DNA-Based Diagnostic Tests for Detection and Identification of Biological Weapons

  • Luther E. Lindler
  • David Norwood
  • Michael Dobson
  • Ted L. Hadfield
Part of the Infectious Disease book series (ID)


Classically, microorganisms have been identified by bacteriological means (1). Typically, this would involve plating of the specimen on suitable growth media, incubation at least overnight to allow growth, streak purification of individual suspect colonies followed by another overnight incubation and inoculation of specific biochemical reactions that are useful for differentiation of the organism from other genera or species possibly followed by a third overnight incubation. Thus, the “gold standard” for the identification of bacteria that might be used to identify an organism included in a bioweapon is cultivation followed by differential testing to specifically identify the agent. In the best case, the amount of time needed to identify these organisms could be reduced if specific antiserum was available that could be used after the initial specimen has been plated and incubated to obtain individual bacterial colonies (see Chapter 25). Thus, a presumptive identification using antibody-based methods would be available after approx 24 h. Beside being time consuming, this process produces a large burden in terms of logistics to get the reagents and equipment to the site of testing. The above scenario is for a bacterial agent and the logistical burden is even heavier for viral agents given the specialized reagents and equipment needed for their identification. This is simply not acceptable because therapy for infections caused by these agents generally must begin within the first few hours after exposure if the patient is to survive (2).


West Nile Virus Fluorescence Resonance Energy Transfer Bacillus Anthracis Internal Positive Control Yersinia Pestis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Murray, P. R. and American Society for Microbiology. (1999) Manual of Clinical Microbiology. 7th ed. ASM, Washington, DC.Google Scholar
  2. 2.
    Franz, D. R., Jahrling, P. B., Friedlander, A. M., et al. (1997) Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278, 399–411.PubMedCrossRefGoogle Scholar
  3. 3.
    Tenover, F. C. and Unger, E. R. (1993) Nucleic acid probes for detection and identification of infectious agents, in Diagnostic Molecular Microbiology: Principles and Applications. (Persing, D. H., Smith, T. F., Tenover, F. C., and White, T. J., eds.), American Society for Microbiology, Washington, DC, pp. 3–25.Google Scholar
  4. 4.
    Whitcombe, D., Newton, C. R., and Little, S. (1998) Advances in approaches to DNAbased diagnostics. Curr. Opin. Biotechnol. 9, 602–608.PubMedCrossRefGoogle Scholar
  5. 5.
    Pfeffer, M., Wiedmann, M., and Batt, C. A. (1995) Applications of DNA amplification techniques in veterinary diagnostics. Vet. Res. Commun. 19, 375–407.PubMedCrossRefGoogle Scholar
  6. 6.
    Jung, M., Muche, J. M., Lukowsky, A., Jung, K., and Loening, S. A. (2001) Dimethyl sulfoxide as additive in ready-to-use reaction mixtures for real-time polymerase chain reaction analysis with SYBR Green I dye. Anal. Biochem. 289, 292–295.PubMedCrossRefGoogle Scholar
  7. 7.
    Dhar, A. K., Roux, M. M., and Klimpel, K. R. (2001) Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative pcr and sybr green chemistry. J. Clin. Microbiol. 39, 2835–2845.PubMedCrossRefGoogle Scholar
  8. 8.
    Skeidsvoll, J. and Ueland, P. M. (1995) Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I. Anal. Biochem. 231, 359–365.PubMedCrossRefGoogle Scholar
  9. 9.
    Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.PubMedGoogle Scholar
  10. 10.
    Lakowicz, J. R. (1999) Principles of Fluorescent Spectroscopy. 2nd ed. Plenum, New York.Google Scholar
  11. 11.
    Caplin, B. E., Rasmussen, R. P., Bernard, P. S., and Wittwer, C. T. (1999) LightCycler hybridization probes: the most direct way to monitor PCR amplification for quantitation and mutation detection. Biochemica 1, 5–9.Google Scholar
  12. 12.
    Meuer, S., Wittwer, C., and Nakagawara, K. (2001) Rapid Cycle Real-Time PCR. Springer Verlag, Berlin, Germany.Google Scholar
  13. 13.
    Northrup, M. A., Christel, L., McMillan, W. A., et al. (1998) A new generation of PCR instruments and nucleic acid concentration systems in PCR Protocols. (Gelfand, I. and Sninsky, J. J., eds.), Academic, San Diego, CA.Google Scholar
  14. 14.
    Belgrader, P., Benett, W., Hadley, D., et al. (1999) PCR detection of bacteria in seven minutes. Science 284, 449, 450.PubMedCrossRefGoogle Scholar
  15. 15.
    Belgrader, P., Young, S., Yuan, B., et al. (2001) A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem. 73, 286–289.PubMedCrossRefGoogle Scholar
  16. 16.
    Etienne-Toumelin, I., Sirard, J. C., Duflot, E., Mock, M., and Fouet, A. (1995) Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J. Bacteriol. 177, 614–620.PubMedGoogle Scholar
  17. 17.
    Patra, G., Sylvestre, P., Ramisse, V., Therasse, J., and Guesdon, J. L. (1996) Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis. FEMS Immunol. Med. Microbiol. 15, 223–231.PubMedCrossRefGoogle Scholar
  18. 18.
    Qi, Y., Patra, G., Liang, X., et al. (2001) Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl. Environ. Microbiol. 67, 3720–3727.PubMedCrossRefGoogle Scholar
  19. 19.
    Okinaka, R. T., Cloud, K., Hampton, O., et al. (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181, 6509–6515.PubMedGoogle Scholar
  20. 20.
    Okinaka, R., Cloud, K., Hampton, O., et al. (1999) Sequence, assembly and analysis of pX01 and pX02. J. Appl. Microbiol. 87, 261, 262.PubMedCrossRefGoogle Scholar
  21. 21.
    Sen, K. and Asher, D. M. (2001) Multiplex PCR for detection of Enterobacteriaceae in blood. Transfusion 41, 1356–1364.PubMedCrossRefGoogle Scholar
  22. 22.
    Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Fox, A. J., and Kaczmarski, E. B. (2001) Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J. Clin. Microbiol. 39, 1553–1558.PubMedCrossRefGoogle Scholar
  23. 23.
    Boyapalle, S., Wesley, I. V., Hurd, H. S., and Reddy, P. G. (2001) Comparison of culture, multiplex, and 5′ nuclease polymerase chain reaction assays for the rapid detection of Yersinia enterocolitica in swine and pork products. J. Food Prot. 64, 1352–1361.PubMedGoogle Scholar
  24. 24.
    Courtney, B. C., Smith, M. M., and Henchal, E. A. (1999) Development of internal controls for probe-based nucleic acid diagnostic assays. Anal. Biochem. 270, 249–256.PubMedCrossRefGoogle Scholar
  25. 25.
    Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., and Carniel, E. (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 96, 14,043–14,048.PubMedCrossRefGoogle Scholar
  26. 26.
    Moore, R. L. and Brubaker, R. R. (1975) Hybridization and deoxyribonucleotide sequences of Yersinia enterocolitica and other selected members of Enterobacteriaceae. Inter. J. Syst. Bacteriol. 25, 336–339.Google Scholar
  27. 27.
    Lindler, L. E., Plano, G. V., Burland, V., Mayhew, G. F., and Blattner, F. R. (1998) Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect. Immun. 66, 5731–5742.PubMedGoogle Scholar
  28. 28.
    Perry, R. D., Straley, S. C., Fetherston, J. D., Rose, D. J., Gregor, J., and Blattner, F. R. (1998) DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect. Immun. 66, 4611–4623.PubMedGoogle Scholar
  29. 29.
    Hu, P., Elliott, J., McCready, P., et al. (1998) Structural organization of virulence-associated plasmids of Yersinia pestis. J. Bacteriol. 180, 5192–5202.PubMedGoogle Scholar
  30. 30.
    Prentice, M. B., James, K. D., Parkhill, J., et al. (2001) Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid. J. Bacteriol. 183, 2586–2594.PubMedCrossRefGoogle Scholar
  31. 31.
    Hinnebusch, J. and Schwan, T. G. (1993) New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas. J. Clin. Microbiol. 31, 1511–1514.PubMedGoogle Scholar
  32. 32.
    Higgins, J. A., Ezzell, J., Hinnebusch, B. J., Shipley, M., Henchal, E. A., Ibrahim, M. S. (1998) 5′ nuclease PCR assay to detect Yersinia pestis. J. Clin. Microbiol. 36, 2284–2288.PubMedGoogle Scholar
  33. 33.
    Engelthaler, D. M., Gage, K. L., Montenieri, J. A., Chu, M., and Carter, L. G. (1999) PCR detection of Yersinia pestis in fleas: comparison with mouse inoculation. J. Clin. Microbiol. 37, 1980–1984.PubMedGoogle Scholar
  34. 34.
    Zerva, L., Bourantas, K., Mitka, S., Kansouzidou, A., and Legakis, N. J. (2001) Serum is the preferred clinical specimen for diagnosis of human brucellosis by PCR. J. Clin. Microbiol. 39, 1661–1664.PubMedCrossRefGoogle Scholar
  35. 35.
    Leal-Klevezas, D. S., Martinez-Vazquez, I. O., Lopez-Merino, A., and Martinez-Soriano, J. P. (1995) Single-step PCR for detection of Brucella spp. from blood and milk of infected animals. J. Clin. Microbiol. 33, 3087–3090.PubMedGoogle Scholar
  36. 36.
    Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.PubMedGoogle Scholar
  37. 37.
    Fulop, M., Leslie, D., and Titball, R. (1996) A rapid, highly sensitive method for the detection of Francisella tularensis in clinical samples using the polymerase chain reaction. Am. J. Trop. Med. Hyg. 54, 364–366.PubMedGoogle Scholar
  38. 38.
    Higgins, J. A., Hubalek, Z., Halouzka, J., et al. (2000) Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reaction. Am. J. Trop. Med. Hyg. 62, 310–318.PubMedGoogle Scholar
  39. 39.
    Johansson, A., Berglund, L., Eriksson, U., et al. (2000) Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J. Clin. Microbiol. 38, 22–26.PubMedGoogle Scholar
  40. 40.
    Sjostedt, A., Eriksson, U., Berglund, L., and Tarnvik, A. (1997) Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J. Clin. Microbiol. 35, 1045–1048.PubMedGoogle Scholar
  41. 41.
    Long, G. W., Oprandy, J. J., Narayanan, R. B., Fortier, A. H., Porter, K. R., and Nacy, C. A. (1993) Detection of Francisella tularensis in blood by polymerase chain reaction. J. Clin. Microbiol. 31, 152–154.PubMedGoogle Scholar
  42. 42.
    Junhui, Z., Ruifu, Y., Jianchun, L., et al. (1996) Detection of Francisella tularensis by the polymerase chain reaction. J. Med. Microbiol. 45, 477–482.PubMedCrossRefGoogle Scholar
  43. 43.
    Berdal, B. P., Mehl, R., Haaheim, H., et al. (2000) Field detection of Francisella tularensis. Scand. J. Infect. Dis. 32, 287–291.PubMedCrossRefGoogle Scholar
  44. 44.
    Forsman, M., Sandstrom, G., and Sjostedt, A. (1994) Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int. J. Syst. Bacteriol. 44, 38–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Hadfield, T. L., Turell, M., Dempsey, M. P., David, J., and Park, E. J. (2001) Detection of West Nile virus in mosquitoes by RT-PCR. Mol. Cell. Probes 15, 147–150.PubMedCrossRefGoogle Scholar
  46. 46.
    Weaver, S. C., Hagenbaugh, A., Bellew, L. A., et al. (1993) A comparison of the nucleotide sequences of eastern and western equine encephalomyelitis viruses with those of other alphaviruses and related RNA viruses. Virology 197, 375–390.PubMedCrossRefGoogle Scholar
  47. 47.
    Weaver, S. C., Hagenbaugh, A., Bellew, L. A., et al. (1994) A comparison of the nucleotide sequences of eastern and western equine encephalomyelitis viruses with those of other alphaviruses and related RNA viruses. Virology 202, 1083.PubMedCrossRefGoogle Scholar
  48. 48.
    Brault, A. C., Powers, A. M., Chavez, C. L., et al. (1999) Genetic and antigenic diversity among eastern equine encephalitis viruses from North, Central, and South America. Am. J. Trop. Med. Hyg. 61, 579–586.PubMedGoogle Scholar
  49. 49.
    Meissner, J. D., Huang, C. Y., Pfeffer, M., and Kinney, R. M. (1999) Sequencing of prototype viruses in the Venezuelan equine encephalitis antigenic complex. Virus Res. 64, 43–59.PubMedCrossRefGoogle Scholar
  50. 50.
    Netolitzky, D. J., Schmaltz, F. L., Parker, M. D., et al. (2000) Complete genomic RNA sequence of western equine encephalitis virus and expression of the structural genes. J. Gen. Virol. 81, 151–159.PubMedGoogle Scholar
  51. 51.
    Kramer, L. D. and Fallah, H. M. (1999) Genetic variation among isolates of western equine encephalomyelitis virus from California. Am. J. Trop. Med. Hyg. 60, 708–713.PubMedGoogle Scholar
  52. 52.
    Linssen, B., Kinney, R. M., Aguilar, P., et al. (2000) Development of reverse transcription-PCR assays specific for detection of equine encephalitis viruses. J. Clin. Microbiol. 38, 1527–1535.PubMedGoogle Scholar
  53. 53.
    Koshland, D. E., Jr. (1994) The biological warfare of the future [editorial]. Science 264, 327.PubMedCrossRefGoogle Scholar
  54. 54.
    Wiedemann, B. and Heisig, P. (1994) Mechanisms of quinolone resistance. Infection 22, S73–79.PubMedCrossRefGoogle Scholar
  55. 55.
    Piddock, L. J. (1999) Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58, 11–18.PubMedCrossRefGoogle Scholar
  56. 56.
    Deguchi, T., Fukuoka, A., Yasuda, M., et al. (1997) Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents. Chemother. 41, 699–701.PubMedGoogle Scholar
  57. 57.
    Yoshida, H., Bogaki, M., Nakamura, M., and Nakamura, S. (1990) Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents. Chemother. 34, 1271, 1272.PubMedGoogle Scholar
  58. 58.
    Yoshida, H., Bogaki, M., Nakamura, M., Yamanaka, L. M., and Nakamura, S. (1991) Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents. Chemother. 35, 1647–1650.PubMedGoogle Scholar
  59. 59.
    Lindler, L. E., Fan, W., and Jahan, N. (2001) Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the lightcycler. J. Clinical. Microbiol. 39, 3649–3655.CrossRefGoogle Scholar
  60. 60.
    Heisig, P. (1993) High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrA and gyrB genes. J. Antimicrob. Chemother. 32, 367–377.PubMedCrossRefGoogle Scholar
  61. 61.
    Heisig, P. (1996) Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents. Chemother. 40, 879–885.PubMedGoogle Scholar
  62. 62.
    Cargill, M., Altshuler, D., Ireland, J., et al. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231–238.PubMedCrossRefGoogle Scholar
  63. 63.
    Schriml, L. M., Peterson, R. J., Gerrard, B., and Dean, M. (2000) Use of denaturing HPLC to map human and murine genes and to validate single-nucleotide polymorphisms. Biotechniques 28, 740–745.PubMedGoogle Scholar
  64. 64.
    Liu, W. O., Oefner, P. J., Qian, C,. Odom, R. S., and Francke, U. (1997) Denaturing HPLC-identified novel FBN1 mutations, polymorphisms, and sequence variants in Marfan syndrome and related connective tissue disorders. Genet. Test. 1, 237–242.PubMedGoogle Scholar
  65. 65.
    McCallum, C. M., Comai, L., Greene, E. A., and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455–457.PubMedCrossRefGoogle Scholar
  66. 66.
    Hoogendoorn, B., Owen, M. J., Oefner, P. J., Williams, N., Austin,.J, and O’Donovan, M. C. (1999) Genotyping single nucleotide polymorphisms by primer extension and high performance liquid chromatography. Hum. Genet. 104, 89–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Hayward-Lester, A., Oefner, P. J., and Doris, P. A. (1996) Rapid quantification of gene expression by competitive RT-PCR and ion-pair reversed-phase HPLC. Biotechniques 20, 250–257.PubMedGoogle Scholar
  68. 68.
    Roberts, M. C. (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19, 1–24.PubMedCrossRefGoogle Scholar
  69. 69.
    Levy, S. B., McMurry, L. M., Barbosa, T. M., et al. (1999) Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents. Chemother. 43, 1523, 1524.PubMedGoogle Scholar
  70. 70.
    Ng, L. K., Martin, I., Alfa, M., and Mulvey, M. (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes. 15, 209–215.PubMedCrossRefGoogle Scholar
  71. 71.
    Aminov, R. I., Garrigues-Jeanjean, N., and Mackie, R. I. (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67, 22–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Carlson, S. A., Bolton, L. F., Briggs, C. E., et al. (1999) Detection of multiresistant Salmonella typhimurium DT104 using multiplex and fluorogenic PCR. Mol. Cell. Probes. 13, 213–222.PubMedCrossRefGoogle Scholar
  73. 73.
    Roberts, M. C., Pang, Y., Riley, D. E., Hillier, S. L., Berger, R. C., and Krieger, J. N. (1993) Detection of Tet M and Tet O tetracycline resistance genes by polymerase chain reaction. Mol. Cell. Probes. 7, 387–393.PubMedCrossRefGoogle Scholar
  74. 74.
    Roberts, M. C. (1994) Epidemiology of tetracycline-resistance determinants. Trends. Microbiol. 2, 353–357.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Luther E. Lindler
    • 1
    • 2
  • David Norwood
    • 3
  • Michael Dobson
    • 4
  • Ted L. Hadfield
    • 5
  1. 1.Department of Homeland SecurityScience and Technology Directorate, National Biodefense Analysis and Countermeasures CenterFort Detrick
  2. 2.Department of Bacterial DiseasesWalter Reed Army Institute of ResearchSilver Spring
  3. 3.Diagnostic Systems DivisionUS Army Medical Research Institute of Infectious DiseasesFort Detrick
  4. 4.Department of Infectious and Parasitic DiseasesArmed Forces Institute of PathologyWashington
  5. 5.Florida DivisionMidwest Research InstitutePalm Bay

Personalised recommendations