, and McNamara DG. Energy dose for ventricular defibrillation of children. Pediatrics 1976; 58:898–901.

    PubMed  CAS  Google Scholar 

  94. Gurnett CA, Atkins DL. Successful use of a biphasic waveform automated external defibrillator in a high-risk child. Am J Cardiol 2000; 86:1051–1053.

    Article  PubMed  CAS  Google Scholar 

  95. Van Vleet JF, Tacker WA, Jr., Geddes LA, Ferrans VF. Sequential cardiac morphologic alterations induced in dogs by single transthoracic damped sinusoidal waveform defibrillator shocks. Am J Vet Res 1978; 39: 271–278.

    PubMed  Google Scholar 

  96. Gaba DM, Talner NS. Myocardial damage following transthoracic direct current countershock in newborn piglets. Pediatr Cardiol 1982; 2:281–288.

    Article  PubMed  CAS  Google Scholar 

  97. Babbs CF, Paris RL, Tacker WA, Jr., Bourland JD. Effects of myocardial infarction on catheter defibrillation threshold. Med Instrum 1983; 17:18–20.

    PubMed  CAS  Google Scholar 

  98. Babbs CF, Tacker WA, Van Vleet JF, Bourland JD, Geddes LA. Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses. Am Heart J 1980; 99:734–738.

    Article  PubMed  CAS  Google Scholar 

  99. Atkins DL, Chameides L, Fallat ME, et al. Resuscitation science of pediatrics. Ann Emerg Med 2001; 37(4 Suppl):S41–S48.

    Article  PubMed  CAS  Google Scholar 

  100. Jorgenson D, Morgan C, Snyder D, et al. Energy attenuator for pediatric application of an automated external defibrillator. Crit Care Med 2002; 30(4 Suppl):S145–147.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Walcott, G.P., Killingsworth, C.R., Ideker, R.E. (2005). External Defibrillation. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:211

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:211

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics