Skip to main content

Genomic Efforts With Biodefense Pathogens

  • Chapter
Book cover Biological Weapons Defense

Part of the book series: Infectious Disease ((ID))

  • 1291 Accesses

Abstract

Events following the attacks on New York City and Washington, DC on September 11, 2001, have served to underscore the need for extensive research on biological warfare (BW) and other agents in order to aid the initiative to fight terrorism worldwide. During the Cold War era, the former USSR covertly developed, tested, and stockpiled immense amounts of biological weapons in an effort to build the largest and most advanced biological warfare program in the world. The knowledge developed in these laboratories and manufacturing sites has since undoubtedly spread to other regimes and terrorist organizations. Research on these agents of bioterrorism concern is of highest priority to enhance diagnostic, preventative, and therapeutic measures. Pathogens that may be potentially adapted for biological warfare include those causing smallpox (Variola), anthrax (Bacillus anthracis), plague (Yersinia pestis), tularemia (Francisella tularensis), brucellosis (Brucella abortus, B. melitensis, B. suis, B. canis), Q fever (Coxiella burnetii), botulism (Clostridium botulinum), glanders (Burkholderia mallei), and enterotoxin B producing Staphylococcus spp. All of these agents constitute considerable threat to military personnel and civilians alike in the dreaded event of a bioterrorist affront.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischmann, R. D., Adams, M. D., White, O., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.

    Article  PubMed  CAS  Google Scholar 

  2. Salzberg, S. L., Delcher, A. L., Kasif, S., and White, O. (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548.

    Article  PubMed  CAS  Google Scholar 

  3. Delcher, A. L., Harmon, D., Kasif, S., White, O., and Salzberg, S. L. (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641.

    Article  PubMed  CAS  Google Scholar 

  4. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  5. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L., and Sonnhammer, E. L. (2000) The Pfam protein families database. Nucleic Acids Res. 28, 263–266.

    Article  PubMed  CAS  Google Scholar 

  6. Haft, D. H., Loftus, B. J., Richardson, D. L., et al. (2001) TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43.

    Article  PubMed  CAS  Google Scholar 

  7. Peterson, J. D., Umayam, L. A., Dickinson, T., Hickey, E. K., and White, O. (2001) The comprehensive microbial resource. Nucleic Acids Res. 29, 123–125.

    Article  PubMed  CAS  Google Scholar 

  8. Dixon, T. C., Meselson, M., Guillemin, J., and Hanna, P. C. (1999) Anthrax. N. Engl. J. Med. 341, 815–826.

    Article  PubMed  CAS  Google Scholar 

  9. Manchee, R. J., Broster, M. G., Anderson, I. S., Henstridge, R. M., and Melling, J. (1983) Decontamination of Bacillus anthracis on Gruinard Island? Nature 303, 239, 240.

    Article  PubMed  CAS  Google Scholar 

  10. Mock, M. and Fouet, A. (2001) Anthrax. Annu. Rev. Microbiol. 55, 647–71.

    Article  PubMed  CAS  Google Scholar 

  11. Hanna, P. C. and Ireland, J. A. (1999) Understanding Bacillus anthracis pathogenesis. Trends Microbiol. 7, 180–182.

    Article  PubMed  CAS  Google Scholar 

  12. Mikesell, P., Ivins, B. E., Ristroph, J. D., and Dreier, T. M. (1983) Evidence for plasmidmediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371–376.

    PubMed  CAS  Google Scholar 

  13. Pezard, C,. Berche, P., and Mock, M. (1991) Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun. 59, 3472–3477.

    PubMed  CAS  Google Scholar 

  14. Green, B. D., Battisti, L., Koehler, T. M., Thorne, C. B., and Ivins, B. E. (1985) Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49, 291–297.

    PubMed  CAS  Google Scholar 

  15. Uchida, I., Sekizaki, T., Hashimoto, K., and Terakado, N. (1985) Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid. J. Gen. Microbiol. 131(Pt. 2), 363–367.

    PubMed  CAS  Google Scholar 

  16. Little, S. F. and Knudson, G. B. (1986) Comparative efficacy of Bacillus anthracis live spore vaccine and protective antigen vaccine against anthrax in the guinea pig. Infect. Immun. 52, 509–512.

    PubMed  CAS  Google Scholar 

  17. Read, T. D., et al. (2003) The genome sequence of Bacillus anthracis AMES and comparison to closely related bacteria. Nature 423(6935), 81–86.

    Article  PubMed  CAS  Google Scholar 

  18. Okinaka, R., Cloud, K., Hampton, O., et al. (1999) Sequence, assembly and analysis of pX01 and pX02. J. Appl. Microbiol. 87, 261, 262.

    Article  PubMed  Google Scholar 

  19. Okinaka, R. T., Cloud, K., Hampton, O., et al. (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181, 6509–6515.

    PubMed  CAS  Google Scholar 

  20. Thorne, C. B. (1993) Bacillus anthracis, in Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, DC, pp. 113-124.

    Google Scholar 

  21. Keim, P., Price, L. B., Klevytska, A. M., et al. (2000) Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 182, 2928–2936.

    Article  PubMed  CAS  Google Scholar 

  22. Read, T. D., Salzberg, S. L., Pop, M., et al. (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 9, 9.

    Google Scholar 

  23. Baca, O. G. and Paretsky, D. (1983) Q fever and Coxiella burnetii: a model for hostparasite interactions. Microbiol. Rev. 47, 127–149.

    PubMed  CAS  Google Scholar 

  24. Broqui, P., Dupont, H. T., Drancourt, M., et al. (1993) Chronic Q fever. Arch. Int. Med. 153, 642–648.

    Article  Google Scholar 

  25. Babudieri, C. (1959) Q fever: a zoonosis. Adv. Vet. Sci. 5, 81–84.

    Google Scholar 

  26. Weisburg, W. G., Dobson, M. E., Samuel, J. E., et al. (1989) Phylogenetic diversity of the Rickettsiae. J. Bacteriol. 171, 4202–4206.

    PubMed  CAS  Google Scholar 

  27. Reiner, N. E. (1994) Altered cell signaling and mononuclear phagocyte deactivation during intracellular infection. Immunol. Today 15, 374–381.

    Article  PubMed  CAS  Google Scholar 

  28. Wiebe, M. E., Burton, P. R., and Shankel, D. M. (1972) Isolation and characterization of two cell types of Coxiella burnetii phase I. J. Bacteriol. 110, 368–377.

    PubMed  CAS  Google Scholar 

  29. Williams, J. C., Johnston, M. R., Peacock, M. G., Thomas, L. A., Stewart, S., and Portis, J. L. (1984) Monoclonal antibodies distinguish phase variants of Coxiella burnetii. Infect. Immun. 43, 421–428.

    PubMed  CAS  Google Scholar 

  30. Seshadri, R., et al. (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. USA 100(9), 5455–5460.

    Article  PubMed  CAS  Google Scholar 

  31. Ogata, H., Audic, S., Renesto-Audiffren, P., et al. (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293, 2093–2098.

    Article  PubMed  CAS  Google Scholar 

  32. Afseth, G., Mo, Y. Y., and Mallavia, L. P. (1995) Characterization of the 23S and 5S rRNA genes of Coxiella burnetii and identification of an intervening sequence within the 23S rRNA gene. J. Bacteriol. 177, 2946–2949.

    PubMed  CAS  Google Scholar 

  33. Tettelin, H., Saunders, N. J., Heidelberg, J., et al. (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.

    Article  PubMed  CAS  Google Scholar 

  34. Nicoletti, P. (1980) The epidemiology of bovine brucellosis. Adv. Vet. Sci. Comp. Med. 24, 69–98.

    PubMed  CAS  Google Scholar 

  35. Roux, J. (1979) [Epidemiology and prevention of brucellosis]. Bull. World Health Org. 57, 179–194.

    PubMed  CAS  Google Scholar 

  36. Young, E. J. (1988) Brucellosis: a model zoonosis in developing countries. APMIS Suppl. 3, 17–20.

    Google Scholar 

  37. Young, E. J. (1995) An overview of human brucellosis. Clin. Infect. Dis. 21, 283–289; quiz 290.

    PubMed  CAS  Google Scholar 

  38. Hall, W. H. (1990) Modern chemotherapy for brucellosis in humans. Rev. Infect. Dis. 12, 1060–1099.

    PubMed  CAS  Google Scholar 

  39. Young, E. J. (1983) Human brucellosis. Rev. Infect. Dis. 5, 821–842.

    PubMed  CAS  Google Scholar 

  40. Hoover, D. L., Crawford, R. M., Van De Verg, L. L., et al. (1999) Protection of mice against brucellosis by vaccination with Brucella melitensis WR201(16MDeltapurEK). Infect. Immun. 67, 5877–5884.

    PubMed  CAS  Google Scholar 

  41. Detilleux, P. G., Deyoe, B. L., and Cheville, N. F. (1990) Penetration and intracellular growth of Brucella abortus in nonphagocytic cells in vitro. Infect. Immun. 58, 2320–2328.

    PubMed  CAS  Google Scholar 

  42. Detilleux, P. G., Deyoe, B. L., and Cheville, N. F. (1990) Entry and intracellular localization of Brucella spp. in Vero cells: fluorescence and electron microscopy. Vet. Pathol. 27, 317–328.

    Article  PubMed  CAS  Google Scholar 

  43. DelVecchio, V. G., Kapatral, V., Redkar, R. J., et al. (2002) The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA 99, 443–448.

    Article  PubMed  CAS  Google Scholar 

  44. Paulsen, I. T., et al. (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbiants. Proc. Natl. Acad. Sci. USA 99(20), 13,148–13,153.

    Article  PubMed  CAS  Google Scholar 

  45. McGilvray, C. D. (1944) The transmission of glanders from horse to man. Can. J. Public Health 35, 268–275.

    Google Scholar 

  46. Stanton, A. T. and Fletcher, W. (1925) Melidosis and its relation to glanders. J. Hyg. 23, 347–363.

    Article  Google Scholar 

  47. Neubauer, H., Meyer, H., and Finke, E. J. (1997) Human glanders. Revue Internationale Des Services De Sante Des Forces Armees 70, 258–265.

    Google Scholar 

  48. Rood, J. I. and Cole, S. T. (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55, 621–648.

    PubMed  CAS  Google Scholar 

  49. Williamson, E. D. and Titball, R. W. (1993) A genetically engineered vaccine against the alpha-toxin of Clostridium perfringens protects mice against experimental gas gangrene. Vaccine 11, 1253–1258.

    Article  PubMed  CAS  Google Scholar 

  50. O’Brien, D. K. and Melville, S. B. (2000) The anaerobic pathogen Clostridium perfringens can escape the phagosome of macrophages under aerobic conditions. Cell. Microbiol. 2, 505–519.

    Article  PubMed  CAS  Google Scholar 

  51. Stevens, D. L., Tweten, R. K., Awad, M. M., Rood, J. I., and Bryant, A. E. (1997) Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 176, 189–195.

    PubMed  CAS  Google Scholar 

  52. Netherwood, T., Chanter, N., and Mumford, J. A. (1996) Improved isolation of Clostridium perfringens from foal faeces. Res. Vet. Sci. 61, 147–151.

    Article  PubMed  CAS  Google Scholar 

  53. Shimizu, T., Ohtani, K., Hirakawa, H., et al. (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99, 996–1001.

    Article  PubMed  CAS  Google Scholar 

  54. Nelson, K. E., Paulsen, I. T., Heidelberg, J. F., and Fraser, C. M. (2000) Status of genome projects for nonpathogenic bacteria and archaea. Nat. Biotechnol. 18, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  55. Pizza, M., Scarlato, V., Masignani, V., et al. (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.

    Article  PubMed  CAS  Google Scholar 

  56. Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E., and Holden, D. W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.

    Article  PubMed  CAS  Google Scholar 

  57. Hong, P. C., Tsolis, R. M., and Ficht, T. A. (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect. Immun. 68, 4102–4107.

    Article  PubMed  CAS  Google Scholar 

  58. Tsolis, R. M., Townsend, S. M., Miao, E. A., et al. (1999) Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67, 6385–6393.

    PubMed  CAS  Google Scholar 

  59. Hutchison, C. A., Peterson, S. N., Gill, S. R., et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169.

    Article  PubMed  CAS  Google Scholar 

  60. Wei, Y., Lee, J. M., Richmond, C., Blattner, F. R., Rafalski, J. A., and LaRossa, R. A. (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J. Bacteriol. 183, 545–556.

    Article  PubMed  CAS  Google Scholar 

  61. Wilson, M., DeRisi, J., Kristensen, H. H., et al. (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12,833–12,838.

    Article  PubMed  CAS  Google Scholar 

  62. Israel, D. A., Salama, N., Krishna, U., et al. (2001) Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98, 14,625–14,630.

    Article  PubMed  CAS  Google Scholar 

  63. Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F., and Mekalanos, J. J. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99, 1556–1561.

    Article  PubMed  CAS  Google Scholar 

  64. Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98, 12,712–12,717.

    Article  PubMed  CAS  Google Scholar 

  65. Perna, N. T., Plunkett, G., 3rd, Burland, V., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Seshadri, R., Read, T.D., Nierman, W.C., Paulsen, I.T. (2005). Genomic Efforts With Biodefense Pathogens. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:417

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:417

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics