Skip to main content

Genomics for Biodefense

Exploiting the Francisella tularensis Genome Sequence

  • Chapter
  • 1297 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

Francisella tularensis is the aetiological agent of tularemia, a plague-like disease of rodents capable of being transmitted to man. Tularemia is a zoonosis, found in a wide range of animals such as rabbits, hares, rodents, and beavers (1). Transmission occurs usually through the bite of an insect, such as a tick, biting fly, or mosquito (2–5) but can also be through ingestion of infected foodstuffs (3) and drinking water (6), or through inhalation of the bacterium (7). In humans, the most common presentation is ulceroglandular tularemia, a disease typified by flu-like symptoms, normally with a low mortality rate (8). An ulcer forms at the site of infection, which can persist for several months. Other forms of tularemia, such as typhoidal, gastrointestinal, and pneumonic tularemia, are more serious diseases and may have mortality rates up to 60%, depending on the type of strain causing infection (7). F. tularensis subspecies tularensisis one of the most infectious pathogens known, with an infectious dose of less than 10 colony-forming units (CFU) in humans (9,10).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mörner, T. and Sandström, G. (1997) Tularemia, in Manual of Standards for Diagnostic Tests and Vaccines, 3rd ed. Office International Des Epizooties, Paris, France.

    Google Scholar 

  2. Hubalek, Z., Sixl, W., and Halouzka, J. (1998) Francisella tularensis in Dermacentor reticulatus ticks from the Czech Republic and Austria. Wien Klin Wochenschr. 110, 909, 910.

    PubMed  CAS  Google Scholar 

  3. Stewart, S. J. (1996) Tularemia: association with hunting and farming. FEMS Immunol. Med. Microbiol. 13, 197–199.

    Article  PubMed  CAS  Google Scholar 

  4. Morner, T. (1992) The ecology of tularemia. Rev. Sci. Tech. Off. Int. Epiz. 11, 1123–1130.

    CAS  Google Scholar 

  5. Ohara, Y., Sato, T., and Homma, M. (1998) Arthropod-borne tularemia in Japan: clinical analysis of 1374_cases observed between 1924 and 1996.J. Med. Entomol. 35, 471–473.

    PubMed  CAS  Google Scholar 

  6. Tarnvik, A., Sandstrom, G., and Sjostedt, A. (1996) Epidemiological analysis of tularemia in Sweden 1931–1993. FEMS Immunol. Med. Microbiol. 13, 201–204.

    Article  PubMed  CAS  Google Scholar 

  7. Gill, V. and Cunha, B. A. (1997) Tularemia pneumonia. Semin. Resp. Infect. 12, 61–67.

    CAS  Google Scholar 

  8. Evans, M. E., Gregory, D. W., Schaffner, W., and McGee, Z. A. (1985) Tularemia: a 30 year experience with 88 cases. Medicine (Baltimore) 64, 251–269.

    CAS  Google Scholar 

  9. Evans, M. E. (1985) Francisella tularensis. Infect. Cont. 6, 381–383.

    CAS  Google Scholar 

  10. Eigelsbach, H. T. and Downs, C. M. (1961) Prophylactic effectiveness of live and killed tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and guinea pig. J. Immunol. 87, 415–425.

    PubMed  CAS  Google Scholar 

  11. Mangold, T. and Goldberg, J. (1999) Plague Wars: A True Story of Biological Warfare. Macmillan, London.

    Google Scholar 

  12. Centers for Disease Control. (2001) Basic laboratory protocols for the presumptive identification of Francisella tularensis.

    Google Scholar 

  13. Forsman, M., Sandstrom, G., and Sjostedt, A. (1994) Analysis of 16S ribosomal DNA sequences of Francisella strains and utilisation for determination of the phylogeny of the genus and for identification of strains by PCR. Int. J. Syst. Bacteriol. 44, 38–46.

    Article  PubMed  CAS  Google Scholar 

  14. Niebylski, M. L., Peacock, M. G., Fischer, E. R., Porcella, S. F., and Schwan, T. G. (1997) Characterisation of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl. Environ. Microbiol. 63, 3933–3940.

    PubMed  CAS  Google Scholar 

  15. Noda, H., Munderloh, U. G., and Kurtti, T. J. (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 63, 3926–3932.

    PubMed  CAS  Google Scholar 

  16. Maidak, B L., Cole, J. R., Lilburn, T. G., et al. (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29, 173, 174.

    Article  PubMed  CAS  Google Scholar 

  17. Posada, D. and Crandall, K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817, 818.

    Article  PubMed  CAS  Google Scholar 

  18. Swofford, D. L. (1999) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). (Sinauer Associates, Sunderland, Massachusetts). Version 4.

    Google Scholar 

  19. Sandstrom, G., Sjostedt, A., Forsman, M., Pavlovich, N. V., and Mishan’kin, B. N. (1992) Characterisation and classification of strains of Francisella tularensis isolated in the central Asian focus of the Soviet Union and in Japan. J. Clin. Microbiol. 30, 172–175.

    PubMed  CAS  Google Scholar 

  20. Sjöstedt, A. (2002) Family XVII. Francisellaceae, genus I. Francisella, in Bergey’s Manual of Systematic Bacteriology (Brenner, D. J., ed.), New York, Springer-Verlag.

    Google Scholar 

  21. Jellison, W. L. (1974) Tularemia in North America. 1930–1974. University of Montana.

    Google Scholar 

  22. Dienst, J. F. T. (1963) Tularemia—a perusal of three hundred thirty-nine cases. J. Louisiana State M. So. 115, 114–127.

    Google Scholar 

  23. Gurycova, D. (1998) First isolation of Francisella tularensis subsp. tularensis in Europe. Eur. J. Epidemiol. 14, 797–802.

    Article  PubMed  CAS  Google Scholar 

  24. Mitscherlich, E. and Marth, E. H. (1984) Microbial Survival in the Environment. Springer-Verlag, Berlin, 741, 742.

    Google Scholar 

  25. Parker, R. R., Steinhaus, E. A., Kohls, G. M., and Jellison, W. L. (1951) Contamination of natural waters and mud with Pasturella tularensis and Tularemia in beavers and muskrats in the Northwestern United States. Nat. Inst. Health Bull. 193.

    Google Scholar 

  26. Berdal, B. P., Ting, R. S., Meidell, N. K., Lorentzen-Styr, A. M., and Scheel, O. (1996) Field nvestigations of tularaemia in Norway. FEMS Immunol. Med. Micribiol. 13, 191–195.

    Article  CAS  Google Scholar 

  27. Abd, H., Johansson, T., Hägg, K., Golovliov, I., Sandström, G., and Forsman, M. (2003) Survival and growth of Francisella tularensis in Acanthamoeba castellani. Appl. Environ. Microbiol. 69, 600–606.

    Article  PubMed  CAS  Google Scholar 

  28. Fortier, A. H., Green, S. J., Polsinelli, T., et al. (1994) Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol. Ser. 349–361.

    Google Scholar 

  29. Gray, C. G., Cowley, S. C., and Nano, F. E. (2002) The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol. Lett. 215, 53–56.

    Article  PubMed  CAS  Google Scholar 

  30. Baron, G. S. and Nano, F. E. (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 29, 247–259.

    Article  PubMed  CAS  Google Scholar 

  31. Anthony, L. S. D., Cowley, S. C., Mdluli, K. E., and Nano, F. E. (1994) Isolation of a Francisella tularensis mutant that is sensitive to serum and oxidative killing and is avirulent in mice: correlation with the loss of MinD homologue expression. FEMS Microbiol. Lett. 124, 157–166.

    Article  PubMed  CAS  Google Scholar 

  32. Sandstrom, G., Lofgren, S., and Tarnvik, A. (1988) A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 56, 1194–1202.

    PubMed  CAS  Google Scholar 

  33. Sorokin, V. M., Pavlovich, N. V., and Prozorova, L. A. (1996) Francisella tularensis resistance to bactericidal action of normal human serum. FEMS Immunol. Med. Microbiol. 13, 249–252.

    Article  PubMed  CAS  Google Scholar 

  34. Anthony, L. S. D., Gu, M., Cowley, S. C., Leung, W. W. S., and Nano, F. E. (1991) Transformation and allelic replacement in Francisella spp. J. Gen. Microbiol. 137, 2697–2703.

    PubMed  CAS  Google Scholar 

  35. Pizza, M., Scarlato, V., Masignani, V., et al. (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.

    Article  PubMed  CAS  Google Scholar 

  36. Karlsson, J., Prior, R. G., Williams, K., et al. (2000) Sequencing of the Francisella tularensis strain Schu4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb. Comp. Genomics 5, 25–39.

    Article  PubMed  CAS  Google Scholar 

  37. Pomerantsev, A. P., Obuchi, M., and Ohara, Y. (2001) Nucleotide sequence, structural organization, and functional characterization of the small recombinant plasmid pOM1 that is specific for Francisella tularensis. Plasmid 46, 86–94.

    Article  PubMed  CAS  Google Scholar 

  38. Pavlov, V. M., Mokrievich, A. N., and Volkovoy, K. (1996) Cryptic plasmid pFNL10 from Francisella novicida-like F6168: the base of plasmids for Fransicella tularensis. FEMS Immunol. Med. Microbiol. 13, 253–256

    Article  PubMed  CAS  Google Scholar 

  39. Prior, R. G., Klasson, L., Larsson, P., et al. (2001) Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J. Appl. Microbiol. 91, 1–7.

    Article  Google Scholar 

  40. Cowley, S. C., Myltseva, S. V., Nano, F. E. (1996) Phase variation in Francisella tularensisaffecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20, 867–874.

    Article  PubMed  CAS  Google Scholar 

  41. Koskela, P. and Salminen, A. (1985) Humoral immunity against Francisella tularensis after natural infection. J. Clin. Microbiol. 22, 973–979.

    PubMed  CAS  Google Scholar 

  42. Pollitzer, R. (1967) History and incidence of tularemia in the Soviet Union. A review. The Institute of Contemporary Russian Studies, Fordham University, New York.

    Google Scholar 

  43. Grunow, R., Splettstoesser, W., McDonald, S., et al. (2000) Detection of Francisella tularensis in biological specimens using a capture enzyme-linked immunosorbent assay, an immunochromatographic handheld assay, and a PCR. Clin. Diag. Lab. Immunol. 7, 86–90.

    CAS  Google Scholar 

  44. Forsman, M., Sandstrom, G., and Jaurin, B. (1990) Identification of Francisella species and discrimination of type A and type B strains of F. tularensis by 16S rRNA analysis. Appl. Environ. Microbiol. 56, 949–955.

    PubMed  CAS  Google Scholar 

  45. Forsman, M., Kuoppa, K., Sjöstedt, A., and Tärnvik, A. RNA-hybridisation in a case of ulceroglandular tularemia. Eur. J. Clin. Microbiol. Infect. Dis. 9, 784, 785.

    Google Scholar 

  46. Forsman, M., Sandström, G., and Sjöstedt, A. (1994) Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int. J. Syst. Bacteriol. 44, 38–46.

    Article  PubMed  CAS  Google Scholar 

  47. Sjostedt, A., Sandstrom, G., Tarnvik, A., and Jaurin, B. (1990) Nucleotide sequence and T cell epitopes of a membrane protein of Francisella tularensis. J. Immunol. 145, 311–317.

    PubMed  CAS  Google Scholar 

  48. Sjostedt, A., Kuoppa, K., Johansson, T., and Sandstrom, G. (1992) The 17 kDa lipoprotein and encoding gene of Francisella tularensis LVS are conserved in strains of Francisella tularensis0. Microb. Pathog. 13, 243–249.

    Article  PubMed  CAS  Google Scholar 

  49. Long, G. W., Oprandy, J. J., Narayanan, R. B., Fortier, A. H., Porter, K. R., and Nacy, C.A. (1993) Detection of Francisella tularensis in blood by polymerase chain reaction. J. Clin. Microbiol. 31, 152–154.

    PubMed  CAS  Google Scholar 

  50. Sjöstedt, A., Eriksson, U., Berglund, L., and Tärnvik, A. (1997) Detection of Francisella tularensis in ulcers of Patients with tularemia by PCR. J. Clin. Microbiol. 35, 1045–1048.

    PubMed  Google Scholar 

  51. Johansson, A., Ibrahim, A., Göransson, I., Eriksson, U., Gurycova, D., Clarridge, III J. E., and Sjöstedt, A. (2000) Evaluation of PCR-based methods for discrimination of species and subspecies of Francisella tularensis and the development of a specific PCR that distinguishes the two major subspecies. J. Clin. Microbiol. 38, 4180–4185.

    PubMed  CAS  Google Scholar 

  52. Ibrahim, A., Gerner-Smidt, P., and Sjöstedt, A. (1996) Amplification and restriction endonuclease digestion of a large fragment of genes coding for rRNA as a rapid method for discrimination of closely related pathogenic bacteria. J. Clin. Microbiol. 34, 2894–2896.

    PubMed  CAS  Google Scholar 

  53. Clarridge, J. E., Raich, T. J., Sjöstedt, A., et al. (1996) Characterization of two unusual clinically significant Francisella strains. J. Clin. Microbiol. 34, 1995–2000.

    PubMed  Google Scholar 

  54. de La Puente-Redondo, V. A., del Blanco, N. G., Gutierrez-Martin, C. B., Garcia-Pena, F. J., and Ferri, E. F. (2000) Comparison of different PCR approaches for typing of Francisella tularensis strains. J. Clin. Microbiol. 38, 1016–1022.

    PubMed  Google Scholar 

  55. Johansson, A., Göransson, I., Larsson, P., and Sjöstedt, A. (2001) Extensive allelic variation among Francisella tularensis strains in a short-sequence tandem repeat region. J. Clin. Microbiol. 39, 3140–3146.

    Article  PubMed  CAS  Google Scholar 

  56. Broekhuijsen, M., Larsson, P., Johansson, A., et al. (2003) A genome-wide microarray analysis of Francisella tularensis strains demonstrate extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subspecies tularensis. J. Clin. Microbiol. 41, 2934–2941.

    Article  CAS  Google Scholar 

  57. van Belkum, A., Scherer, S., van Alphen, L., and Verbrugh, H. (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62, 275–293.

    PubMed  Google Scholar 

  58. Farlow, J., Smith, K. L., Wong, J., Abrams, M., Lytle, M., and Keim, P. Francisella tularensis strain typing using multiple-locus variable-number tandem repeat analysis. J. Clin. Microbiol. 39, 3186–3192.

    Google Scholar 

  59. Saslaw, S., Eigelsbach, H. T., Prior, J. A., Wilson, H. E., and Carhart, S. (1961) Tularemia vaccine study. II. Respiratory challenge. Arch. Intern. Med. 107, 702–714.

    PubMed  CAS  Google Scholar 

  60. Saslaw, S., Eigelsbach, H. T., Wilson, H. E., Prior, J. A., and Carhart, S. (1961) Tularemia vaccine study. I. Intracutaneous challenge. Arch. Intern. Med. 107, 689–701.

    PubMed  CAS  Google Scholar 

  61. Eigelsbach, H. T., Hornick, R. B., and Tulis, J. J. (1967) Recent studies on live tularemia vaccine. Med. Ann. Dist. Columbia 36, 282–286.

    PubMed  CAS  Google Scholar 

  62. Burke, D. S. (1977) Immunisation against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J. Infect. Dis. 135, 55–60.

    PubMed  CAS  Google Scholar 

  63. Elkins, K. L., Rhinehart-Jones, T. R., Culkin, S. J., Yee, D., and Winegar, R. K. (1996) Minimal requirements for murine resistance to infection with Francisella tularensis LVS. Infect. Immun. 64, 3288–3293.

    PubMed  CAS  Google Scholar 

  64. Dougan, G. (1994) The molecular basis for virulence of bacterial pathogens:implications for oral vaccine development. Microbiology 140, 215–224.

    Article  PubMed  CAS  Google Scholar 

  65. Charles, I. and Dougan, G. (1990) Gene expression and the development of live enteric vaccines. Trends Biotechnol. 8, 117–121.

    Article  PubMed  CAS  Google Scholar 

  66. Scott, P. C., Markham, J. F., and Whithear, K. G. (1999) Safety and efficacy of two live Pasteurella multocida aro-A mutant vaccines in chickens. Avian Dis. 3, 83–88.

    Article  Google Scholar 

  67. Cersini, A., Salvia, A. M., and Bernardini, M. L. (1998) Intracellular multiplication and virulence of Shigella flexneri auxotrophic mutants. Infect. Immun. 6, 549–557.

    Google Scholar 

  68. Marsden, M. J., Vaughan, L. M., Fitzpatrick, R. M., Foster, T. J., and Secombes, C. J. (1998) Potency testing of a live, genetically attenuated vaccine for salmonids. Vaccine 16, 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  69. Gunel-Ozcan, A., Brown, K. A., Allen, A. G., and Maskell, D. J. (1997) Salmonella typhimurium aroB mutants are attentuated in BALB/c mice. Microb. Pathog. 23, 311–316.

    Article  PubMed  CAS  Google Scholar 

  70. Dougan, G., Chatfield, S., Pickard, D., Bester, J., O’Callaghan, D., and Maskell, D. (1988) Construction and characterization of vaccine strains of Salmonella harboring mutations in two different aro genes. J. Infect. Dis. 158, 1329–1335.

    PubMed  CAS  Google Scholar 

  71. Hone, D. M., Harris, A. M., Chatfield, S., Dougan, G., and Levine, M. M. (1991) Construction of genetically defined double aro mutants of Salmonella typhi. Vaccine 9, 810–816.

    Article  PubMed  CAS  Google Scholar 

  72. Stocker, B. A. D. (1988) Auxotrophic Salmonella typhi as live vaccine. Vaccine 6, 141–145.

    Article  PubMed  CAS  Google Scholar 

  73. Hosieth, S. K. and Stocker, B. A. D. (1981) Aromatic-dependent Salmonella typhimuriumare non-virulent and effective as live vaccines. Nature 291, 238, 239.

    Google Scholar 

  74. Andersson, S. G. E., Zomorodipour, A., Andersson, J., et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140.

    Article  PubMed  CAS  Google Scholar 

  75. Oyston, P. C. F., Russell, P., Williamson, E. D., and Titball, R. W. (1996) An aroA mutant of Yersinia pestis is attenuated in the guinea pig, but virulent in mice. Microbiology 142, 1847–1853.

    Article  PubMed  CAS  Google Scholar 

  76. Crawford, R. M., Van De Verg, L., Yuan, L., et al. (1996) Deletion of purE attenuates Brucella melitensis infection in mice. Infect. Immun. 64, 2188–2192.

    PubMed  CAS  Google Scholar 

  77. Jackson, M., Phalen, S. W., Lagranderie, M., et al. (1999) Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect. Immun. 67, 2867–2873.

    PubMed  CAS  Google Scholar 

  78. Brubaker, R. R. (1970) Interconversion of purine mononucleotides in Pasturella pestis. Infect. Immun. 1, 446–454.

    PubMed  CAS  Google Scholar 

  79. Ivanovics, G., Marjai, E., and Dobozy, A. (1968) The growth of purine mutants of Bacillus anthracis in the body of the mouse. J. Gen. Microbiol. 53, 147–162.

    PubMed  CAS  Google Scholar 

  80. McFarland, W. C. and Stocker, B. A. D. (1987) Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella typhimurium. Microb. Pathog. 3, 129–141.

    Article  PubMed  CAS  Google Scholar 

  81. Neuhard, J. and Nygaard, P. (1987) Purines and pyrimidines, in Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, vol. 1. (Neidhardt, F. C., Ingraham, J. L., Low, K. B., et al., eds.), American Society for Microbiology, Washington, DC, pp. 445–473.

    Google Scholar 

  82. Fulop, M., Manchee, R., and Titball, R. (1995) Role of lipopolysaccharide and a major outer membrane protein from Francisella tularensis in the induction of immunity against tularemia. Vaccine 13, 1220–1225.

    Article  PubMed  CAS  Google Scholar 

  83. Fulop, M., Mastroeni, P., Green, M., and Titball, R. W. (2001) Role of antibody to lipopolysaccharide in protection against low and high-virulence strains of Francisella tularensis. Vaccine 19, 4465–4472.

    Article  PubMed  CAS  Google Scholar 

  84. Golovliov, I., Ericsson, M., Akerblom, L., Sandström, G., Tärnvik, A., and Sjöstedt, A. (1995) Adjuvanticity of ISCOMs incorporating a T cell-reactive lipoprotein of the facultative intracellular pathogen Francisella tularensis. Vaccine 13, 261–267.

    Article  PubMed  CAS  Google Scholar 

  85. Sjöstedt, A., Sandström, G., and Tärnvik, A. (1992) Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect. Immun. 60, 2855–2862.

    PubMed  Google Scholar 

  86. Gomez, M., Johnson, S., and Gennaro, M. L. (2000) Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect. Immun. 68, 2323–2327.

    Article  PubMed  CAS  Google Scholar 

  87. Ross, B. C., Czajkowski, L., Hocking, D., et al. (2001) Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 9, 4135–4142.

    Article  Google Scholar 

  88. Tettelin, H., Nelson, K. E., Paulsen, I. T., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.

    Article  PubMed  CAS  Google Scholar 

  89. Rappuoli, R. (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19, 2688–2691.

    Article  PubMed  CAS  Google Scholar 

  90. Hernychova, L., Stulik, J., Halada, P., Macela, A., Kroca, M., Johansson, T., and Malina, M. (2001) Construction of a Francisella tularensis two-dimensional electrophoresis protein database. Proteomics 1, 508–515.

    Article  PubMed  CAS  Google Scholar 

  91. Buysse, J. M. (2001) The role of genomics in antibacterial target discovery. Curr. Med. Chem. 8, 1763–1776.

    Google Scholar 

  92. McDevitt, D. and Rosenberg, M. (2001) Exploiting genomics to discover new antibiotics. Trends Microbiol. 9, 611–617.

    Article  PubMed  CAS  Google Scholar 

  93. Carpenter, E. P., Hawkins, A. R., Frost, J. W., and Brown, K. A. (1998) Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature 394, 299–302.

    Article  PubMed  CAS  Google Scholar 

  94. Heithoff, D. M., Sinsheimer, R. L., Low, D. A., and Mahan, M. J. (1999) An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970.

    Article  PubMed  CAS  Google Scholar 

  95. Forsman, M..Henningsson, E., Johansson, T., Larsson, E., and Sandström, G. (2000) The zoonotic bacterium Francisella tularensis does not manifest virulence in viable but nonculturable state. FEMS Microbiol. Ecol. 31, 217–224.

    Article  PubMed  CAS  Google Scholar 

  96. Higgins, J. A., Hubalek, Z., Halouzka, J., Elkins, K. L., Sjostedt, A., Shipley, M., Ibrahim, M. S. (2000) Detection of Francisella tularensis in infected mammals and vectors using probe-based polymerase chain reaction. Am. J. Trop. Med. Hyg. 62, 310–318.

    PubMed  CAS  Google Scholar 

  97. Johansson, A., Berglund, L., Eriksson, U., et al. (2000) A comparative analysis of PCR versus culture for the diagnosis of ulceroglandular tularemia. J. Clin. Microbiol. 38, 22–26.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Andersson, S.G.E., Forsman, M., Oyston, P.C.F., Titball, R.W. (2005). Genomics for Biodefense. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:435

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:435

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics