Regulatory Aspects of Membrane Microdomain (Raft) Dynamics in Live Cells

A Biophysical Approach
  • János Matkó
  • János Szöllősi


Most vertebrate cells display a considerable microheterogeneity in their plasma membranes, often termed microdomain structure. Some of these microdomains are enriched in glycosphingolipids and cholesterol and are resistant to solubilization with nonionic detergents; they are therefore called detergent-insoluble-glycolipid enriched membrane (DIG) or glycosphingolipid enriched membrane (GEM). These domains, also called “lipid rafts” (Simons and Ikonen, 1997), may form at the plasma membrane (PM) upon external stimuli or may be present in a preassembled form upon vesicular traffic to and fusion with the PM (Simons and Ikonen, 1997; Brown and Rose, 1992). We consider lipid rafts as transient molecular associations between lipid and protein components of the PM, providing a dynamic patchiness and local order in the fluid mosaic membrane (Edidin, 2001). Although the microdomain concept is widely accepted, and the existence of rafts has been confirmed by many lines of experimental evidence (e.g., biochemical data on detergent resistance, resolving membrane patchiness by high-resolution fluorescence and electron microscopies, tracking by videomicroscopy the lipid and protein motions in the membrane, etc.), some basic questions about the microdomains still remain open or highly controversial.


Lipid Raft Fluorescence Resonance Energy Transfer Model Membrane Fluorescence Correlation Spectroscopy Immunological Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed S. N., Brown D. A., and London E. (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10,944–10,953.PubMedCrossRefGoogle Scholar
  2. Alonso M. A. and Millán J. (2001) The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114, 3957–3965.PubMedGoogle Scholar
  3. Anderson R. G. W. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other membrane domains. Science 296, 1821–1825.PubMedCrossRefGoogle Scholar
  4. Babiychuk E. B. and Draeger A. (2000) Annexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains. J. Cell Biol. 150, 1113–1123.PubMedCrossRefGoogle Scholar
  5. Berney C. and Danuser G. (2003) FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010.PubMedGoogle Scholar
  6. Blanchard N. and Hivroz C. (2002) The immunological synapse: The more you look the less you know ... Biol. Cell 94, 345–354.PubMedCrossRefGoogle Scholar
  7. Bock J. and Gulbins E. (2003) The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett. 534, 169–174.PubMedCrossRefGoogle Scholar
  8. Bodnar A., Jene A., Bene L., Damjanovich S., and Matkó J. (1996) Modification of membrane cholesterol affects expression and clustering of class I HLA molecules at the surface of human JY B lymphoblasts. Immunol. Lett. 54, 221–226.PubMedCrossRefGoogle Scholar
  9. Bolard J. (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864, 257–304.PubMedGoogle Scholar
  10. Botelho R. J., Teruel M., Dierckman R., Anderson R., Wells A., York J. D., et al. (2000) Localized biphasic changes in phophatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1367.PubMedCrossRefGoogle Scholar
  11. Brdicka T., Pavlistova D., Leo A., Bruyns E., Korinek V., Angelisova P., et al. (2000) Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604.PubMedCrossRefGoogle Scholar
  12. Bromley S. K., Burack W. R., Johnson K. G., Somersalo K., Sims T. N., Sumen C., et al. (2001) The immunological synapse. Annu. Rev. Immunol. 19, 375–396.PubMedCrossRefGoogle Scholar
  13. Brown D. A. and Rose J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.PubMedCrossRefGoogle Scholar
  14. Brown D. A. and London D. E. (1998) Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114.PubMedCrossRefGoogle Scholar
  15. Burack W. R., Lee K. H., Holdorf A. D., Dustin M. L., and Shaw A. S. (2002) Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841.PubMedGoogle Scholar
  16. Cremestli A., Paris F., Grassme H., Holler N., Tschopp J., Fuks Z., et al. (2001) Ceramide enables Fas to cap and kill. J. Biol. Chem. 276, 23,954–23,961.CrossRefGoogle Scholar
  17. Damjanovich S., Vereb G., Schaper A., Jenei A., Matkó J., Starink J. P., et al. (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 92, 1122–1126.PubMedCrossRefGoogle Scholar
  18. Dietric C., Volovyk Z. N., Levi M., Thompson N. L., and Jacobson K. (2001) Partitioning of Thy-1, GM1 and crosslinked phospholipid analogs into lipid rafts reconstituted in supported model mebrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10,642–10,647.CrossRefGoogle Scholar
  19. Dietrich C., Yang B., Fujiwara T., Kusumi A., and Jacobson K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284.PubMedGoogle Scholar
  20. Edidin M. (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends in Cell Biol. 11, 492–496.CrossRefGoogle Scholar
  21. Filatov A. V., Shmigo I. B., Sharonov G. V., Feofanov A. V., and Volkov Y. (2003) Direct and indirect antibody-induced TX-100 resistance of cell surface antigens. Immunol. Lett. 85, 287–295.PubMedCrossRefGoogle Scholar
  22. Freiberg B. A., Kupfer H., Maslanik W., Delli J., Kappler J., Zaller D. M., et al. (2002) Staging and resetting T cell activation in SMACs. Nature Immunol. 3, 911–917.CrossRefGoogle Scholar
  23. Friedrichson T. and Kurzchalia T. V. (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805.PubMedCrossRefGoogle Scholar
  24. Gaidarov I., Santini F., Warren R. A., and Keen J. H. (1999) Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7.PubMedCrossRefGoogle Scholar
  25. Gheber L. A. and Edidin M. (1999) A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicular traffic. Biophys. J. 77, 3163–3175.PubMedGoogle Scholar
  26. Gombos I., Detne C., Vámosi G., and Matkó J. (2004) Rafting MHC-II domains in the APC (presynaptic) membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol. Lett. 92, 117–124.PubMedCrossRefGoogle Scholar
  27. Harder T. (2003) Formation of functional cell membrane domains: the interplay of lipid-and protein-mediated interactions. Philos. Trans. Soc. Lond., B, Biol. Sci. 358, 863–868.CrossRefGoogle Scholar
  28. Harder T., Scheiffele P. Verkade P., and Simons K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.PubMedCrossRefGoogle Scholar
  29. Hiltbold E. M., Poloso N. J., and Roche P. A. (2003) MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J. Immunol. 170, 1329–1338.PubMedGoogle Scholar
  30. Hooper N. M. (1999) Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16, 145–156.PubMedCrossRefGoogle Scholar
  31. Hwang J., Gheber L,. Margolis L., and Edidin M. (1998) Domains in cell plasma membranes investigated by Near-field Scanning Optical Microscopy. Biophys. J. 74, 2184–2190.PubMedGoogle Scholar
  32. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 471–477.CrossRefGoogle Scholar
  33. Ilangumaran S. and Hoessli D. C. (1998) Effect of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335, 433–440.PubMedGoogle Scholar
  34. Ilangumaran S., Arni S., van Echten-Decker G., Borisch B., and Hoessli D. C. (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell 10, 891–905.PubMedGoogle Scholar
  35. Jacobson K. and Dietrich C. (1999) Looking at lipid rafts? Trends Cell Biol. 9, 87–91.PubMedCrossRefGoogle Scholar
  36. Jost P. C., Griffith O. H., Capaldi R. A., and Vanderkooi G. (1973) Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. USA 70, 480–484.PubMedCrossRefGoogle Scholar
  37. Jost P. C. and Griffith O. H. (1980) The lipid-protein interface in biological membranes. Ann. NY Acad. Sci. 348, 391–407.PubMedCrossRefGoogle Scholar
  38. Kabouridis P. D., Janzen J., Magee A. L., and Ley S. C. (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signal pathways in T lymphocytes. Eur. J. Immunol. 30, 954–963PubMedCrossRefGoogle Scholar
  39. Kahya N., Scherfeld D., Bacia K., Poolman B., and Schwille P. (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28,109–28,115.PubMedCrossRefGoogle Scholar
  40. Kawasaki K., Yin J. J., Subczynski W. K., Hyde J. S., and Kusumi A. (2001) Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and application to studies of influenza viral membrane. Biophys. J. 80, 738–748.PubMedGoogle Scholar
  41. Kenworthy A. K. and Edidin M. (1998) Distribution of a glycosylphoshatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 using imaging fluorescence energy transfer. J. Cell Biol. 142, 69–84.PubMedCrossRefGoogle Scholar
  42. Kenworthy A. K., Petranova N., and Edidin M. (2000) High resolution FRET microscopy of cholera toxin B subunit and GPI proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.PubMedGoogle Scholar
  43. Kirchhausen T. (1999) Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732.PubMedCrossRefGoogle Scholar
  44. Korlach J., Schwille P., Webb W. W., and Feigenson G. (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96, 8461–8466.PubMedCrossRefGoogle Scholar
  45. Krummel M. F. and Davis M. M. (2002) Dynamics of the immunological synapse: finding, esteblishing and solidifying connections. Curr. Opin. Immunol. 14, 66–74.PubMedCrossRefGoogle Scholar
  46. Kusumi A. and Sako Y. (1996) Cell surface organization and the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574.PubMedCrossRefGoogle Scholar
  47. Lanzavecchia A. and Sallusto F. (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nature Immunol. 2, 487–92.CrossRefGoogle Scholar
  48. Lawrence J. C., Saslowsky D. E., Edwardson J. M., and Henderson R. M. (2003) Real time analysis of the effect of cholesterol on lipid raft behavior using atomic force microscopy. Biophys. J. 84, 1827–1832.PubMedGoogle Scholar
  49. Lee S. J. E., Hori Y., Groves J. T., Dustin M. L., and Chakraborty A. K. (2002) The synapse assembly model. Trends Immunol. 23, 500–502.PubMedCrossRefGoogle Scholar
  50. Lin J. and Weiss A. (2000) T cell receptor signaling. J. Cell Sci. 114, 243–244.Google Scholar
  51. London E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 12, 480–486.PubMedCrossRefGoogle Scholar
  52. Manes S., Mira E., Gomez-Mouton C., Lacalle R. A., Keller P., Labrador J. P., et al. (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220.PubMedCrossRefGoogle Scholar
  53. Manes S., Lacalle R. A., Gomez-Mouton C., and Martinez C. A. (2003) From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol. 24, 319–325.CrossRefGoogle Scholar
  54. Martin T. F. J. (2001) PI(4,5)P2 regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499.PubMedCrossRefGoogle Scholar
  55. Masserini M. and Ravasi D. (2001) Role of sphingolipids in the biogenesis of membrane domains. Biochim Biophys. Acta 1532, 149–161.PubMedGoogle Scholar
  56. Matkó J. and Szöllősi J. (2002) Landing of immune receptors and signal proteins on lipid rafts: a safe way to be spatio-temporally coordinated? Immunol. Lett. 82, 3–15.PubMedCrossRefGoogle Scholar
  57. Matkó J., Bodnar A., Vereb G., Bene L., Vamosi G., Szentesi G., et al. (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur. J. Biochem. 269, 1199–1208.PubMedCrossRefGoogle Scholar
  58. Millan J., Montoya M. C., Sancho D., Sanchez-Madrid F., and Alonso M. A. (2002) Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978–984.PubMedCrossRefGoogle Scholar
  59. Miller M. J., Wei S. H., Parker I. and Cahalan M. D. (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph nodes. Science 296, 1869–1873.PubMedCrossRefGoogle Scholar
  60. Moran M. and Micelli C. (1998) Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity 9, 787–796.PubMedCrossRefGoogle Scholar
  61. Nichols B. J., Kenworthy A. K., Polishchuk R. S., Lodge R., Roberts T. H., Hirschberg K., et al. (2001) Rapid recycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541.PubMedCrossRefGoogle Scholar
  62. Oliferenko S., Palha K., Harder T., Gerke V., Schwarzler C., Schwarz H., et al. (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by actin. J. Cell Biol. 146, 843–854.PubMedCrossRefGoogle Scholar
  63. Pralle A., Keller P., Florin E-L., Simons K., and Hörber J. K. H. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007.PubMedCrossRefGoogle Scholar
  64. Radhakrishnan A., Anderson T. G., and McConnell H. M. (2000) Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc. Natl. Acad. Sci. USA 97, 12,422–12,427.PubMedCrossRefGoogle Scholar
  65. Rinia H. A., Snel M. M., van der Eerden J. P., and de Kruijff B. (2000) Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501, 92–96.CrossRefGoogle Scholar
  66. Rosenberger C. M., Brumell J. H., and Finlay B. B. (2000) Microbial pathogenesis: Lipid rafts as pathogen portals. Curr. Biol. 10, R823–R825.PubMedCrossRefGoogle Scholar
  67. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., and Anderson R. G. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.PubMedCrossRefGoogle Scholar
  68. Rozella A. L., Machesky L. M., Yamamoto M., Driessens M. H. E., Insall R. H., Roth M. G., et al. (2000) Phoshatidylinositol 4,5-bisphosphate induces actinbased movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320.CrossRefGoogle Scholar
  69. Saslowsky D. E., Lawrence J., Ren X., Brown D. A., Henderson R. M., and Edwardson J. M. (2002) Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J. Biol. Chem. 277, 26,966–26,970.PubMedCrossRefGoogle Scholar
  70. Saxton M. J. and Jacobson K. (1997) Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399.PubMedCrossRefGoogle Scholar
  71. Schmid S. L. (1997) Chlatrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548.PubMedCrossRefGoogle Scholar
  72. Schroeder R., London E., and Brown D. A. (1994) Interaction between saturated acyl chains confer detergent resistance on lipids and GPI-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 91, 12,130–12,134.PubMedCrossRefGoogle Scholar
  73. Schroeder R., Ahmed S. N., Shu Y. Z., London E., and Brown D. A. (1998) How cholesterol and sphingolipid enhance the TritonX-100 insolubility of GPI-anchored proteins by promoting formation of detergent insoluble ordered membrane domains. J. Biol. Chem. 273, 1150–1157.PubMedCrossRefGoogle Scholar
  74. Schutz G., Kada G., Pastushenko V. P., and Schindler H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.PubMedCrossRefGoogle Scholar
  75. Shakor A. B. A., Czurylo E. A., and Sobota A. (2003) Lysenin, a unique sphingomyelin-binding protein. FEBS Lett. 542, 1–6.PubMedCrossRefGoogle Scholar
  76. Sheets E. D., Lee, G. M., Simson R., and Jacobson K. (1997) Transient confinement of a glycosyl-phosphatidyl-inositol-anchored protein in the plasma membrane. Biochemistry 36, 12,449–12,458.PubMedCrossRefGoogle Scholar
  77. Shin J. S., Gao Z., and Abraham S. N. (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289, 785–788.PubMedCrossRefGoogle Scholar
  78. Simons K. and Ikonen E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.PubMedCrossRefGoogle Scholar
  79. Smart E., Ying Y-S., Conrad P. A., and Anderson R. G. W. (1994) Caveolin moves from caveolae to Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197.PubMedCrossRefGoogle Scholar
  80. Stevens V. L. and Tang J. (1997) Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidyl-inositol-anchored folate receptor. J. Biol. Chem. 272, 18,020–18,025.PubMedCrossRefGoogle Scholar
  81. Stulnig T. M., Berger M., Sigmund T., Radederstoff D., Stockinger H., and Waldhaus W. (1998) Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J. Cell Biol. 143, 637–644.PubMedCrossRefGoogle Scholar
  82. Subczynski W. K. and Kusumi A. (2003) Dynamics of rafts molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231–243.PubMedCrossRefGoogle Scholar
  83. Swinnen J. W., van Veldhoven P. P., Timmermans L., De Schrijver E. D., Brusselmans K., Vanderhoydonc F., et al. (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane domains. Biochem. Biophys. Res. Commun. 302, 898–903.PubMedCrossRefGoogle Scholar
  84. Takeuchi M., Miyamoto H., Sako Y., Komizu H., and Kusumi A. (1998) Structure of erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys. J. 74, 2184–2190.Google Scholar
  85. Tang Q. and Edidin M. (2001) Vesicle trafficking and Cell surface membrane patchiness. Biophys. J. 81, 196–203.PubMedGoogle Scholar
  86. Taraboulos A., Scott M., Semenov A., Avraham D., Laszlo L., and Prusiner S. B. (1995) Cholesterol depletion and modification of COOH terminal targeting sequence on the prion protein inhibit formation of the scraple isoform. J. Cell Biol. 129, 121–135.PubMedCrossRefGoogle Scholar
  87. Trautmann A. and Valitutti S. (2003) The diversity of immunological synapses. Curr. Opin. Immunol. 15, 249–254.PubMedCrossRefGoogle Scholar
  88. Tomishige M. and Kusumi A. (1999) Compartmentalization of the erythrocyte membrane by the membrane skeleton: intercompartmental hop diffusion of band 3. Mol. Biol. Cell 10, 2475–2479.PubMedGoogle Scholar
  89. Tuosto L., Parolini I., Schroder S., Sargiacomo M., Lanzavecchia A., and Viola A. (2001) Organization of plasma membrane functional rafts upon T cell activation. Eur. J. Immunol. 31, 345–349.PubMedCrossRefGoogle Scholar
  90. Valitutti S., Muller S., Cella M., Padovan E., and Lanzavecchia, A. (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151.PubMedCrossRefGoogle Scholar
  91. van Blitterswijk W. J., van der Luit A. H., Veldman R. J., Verheij M., and Borst J. (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369, 199–211.PubMedCrossRefGoogle Scholar
  92. van Meer G. (2002) The different hues of lipid rafts. Science 296, 855–857.PubMedCrossRefGoogle Scholar
  93. Varma R. and Mayor S. (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801.PubMedCrossRefGoogle Scholar
  94. Vereb G., Matkó J., Vamosi G., Ibrahim S. M., Magyar E., Varga S., et al. (2000) Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc. Natl. Acad. Sci. USA 97, 6013–6018.PubMedCrossRefGoogle Scholar
  95. Viola A. (2001) Amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol. 22, 322–327.PubMedCrossRefGoogle Scholar
  96. Xavier R., Brenna T., Li Q., McCormack C., and Seed B. (1998) Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732.PubMedCrossRefGoogle Scholar
  97. Xu X. and London E. (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849.PubMedCrossRefGoogle Scholar
  98. Yuan C. and Johnston L. J. (2001) Atomic force microscopy studies of ganglioside GM1 domains phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys. J. 81, 1059–1069.PubMedCrossRefGoogle Scholar
  99. Yuan C., Furlong J., Burgos P., and Johnston L. J. (2002) The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J. 82, 2526–2535.PubMedGoogle Scholar
  100. Zacharias D. A., Violin J. D., Newton A. C., and Tsien R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane domains of live cells. Science 296, 913–916.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • János Matkó
    • 1
  • János Szöllősi
    • 2
  1. 1.Department of ImmunologyEötvös Lorand UniversityBudapestHungary
  2. 2.Cell Biophysics Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Cell Biology, Health Science CenterUniversity of DebrecenDebrecenHungary

Personalised recommendations