Advertisement

Current and Future Novel Targets of Gene Therapy for Hypertension

  • Michael J. Katovich
  • Justin L. Grobe
  • Mohan K. Raizada
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Traditional therapeutic approaches for the treatment and control of hypertension are effective in normalizing blood pressure (BP) in less than a third of patients with hypertension. These pharmacological approaches may have reached a plateau in their effectiveness and newer strategies need to be investigated to not only increase the number of patients achieving BP control, but to find ways to cure the disease instead of just manage it. Since completion of the Human Genome Project and the continuous advancement of gene delivery systems, it is now possible to investigate genetic means for the treatment and possible cure for hypertension. In this review, we discuss potential genetic targeting for treatment of hypertension. There are two generalized gene transfer approaches that have been used successfully for hypertension. One is an induction approach where genes that lower blood pressure are overexpressed. A second method is a reduction approach where products of genes that are known to increase blood pressure are decreased. There are a variety of methods that have been utilized to meet these objectives, such as “knockout” and “ knock-in” animal models, and the use of sense and antisense (AS) technology. This review will focus on the sense and antisense applications, and how this technique is becoming more refined and precise through the targeting of specific tissues, the regulation and induction of components of the system, and use of other newer technologies, such as short interfering RNA (siRNA). Our lab has generally focused on the reduction approach, specifically in the genetic manipulation of components of the renin-angiotensin system (RAS). This system not only modulates BP, but has also been implicated in cardiac hypertrophy and morphology and in insulin resistance, which is highly correlated with hypertension. We will also discuss how new genes can be identified and subsequently serve as targets for the treatment of human hypertension.

Key Words

Gene therapy viral vectors gene delivery animal models hypertension renin-angiotensin system gene arrays 

References

  1. 1.
    Deshmukh R, Smith A, Lilly LS. Hypertension. In: Pathophysiology of heart disease. (Lilly LS, ed.). 1998; Williams & Wilkins, Baltimore, MD: 267–288.Google Scholar
  2. 2.
    American Heart Association Heart Disease and Stroke Statistics, 2004. Update Dallas, TX; American Heart Association, 2003. http://www.americanheart.org/statistics/index.html
  3. 3.
    Sowers, JR. Is hypertension an insulin-resistant state? Metabolic changes associated with hypertension and antihypertensive therapy. Am Heart J 1991;122:932–935.PubMedGoogle Scholar
  4. 4.
    Ferrannini E, Natali A. Essential hypertension, metabolic disorders, and insulin resistance. Am Heart J 1991;4:1274–1282.Google Scholar
  5. 5.
    Reaven GL. Insulin resistance, hyperinsulinemia, and hypertriglyceridemia in the etiology and clinical course of hypertension. Am J Med 1991;90(suppl 2A):7S–12S.PubMedGoogle Scholar
  6. 6.
    Cusi D, Barlassina C, Taglietti MV. Genetics of human arterial hypertension. J Nephrol 2003;16: 609–615.PubMedGoogle Scholar
  7. 7.
    Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997;349:1436–1442.PubMedGoogle Scholar
  8. 8.
    Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. Arch Intern Med 1993;153:598–615.PubMedGoogle Scholar
  9. 9.
    Whelton PK. Epidemiology of hypertension. Lancet 1994;334: 101–106.Google Scholar
  10. 10.
    Devereux RB, Pickering TG, Harshfield GA, et al. Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. Circulation 1983;68:470–476.PubMedGoogle Scholar
  11. 11.
    Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 2003;94:752–763.PubMedGoogle Scholar
  12. 12.
    de Simone G, Pasanisi F, Contaldo F. Link of nonhemodynamic factors to hemodynamic determinants of left ventricular hypertrophy. Hypertension 2001;38:13–18.PubMedGoogle Scholar
  13. 13.
    Chobanian AV, Bakris GL, Black HR, et al., and the national high blood pressure educational program coordinating committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Hypertension 2003;42:1206–1252.PubMedGoogle Scholar
  14. 14.
    Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure: The sixth report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Arch Intern Med 1997;157:2413–2446.Google Scholar
  15. 15.
    Joffres MR, Ghadirian P, Fodor JG, Petrasovits A, Cockalingam A, Hamet P. Awareness, treatment, and control of hypertension in Canada. Am J Hypertens 1997;10:1097–1102.PubMedGoogle Scholar
  16. 16.
    Wolf-Maier K, Cooper RS, Kramer H, et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004;43:10–17.PubMedGoogle Scholar
  17. 17.
    Liu R, Persson AE. Angiotensin II stimulates calcium and nitric oxide release from Macula densa cells through AT1 receptors. Hypertension 2004;43:649–653.PubMedGoogle Scholar
  18. 18.
    Zhou MS, Jaimes EA, Raij L. Inhibition of oxidative stress and improvement of endothelial function by amlodipine in angiotensin II-infused rats. Am J Hypertens 2004;17:167–171.PubMedGoogle Scholar
  19. 19.
    Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 2003;93: 767–775.PubMedGoogle Scholar
  20. 20.
    Yamakawa T, Tanaka S, Kamei J, Kadonosono K, Okuda K. Phosphatidylinositol 3-kinase in angiotensin II-induced hypertrophy of vascular smooth muscle cells. Eur J Pharmacol 2003;478:39–46.PubMedGoogle Scholar
  21. 21.
    Yavuz D, Koc M, Toprak A, et al. Effects of ACE inhibition and AT1-receptor antagonism on endothelial function and insulin sensitivity in essential hypertensive patients. J Renin Angiotensin Aldosterone Syst 2003;4: 197–203.PubMedGoogle Scholar
  22. 22.
    Henriksen EJ, Jacob S. Angiotensin converting enzyme inhibitors and modulation of skeletal muscle insulin resistance. Diabetes Obes Metab 2003;5:214–222.PubMedGoogle Scholar
  23. 23.
    Levesque S, Moutquin JM, Lindsay C, Roy M-C, Rousseau. Implications of an AGT halotype in multigene association study with pregnancy hypertension. Hypertension 2004;43:71–78.PubMedGoogle Scholar
  24. 24.
    Sethi AA, Nordestgaard BG, Agerholm-Larsen B, Frandsen E, Jensen G, Tybjaerg-Hansen A. Angiotensinogen polymorphisms and elevated blood pressure in the general population. Hypertension 2001;37:875–881.PubMedGoogle Scholar
  25. 25.
    Clark CJ, Davies E, Anderson NH, et al.-adducin and angiotensin I-converting enzyme polymorphisms in essential hypertension. Hypertension 2000;36:990–994.PubMedGoogle Scholar
  26. 26.
    Tsai C-T, Fallin D, Chiang F-T, et al. Angiotensinogen gene haloytpe and hypertension. Interactions with ACE gene I Allele. Hypertension 2003;41:9–15.PubMedGoogle Scholar
  27. 27.
    Ueda S, Elliot HL, Morton JJ, Connell JMC. Enhanced pressor response to angiotensin I in normotensive men with the deletion genotype (DD) for angiotensin converting enzyme. Hypertension 1995;25:1266–1269.PubMedGoogle Scholar
  28. 28.
    Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992;71:169–180.PubMedGoogle Scholar
  29. 29.
    Zee RY, Lou YK, Griffiths LR, Morris BJ. Association of a polymorphism of the angiotensin 1-converting enzyme gene with essential hypertension. Biochem Biophys Res Commun 1992;184:9–15.PubMedGoogle Scholar
  30. 30.
    Bonnardeaux A Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994;24:63–69.PubMedGoogle Scholar
  31. 31.
    Qin YJ, Zhang JF, Wei YJ, Ding JF, Chen KH, Tang J. Gene suture—a novel method for intramuscular gene transfer and its application in hypertension therapy. Life Sci 1999;65:2193–203.PubMedGoogle Scholar
  32. 32.
    Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats. Hypertension 1999;33(1 Pt 2):219–224.PubMedGoogle Scholar
  33. 33.
    Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in salt-sensitive rats. Hum Gene Ther 1998;9:1429–1438.PubMedGoogle Scholar
  34. 34.
    Lin KF, Chao J, Chao L. Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension 1995;26(6 Pt 1):847–853.PubMedGoogle Scholar
  35. 35.
    Wang C, Dobrzynski E, Chao J, Chao L. Adrenomedullin gene delivery attenuates renal damage and cardiac hypertrophy in Goldblatt hypertensive rats. Am J Physiol Renal Physiol 2001;280:F964–F971.PubMedGoogle Scholar
  36. 36.
    Zhang JJ, Yoshida H, Chao L, Chao J. Human adrenomedullin gene delivery protects against cardiac hypertrophy, fibrosis, and renal damage in hypertensive Dahl salt-sensitive rats. Hum Gene Ther 2000;11:1817–1827.PubMedGoogle Scholar
  37. 37.
    Dobrzynski E, Wang C, Chao J, Chao L. Adrenomedullin gene delivery attenuates hypertension, cardiac remodeling, and renal injury in deoxycorticosterone acetate-salt hypertensive rats. Hypertension 2000;36: 995–1001.PubMedGoogle Scholar
  38. 38.
    Chao J, Jin L, Lin KF, Chao L. Adrenomedullin gene delivery reduces blood pressure in spontaneously hypertensive rats. Hypertens Res 1997;20:269–277.PubMedGoogle Scholar
  39. 39.
    Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A. Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 2003;26:325–331.PubMedGoogle Scholar
  40. 40.
    Alexander MY, Brosnan MJ, Hamilton CA, et al. Gene transfer of endothelial nitric oxide synthase but not Cu/Zn superoxide dismutase restores nitric oxide availability in the SHRSP. Cardiovascular Res 2000;47: 609–617.Google Scholar
  41. 41.
    Lin KF, Chao L, Chao J. Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery. Hypertension 1997;30(3 Pt 1):307–313.PubMedGoogle Scholar
  42. 42.
    Tai MH, Hsiao M, Chan JY, et al. Gene delivery of endothelial nitric oxide synthase into nucleus tractus solitarii induces biphasic response in cardiovascular functions of hypertensive rats. Am J Hypertens 2004; 17: 63–70.PubMedGoogle Scholar
  43. 43.
    Zhao C, Wang P, Xiao X, et al. Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats. Hypertension 2003;42:1026–1033.PubMedGoogle Scholar
  44. 44.
    Emanueli C, Salis MB, Stacca T, et al. Rescue of impaired angiogenesis in spontaneously hypertensive rats by intramuscular human tissue kallikrein gene transfer. Hypertension 2001;38:136–141.PubMedGoogle Scholar
  45. 45.
    Wolf WC, Yoshida H, Agata J, Chao L, Chao J. Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney Int 2000;58:730–739.PubMedGoogle Scholar
  46. 46.
    Zhang JJ, Wang C, Lin KF, Chao L, Chao J. Human tissue kallikrein attenuates hypertension and secretes into circulation and urine after intramuscular gene delivery in hypertensive rats. Clin Exp Hypertens 1999;21: 1145–1160.PubMedGoogle Scholar
  47. 47.
    Chao J, Zhang JJ, Lin KF, Chao L. Adenovirus-mediated kallikrein gene delivery reverses saltinduced renal injury in Dahl salt-sensitive rats. Kidney Int 1998;54:1250–1260.PubMedGoogle Scholar
  48. 48.
    Yayama K, Wang C, Chao L, Chao J. Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in Goldblatt hypertensive rats. Hypertension 1998;31:1104–1110.PubMedGoogle Scholar
  49. 49.
    Chao J, Zhang JJ, Lin KF, Chao L. Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum Gene Ther 1998;9:21–31.PubMedGoogle Scholar
  50. 50.
    Jin L, Zhang JJ, Chao L, Chao J. Gene therapy in hypertension: adenovirus-mediated kallikrein gene delivery in hypertensive rats. Hum Gene Ther 1997;8:1753–1761.PubMedGoogle Scholar
  51. 51.
    Chao J, Yang Z, Jin L, Lin KF, Chao L. Kallikrein gene therapy in newborn and adult hypertensive rats. Can J Physiol Pharmacol 1997;75:750–756.PubMedGoogle Scholar
  52. 52.
    Chen LM, Chao L, Chao J. Adenovirus-mediated delivery of human kallistatin gene reduces blood pressure of spontaneously hypertensive rats. Hum Gene Ther 1997;8:341–347.PubMedGoogle Scholar
  53. 53.
    Chao J, Jin L, Chen LM, Chen VC, Chao L. Systemic and portal vein delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hum Gene Ther 1996;7:901–911.PubMedGoogle Scholar
  54. 54.
    Xiong W, Chao J, Chao L. Muscle delivery of human kallikrein gene reduced blood pressure in hypertensive rats. Hypertension 1995;25(4 Pt 2):715–719.PubMedGoogle Scholar
  55. 55.
    Wang C, Chao L, Chao J. Muscle delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hypertension 1995;25(4 Pt 2):715–719.Google Scholar
  56. 56.
    Chu Y, Iida S, Lund DD, et al. Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain. Circ Res 2003;92:461–468.PubMedGoogle Scholar
  57. 57.
    Fennell JP, Brosnan MJ, Frater AJ, et al. Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther 2002;9:110–117.PubMedGoogle Scholar
  58. 58.
    Sabaawy HE, Zhang F, Nguyen X, et al. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats. Hypertens 2001;38:210–215.Google Scholar
  59. 59.
    Metcalfe BL, Huentelman MJ, Parilak LD, et al. Prevention of cardiac hypertrophy by angiotensin II type 2 receptor gene transfer. Hypertension 2004;43:1233–1238.PubMedGoogle Scholar
  60. 60.
    Chen LG, Qu Y, Peng WZ, Wang YQ, Xiao J, Wang ZR. Encapsulated ANP cDNA transfection cells attenuate hypertension in hypertensive rats. Space Med Eng (Beijing) 2003;16:77–78.Google Scholar
  61. 61.
    Li T, Liang H, Lu G, Shi R, Lu S. Hypotensive effect of encapsulated genetically engineered fibroblasts expressing mutant atrial natriuretic peptide in hypertensive rats. Zhonghua Yi Xue Za Zhi 2002;82: 1086–1089.PubMedGoogle Scholar
  62. 62.
    Reaves PY, Gelband CH, Wang H, et al. Permanent cardiovascular protection from hypertension by the AT(1) receptor antisense gene therapy in hypertensive rat offspring. Circ Res 1999;85:e44–e50.PubMedGoogle Scholar
  63. 63.
    Martens JR, Reaves PY, Lu D, et al. Prevention of renovascular and cardiac pathophysiological changes in hypertension by angiotensin II type 1 receptor antisense gene therapy. Proc Natl Acad Sci USA 1998;3;95: 2664–2669.Google Scholar
  64. 64.
    Lu D, Raizada MK, Iyer S, Reaves P, Yang H, Katovich MJ. Losartan versus gene therapy: chronic control of high blood pressure in spontaneously hypertensive rats. Hypertension 1997;30(3 Pt 1):363–370.PubMedGoogle Scholar
  65. 65.
    Iyer SN, Lu D, Katovich MJ, Raizada MK. Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc Natl Acad Sci USA 1996;93: 9960–9965.PubMedGoogle Scholar
  66. 66.
    Wang H, Katovich MJ, Gelband CH, Reaves PY, Phillips MI, Raizada MK. Sustained inhibition of angiotensin I-converting enzyme (ACE) expression and long-term antihypertensive action by virally mediated delivery of ACE antisense cDNA. Circ Res 1999;85:614–622.PubMedGoogle Scholar
  67. 67.
    Katovich MJ, Reaves PY, Francis SC, Pachori AS, Wang HW, Raizada MK. Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin-resistant model of hypertension. J Hypertens 2001;19: 1553–1558.PubMedGoogle Scholar
  68. 68.
    Henriksen EJ, Jacob S. Angiotensin converting enzyme inhibitors and modulation of skeletal muscle insulin resistance. Diabetes Obes Metab 2003;5:214–222.PubMedGoogle Scholar
  69. 69.
    Katovich MJ, Pachori A. Effects of inhibition of the renin-angiotensin system on the cardiovascular actions of insulin. Diabetes Obes Metab 2000;2:3–14.PubMedGoogle Scholar
  70. 70.
    Dahlof B, Devereux RB, Kjeldsen SE, et al., LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:995–1003.PubMedGoogle Scholar
  71. 71.
    Lindholm LH, Ibsen H, Dahlof B, et al., LIFE Study Group. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359:1004–1010.PubMedGoogle Scholar
  72. 72.
    Lindholm LH, Ibsen H, Borch-Johnsen K, et al., for the LIFE study group. Risk of new onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study. J Hypertens 2002;20:1879–1886.PubMedGoogle Scholar
  73. 73.
    Katovich MJ, Gelband CH, Reaves P, Wang HW, Raizada MK. Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol 1999;277(3 Pt 2):H1260–H1264.PubMedGoogle Scholar
  74. 74.
    Phillips MI, Mohuczy-Dominiak D, Coffey M, et al. Prolonged reduction of high blood pressure with an in vivo, nonpathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense. Hypertension 1997;29(1 Pt 2): 374–380.PubMedGoogle Scholar
  75. 75.
    Phillips MI. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Hypertension 1997;29(1 Pt 2):177–187.PubMedGoogle Scholar
  76. 76.
    Phillips MI. Gene therapy for hypertension: sense and antisense strategies. Expert Opin Biol Ther 2001; 1:655–662.PubMedGoogle Scholar
  77. 78.
    Phillips MI. Gene therapy for hypertension: the preclinical data. Hypertension 2001;38(3 Pt 2): 543–548.PubMedGoogle Scholar
  78. 79.
    Moore AF, Heiderstadt NT, Huang E, et al. Selective inhibition of the renal angiotensin type 2 receptor increases blood pressure in conscious rats. Hypertension 2001;37:1285–1281.PubMedGoogle Scholar
  79. 80.
    Wang H-W, Gallinat S, Li H-W, Sumners C, Raizada MK, Katovich MJ. Elevated blood pressure in normotensive rats produced by “knockdown” of the angiotensin type 2 receptor. Exp Physiol 2004;89: 313–322.PubMedGoogle Scholar
  80. 81.
    Tomita N, Morishita R, Higaki J, et al. Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 1995;26:131–136.PubMedGoogle Scholar
  81. 82.
    Wielbo D, Simon A, Phillips MI, Toffolo S. Inhibition of hypertension by peripheral administration of antisense oligodeoxynucleotides. Hypertension 1996;28:147–151.PubMedGoogle Scholar
  82. 83.
    Phillips MI, Wielbo D, Gyurko R. Antisense inhibition of hypertension: a new strategy for reninangiotensin candidate genes. Kid Int 1994;46:1554–1556.Google Scholar
  83. 84.
    Gurko R, Wielbo D, Phillips MI. Antisense inhibition of AT1 receptor mRNA and angiotensinogen m RNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept 1993;49: 167–174.Google Scholar
  84. 85.
    Galderisi U, Cascino A, Giordano A. Antisense oligonucleotides as therapeutic agents. J Cell Physiol 1999;181:251–257PubMedGoogle Scholar
  85. 85a.
    Lavrovshy Y, Chen S, Roy AK. Therapeutic potential and mechanism of action of oligonucleotides and ribozymes. Biochem Mol Med 1997;62:11–22.Google Scholar
  86. 86.
    Neckers L, Whitesell L, Rosolen A, Geselowitz DA. Antisense inhibition of oncogene expression. Crit Rev Oncogen 1992;3:175–231.Google Scholar
  87. 87.
    Kagiyama S, Kagiyama T, Phillips MI. Antisense oligonucleotides strategy in the treatment of hypertension. Curr Opin Mol Ther 2001;3:258–264.PubMedGoogle Scholar
  88. 88.
    Phillips MI, Galli SM, Mehta JL. The potential role of antisense oligodeoxynucleotide therapy for cardiovascular disease. Drugs 2000;60:239–248.PubMedGoogle Scholar
  89. 89.
    Phillips MI. Somatic gene therapy for hypertension. Braz J Med Biol Res 2000;33:715–721.PubMedGoogle Scholar
  90. 90.
    Zhang YC, Bui JD, Shen L, Phillips MI. Antisense inhibition of beta(1)-adrenergic receptor mRNA in a single dose produces a profound and prolonged reduction in high blood pressure in spontaneously hypertensive rats. Circulation 2000;15;101:682–688.Google Scholar
  91. 91.
    Reaves PY, Beck CR, Wang HW, Raizada MK, Katovich MJ. Endothelial-independent prevention of high blood pressure in L-NAME-treated rats by angiotensin II type I receptor antisense gene therapy. Exp Physiol 2003; 88: 467–473.PubMedGoogle Scholar
  92. 92.
    Kagiyama S, Qian K, Kagiyama T, Phillips MI. Antisense to epidermal growth factor receptor prevents the development of left ventricular hypertrophy. Hypertension 2003;41(3 Pt 2):824–829.PubMedGoogle Scholar
  93. 93.
    Pachori AS, Numan MT, Ferrario CM, Diz DM, Raizada MK, Katovich MJ. Blood pressure-independent attenuation of cardiac hypertrophy by AT(1)R-AS gene therapy. Hypertension 2002;39:969–975.PubMedGoogle Scholar
  94. 94.
    Kumai T Tateishi T, Tanaka M, Watanabe M, Shimizu H, Kobayashi S. Tyrosine hydroxylase antisense gene therapy causes hypotensive effects in the spontaneously hypertensive rats. J Hypertens 2001;19:1769–1773.PubMedGoogle Scholar
  95. 95.
    Clare Zhang Y, Kimura B, Shen L, Phillips MI. New beta-blocker: prolonged reduction in high blood pressure with beta(1) antisense oligodeoxynucleotides. Hypertension 2000;35(1 Pt 2):219–224.PubMedGoogle Scholar
  96. 96.
    Kimura B, Mohuczy D, Tang X, Phillips MI. Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensinogen antisense. Hypertension 2001;37(2 Part 2):376–380.PubMedGoogle Scholar
  97. 97.
    Makino N, Sugano M, Ohtsuka S, Sawada S, Hata T. Chronic antisense therapy for angiotensinogen on cardiac hypertrophy in spontaneously hypertensive rats. Cardiovasc Res 1999;44:543–548.PubMedGoogle Scholar
  98. 98.
    Cuevas P, Garcia-Calvo M, Carceller F, et al. Correction of hypertension by normalization of endothelial levels of fibroblast growth factor and nitric oxide synthase in spontaneously hypertensive rats. Proc Natl Acad Sci USA 1996;93:11,996–12,001.PubMedGoogle Scholar
  99. 99.
    Pachori AS, Wang H, Gelband CH, Ferrario CM, Katovich MJ, Raizada MK. Inability to induce hypertension in normotensive rat expressing AT(1) receptor antisense. Circ Res. 2000;86:1167–1172.PubMedGoogle Scholar
  100. 100.
    Tang X, Mohuczy D, Zhang YC, Kimura B, Galli SM, Phillips MI. Intravenous angiotensinogen antisense in AAV-based vector decreases hypertension. Am J Physiol. 1999;277(6 Pt 2):H2392–H2399.PubMedGoogle Scholar
  101. 101.
    Peng JF, Kimura B, Fregly MJ, Phillips MI. Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and AT1 receptor mRNA in brain and blood. Hypertension 1998; 31: 1317–1323.PubMedGoogle Scholar
  102. 102.
    Galli SM, Phillips MI. Angiotensin II AT(1A) receptor antisense lowers blood pressure in acute 2-kidney, 1-clip hypertension. Hypertension 2001;38: 674–678.PubMedGoogle Scholar
  103. 103.
    Wang MH, Zhang F, Marji J, Zand BA, Nasjletti A, Laniado-Schwartzman M. CYP4A1 antisense oligonucleotide reduces mesenteric vascular reactivity and blood pressure in SHR. Am J Physiol Regul Integr Comp Physiol 2001; 280:R255–R261.PubMedGoogle Scholar
  104. 104.
    Yamakawa H, Phillips MI, Saavedra JM. Intracisternal administration of angiotensin II AT1 receptor antisense oligodeoxynucleotides protects against cerebral ischemia in spontaneously hypertensive rats. Regul Pept 2003; 111:117–122.PubMedGoogle Scholar
  105. 105.
    Kagiyama S, Varela A, Phillips MI, Galli SM. Antisense inhibition of brain renin angiotensin system decreases blood pressure in chronic 2-kidney, 1-clip hypertensive rats. Hypertension 2001;37:371–375.PubMedGoogle Scholar
  106. 106.
    Suzuki S, Pilowsky P, Minson J, et al J. Antisense to thyrotropin releasing hormone receptor reduces arterial blood pressure in spontaneously hypertensive rats. Circ Res 1995;77:679–683.PubMedGoogle Scholar
  107. 107.
    Hayashi I, Majima M, Fujita T, et al. In vivo transfer of antisense oligonucleotide against urinary kininase blunts deoxycorticosterone acetate-salt hypertension in rats. Br J Pharmacol 2000;131:820–806.PubMedGoogle Scholar
  108. 108.
    Kagiyama S, Eguchi S, Frank GD, Inagami T, Zhang YC, Phillips MI. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation 2002;106: 909–912.PubMedGoogle Scholar
  109. 109.
    Wivel NA, Wilson JM. Methods of gene delivery. Hematol Oncol Clin North Am 1998;12:483–501PubMedGoogle Scholar
  110. 110.
    Mann MJ, Morishita R, Gibbons GH, vonderLeyen HE, Dzau VJ. DNA transfer into vascular smooth muscle using fusigenic Sendai virus (HJV) liposomes. Mol Cell Biochem 1997;172:2–12.Google Scholar
  111. 111.
    Lawrie A, Brisken AF, Francis SE, et al. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 1999;99:2617–2620.PubMedGoogle Scholar
  112. 112.
    Parkes R, Meng QH, Siapati KE, McEwan JR, Hart SL. High efficiency transfection of porcine vascular cells in vitro with a synthetic vector system. J Gene Med 2002;4:292–299.PubMedGoogle Scholar
  113. 113.
    Kovesdi I, Brough DE, Bruder JT, Wickham TJ. Adenoviral vectors for gene transfer. Curr Opin Biotechnol 1997;8:583–589.PubMedGoogle Scholar
  114. 114.
    Lu D, Yang H, Raizada, MK. Attenuation of ANG II actions by adenovirus delivery of AT1 receptor antisense in neurons and SMC. Am J Physiol 1998;274:H719–H727.PubMedGoogle Scholar
  115. 115.
    Zhang LQ, Mei YF, Wadell G. Human adenovirus serotypes 4 and 11 show higher binding affinity and infectivity for endothelial and carcinoma cell lines than serotype 5. J Gen Virol 2003;84(Pt 3):687–695.PubMedGoogle Scholar
  116. 116.
    Harari OA, Wickham TJ, Stocker CJ, et al. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther 1999;6:801–807.PubMedGoogle Scholar
  117. 117.
    Flotte TR, Carter BJ. Adeno-associated virus vectors for gene therapy. Gene Ther 1995;2: 357–362.PubMedGoogle Scholar
  118. 118.
    Hallek, M. Wendtner CM. Recombinant adeno-associated virus (rAAV) vectors for somatic gene therapy: recent advances and potential clinical applications. Cytokines Mol. Ther. 1996;2:69–79.PubMedGoogle Scholar
  119. 119.
    Langer JC, Klotman ME, Hanss B, et al. Adeno-associated virus gene transfer into renal cells: potential for in vivo gene delivery. Exp Nephrol 1998;6:189–194.PubMedGoogle Scholar
  120. 120.
    Flotte T, Carter B, Conrad C, et al. Phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 1996;10;7:1145–1159.Google Scholar
  121. 121.
    Guntaka RV, Swamynathan SK. Retroviral vectors for gene therapy. Indian J Exp Biol 1998;36: 359–345.Google Scholar
  122. 122.
    Gardon M, Raizada MK, Katovich MJ, Berecek KH, Gelband CH. Gene therapy for hypertension and restenosis. J Renin Angiotensin Aldosterone Syst 2000;1:211–216.PubMedGoogle Scholar
  123. 123.
    Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401–406.PubMedGoogle Scholar
  124. 124.
    Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93:11,382–11,388.PubMedGoogle Scholar
  125. 125.
    Huentelman MJ, Reaves PY, Katovich MJ, Raizada MK. Large-scale production of retroviral vectors for systemic gene delivery. Methods Enzymol 2002;346:562–573.PubMedGoogle Scholar
  126. 126.
    Coleman JE, Huentelman MJ, Kasparov S, et al. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 2002;12:221–228.Google Scholar
  127. 127.
    Ribault S, Neuville P, Mechine-Neuville A, et al. Chimeric smooth muscle-specific enhancer/promoters: valuable tools for adenovirus-mediated cardiovascular gene therapy. Circ Res 2001;88:468–475.PubMedGoogle Scholar
  128. 128.
    Hoggatt AM, Simon GM, Herring BP. Cell-specific regulatory modules control expression of genes in vascular and visceral smooth muscle tissues. Circ Res 2002;91:1151–1159.PubMedGoogle Scholar
  129. 129.
    Franz WM, Rothmann T, Frey N, Katus HA. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc Res 1997;35:560–566.PubMedGoogle Scholar
  130. 130.
    Wang Q, Sigmund CD, Lin JJ. Identification of cis elements in the cardiac troponin T gene conferring specific expression in cardiac muscle of transgenic mice. Circ Res 2000;86:478–484.PubMedGoogle Scholar
  131. 131.
    Navarro V, Millecamps S, Geoffroy MC, et al. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Ther 1999;6:1884–1892.PubMedGoogle Scholar
  132. 132.
    Carmeliet P, Lampugnani MG, Moons L, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999;98:147–157.PubMedGoogle Scholar
  133. 133.
    Wang Y, O’Malley BW Jr, Tsai SY, O’Malley BW. A regulatory system for use in gene transfer. Proc Natl Acad Sci USA 1994;91:8180–8184.PubMedGoogle Scholar
  134. 134.
    Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T. Delivery of a stringent dimerizerregulated gene expression system in a single retroviral vector. Proc Natl Acad Sci USA 2000;97:13,221–13,226.PubMedGoogle Scholar
  135. 135.
    No D, Yao TP, Evans RM. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 1996;16;93:3346–3351.Google Scholar
  136. 136.
    Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995;268:1766–1769.PubMedGoogle Scholar
  137. 137.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992;89:5547–5551.PubMedGoogle Scholar
  138. 138.
    Gossen M, Bujard H. Anhydrotetracycline, a novel effector for tetracycline controlled gene expression systems in eukaryotic cells. Nucleic Acids Res 1993;21:4411–4412.PubMedGoogle Scholar
  139. 139.
    Efrat S, Fusco-DeMane D, Lemberg H, Emran OL, Wang X. Conditional transformation of a pancreatic β-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. PNAS 1995;92: 3576–3580.PubMedGoogle Scholar
  140. 140.
    Corbel SY, Rossi FMV. Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Curr Opin Biotechnol 2002;13:448–452.PubMedGoogle Scholar
  141. 141.
    Zhu Z. Ma B, Homer RJ, Zheng T, Elias JA. Use of the tetracycline controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 2001;276: 25,222–25,229.PubMedGoogle Scholar
  142. 142.
    Imhof MO, Chatellard P, Mermod N. A regulatory network for the efficient control of transgene expression. J Genetic Med 2000;2:107–116.Google Scholar
  143. 143.
    Baron U, Gossen M, Bujard H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential Nucleic Acids Res 1997;25:2723–2729.PubMedGoogle Scholar
  144. 144.
    Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. PNAS 2000;97:7963–7968.PubMedGoogle Scholar
  145. 145.
    Robertson A, Perea J, Tolmachova T, Thomas PK, Huxley C. Effects of mouse strain, position of integration and tetracycline analogue on the tetracycline conditional system in transgenic mice. Gene 2002;282:65–74.PubMedGoogle Scholar
  146. 146.
    Raizada MK, Francis SC, Wang H, Gelband CH, Reaves PY, Katovich MJ. Targeting of the reninangiotensin system by antisense gene therapy: a possible strategy for the long-term control of hypertension. J Hypertens 2000; 18: 353–362.PubMedGoogle Scholar
  147. 147.
    Pachori AS, Huentelman MJ, Francis SC, Gelband GH, Katovich MJ, Raizada MK. The future of hypertension therapy: sense, antisense or nonsense? Hypertension 2001;37:357–364.PubMedGoogle Scholar
  148. 148.
    Teng PI, Dichiara MR, Komuves LG, Abe K, Quertermous T, Topper, JN. Inducible and selective transgene expression in murine vascular endothelium. Physiol. Genomics 2002;11:99–107.PubMedGoogle Scholar
  149. 149.
    Ju H, Gros R, You X, Tsang S, Husain M, Rabinovitch M. Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice. Proc Natl Acad Sci USA 2001;98:7469–7474.PubMedGoogle Scholar
  150. 150.
    Kantachuvesiri S, Fleming S, Peters J, et al. Controlled hypertension: a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem 2001;276:36,727–36,733.PubMedGoogle Scholar
  151. 151.
    Hoppe UC, Marban E, Johns DC, Adenovirus-mediated inducible gene expression in vivo by a hybrid ecdysone receptor. Mol Ther 2000;1:159–164.PubMedGoogle Scholar
  152. 152.
    Madan A, Curtin PT. A 24-base-pair sequence 3’ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci USA 1993;90:3928–3932.PubMedGoogle Scholar
  153. 153.
    Beck I, Ramirez S, Weinmann R, Caro J. Enhancer element at the 3’-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem. 1991;266: 15,563–15,566.PubMedGoogle Scholar
  154. 154.
    Eckhart AD, Yang N, Xin X, Faber JE. Characterization of the alpha1B-adrenergic receptor gene promoter region and hypoxia regulatory elements in vascular smooth muscle. Proc Natl Acad Sci USA 1997;94:9487–9492.PubMedGoogle Scholar
  155. 155.
    Webster KA, Gunning P, Hardeman E, Wallace DC, Kedes L. Coordinate reciprocal trends in glycolytic and mitochondrial transcript accumulations during the in vitro differentiation of human myoblasts. J Cell Physiol. 1990;142:566–573.PubMedGoogle Scholar
  156. 156.
    Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271:32,529–32,537.PubMedGoogle Scholar
  157. 157.
    Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–4613.PubMedGoogle Scholar
  158. 158.
    Minchenko A, Salceda S, Bauer T, Caro J. Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 1994;40:35–39.PubMedGoogle Scholar
  159. 159.
    Yang BC, Phillips MI, Zhang YC, et al. Critical role of AT1 receptor expression after ischemia/reperfusion in isolated rat hearts: beneficial effect of antisense oligodeoxynucleotides directed at AT1 receptor mRNA. Circ Res 1998;83:552–559.PubMedGoogle Scholar
  160. 160.
    Chen H, Zhang YC, Li D, et al. Protection against myocardial dysfunction induced by global ischemiareperfusion by antisense-oligodeoxynucleotides directed at beta(1)-adrenoceptor mRNA. J Pharmacol Exp Ther 2000;294: 722–727.PubMedGoogle Scholar
  161. 161.
    Chen EP, Bittner HB, Akhter SA, Koch WJ, Davis RD. Myocardial recovery after ischemia and reperfusion injury is significantly impaired in hearts with transgenic overexpression of beta-adrenergic receptor kinase. Circulation 1998;98(19 Suppl):II249–II253.PubMedGoogle Scholar
  162. 162.
    Chen EP, Bittner HB, Davis RD, Folz RJ, Van Trigt P. Extracellular superoxide dismutase transgene overexpression preserves post ischemic myocardial function in isolated murine hearts. Cir 1996;94(9 Suppl): II412–II417.Google Scholar
  163. 163.
    Wang P, Chen H, Qin H, et al. Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents post ischemic injury. Proc Natl Acad Sci USA 1998;95:4556–4560.PubMedGoogle Scholar
  164. 164.
    Chen H, Mohuczy D, Li D, et al. Protection against ischemia/reperfusion injury and myocardial dysfunction by antisense-oligodeoxynucleotide directed at angiotensin-converting enzyme mRNA. Gene Ther 2001;8:804–810.PubMedGoogle Scholar
  165. 165.
    Divisova J, Vavrinkova H, Tutterova M, Kazdova L, Meschisvili E. Effect of ACE inhibitor captopril and L-arginine on the metabolism and on ischemia-reperfusion injury of the isolated rat heart. Physiol Res 2001; 50:143–152.PubMedGoogle Scholar
  166. 166.
    Minchenko A, Salceda S, Bauer T, Caro J. Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 1994;40:35–39.PubMedGoogle Scholar
  167. 167.
    Vigna et al. (Vigina E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H, Naldini L. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 2002; 5:252–261.PubMedGoogle Scholar
  168. 168.
    Ryding ADS, Sharp MGF, Mullins JJ. Conditional transgenic technologies. J Endocrinol 2001;171:1–14.PubMedGoogle Scholar
  169. 169.
    Robertson A, Perea J, Tolmachova T, Thomas PK, Huxley C. Effects of mouse strain, position of integration and tetracycline analogue on the tetracycline conditional system in transgenic mice. Gene 2002;282:65–74.PubMedGoogle Scholar
  170. 170.
    Tang Y, Schmitt-Ott K, Qian K, Kagiyama S, Phillips MI. Vigilant vectors: adeno-associated virus with a biosensor to switch on amplified therapeutic genes in specific tissues in life-threatening diseases. Methods 2002; 28:259–266.PubMedGoogle Scholar
  171. 171.
    Tang Y, Jackson M, Qian K, Phillips MI. Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension 2002;39(2 Pt 2):695–698.PubMedGoogle Scholar
  172. 172.
    Gibson, SA, Shillitoe EJ. Ribozymes. Their functions and strategies for their use. Mol Biotechnol 1997;7:125–137.PubMedGoogle Scholar
  173. 173.
    Shuey DJ, McCallus DE, Giordano T. RNAi: gene-silencing in therapeutic intervention. Drug Discov Today 2002;7:1040–1046.PubMedGoogle Scholar
  174. 174.
    Guru T. A silence that speaks volumes. Nature 2000;404:804–808.Google Scholar
  175. 175.
    Ingelbrecht I, Van Houdt H, English J, Que Q, Napoli CA. Chalcone synthase co suppression phenotypes in petunia flowers: comparison of sense and antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 1994;31:957–973.Google Scholar
  176. 176.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.PubMedGoogle Scholar
  177. 177.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–498.PubMedGoogle Scholar
  178. 178.
    Walters DK, Jelinek DF. The effectiveness of double stranded short inhibitory RNAs (siRNAs) may depend on the method of transfection. Antisense Nucleic Acid Drug Dev 2002;12:411–418.PubMedGoogle Scholar
  179. 179.
    Tuschl T, Borkhardt A. Small Interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol Intervent 2002;2:158–167.Google Scholar
  180. 180.
    Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenes by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 2002;99:2140–2145.PubMedGoogle Scholar
  181. 181.
    Shen C, Buck AK, Liu X, Winkler M, Reske SN. Gene silencing by adenovirus-delivered siRNA. FEBS Lett 2003;539:111–114.PubMedGoogle Scholar
  182. 182.
    Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 2002;32:107–108.PubMedGoogle Scholar
  183. 183.
    Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue specific expression of transgenes derived from lentiviral vectors. Science 2002;295:868–872.PubMedGoogle Scholar
  184. 184.
    Cheng JC, Moore TB, Sakamoto KM. RNA interference and human disease. Mol Genet Metabol 2003;80: 121–128.Google Scholar
  185. 185.
    Boguski MS, McIntosh MW. Biomedical informatics for proteomics. Nature 2003;422:233–237.PubMedGoogle Scholar
  186. 186.
    Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos TO. Protein microarray technology. Drug Discov Today 2002;7:815–822.PubMedGoogle Scholar
  187. 187.
    Ward R. Familial aggregation and genetic epidemiology of blood pressure. In: Hypertension: pathophysiology, diagnosis and management. (Laragh JH, Brenner BM, eds). Raven, New York: 1990;81-100.Google Scholar
  188. 188.
    Luft FC. Hypertension as a complex genetic trait. Semin Nephrol 2002;22:115–126.PubMedGoogle Scholar
  189. 189.
    Zhu X, Cooper RS. Linkage disequilibrium analysis of the renin-angiotensin system genes. Curr Hypertens Rep 2003;5:40–46.PubMedGoogle Scholar
  190. 190.
    Hamet P, Pausova Z, Adarichev V, Adaricheva K, Tremblay J. Hypertension: genes and environment. J Hypertens 1998;16:397–418.PubMedGoogle Scholar
  191. 191.
    Pravenec, M., Krenova D, Kren V, et al. Congenic strains for genetic analysis of hypertension and dyslipidemia in the spontaneously hypertensive rat. Transplant Proc 1999;31:1555–1556.PubMedGoogle Scholar
  192. 192.
    Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol Rev 2000;80:135–172.PubMedGoogle Scholar
  193. 193.
    Stoll M, Kwitek-Black AE, Cowley AW Jr, et al. New target regions for human hypertension via comparative genomics. Genome Res 2000;10:473–482.PubMedGoogle Scholar
  194. 194.
    Cicila GT, Garrett MR, Lee SJ, Liu J, Dene H, Rapp, JP. High-resolution mapping of the blood pressure QTL on chromosome 7 using Dahl rat congenic strains. Genomics 2001;72:51–60.PubMedGoogle Scholar
  195. 195.
    Cook SA, Rosenzweig A. DNA microarrays: implications for cardiovascular medicine. Circ Res 2002; 91:559–564.PubMedGoogle Scholar
  196. 196.
    Patino WD, Mian OY, Hwang PM. Serial analysis of gene expression: technical considerations and applications to cardiovascular biology. Circ Res 2002;91:565–569.PubMedGoogle Scholar
  197. 197.
    Nadon R, Shoemaker J. Statistical issues with microarrays: processing and analysis. Trends Genet 2002; 18:265–271.PubMedGoogle Scholar
  198. 198.
    Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001;2:418–427.PubMedGoogle Scholar
  199. 199.
    Pravenec M, Wallace C, Aitman, TJ, Kurtz, TW. Gene Expression profiling in hypertensive research. A critical perspective. Hypertension 2003;41:3–8.PubMedGoogle Scholar
  200. 200.
    Cook SA, Rosenzweig A. DNA microarrays: implications for cardiovascular medicine. Circ Res 2002; 91:559–564.PubMedGoogle Scholar
  201. 201.
    Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999;21:76–83.PubMedGoogle Scholar
  202. 202.
    McBride MW, Carr FJ, Graham D, et al. Microarray analysis of rat chromosome 2 congenic strains. Hypertension 2003;41:847–853.PubMedGoogle Scholar
  203. 203.
    Okuda T, Sumiya T, Iwai N, Miyata T. Difference of gene expression profiles in spontaneous hypertensive rats and Wistar-Kyoto rats from two sources. Biochem Biophys Res Commun 2002;296:537–543.PubMedGoogle Scholar
  204. 204.
    Okuda T, Sumiya T, Mizutani K, et al. Analyses of differential gene expression in genetic hypertensive rats by microarray. Hypertens Res 2002;25:249–255.PubMedGoogle Scholar
  205. 205.
    Veerasingham SJ, Sellers KW, Raizada MK. Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension. Prog Biophys Mol Biol 2004;84:107–123.PubMedGoogle Scholar
  206. 206.
    Yang H, Francis SC, Sellers K, et al. Hypertension-linked decrease in the expression of brain gammaadducin. Circ Res 2002;91:633–639.PubMedGoogle Scholar
  207. 207.
    Raizada MK, Lu D, Tang W, Kurian P, Sumners C. Increased angiotensin II type-1 receptor gene expression in neuronal cultures from spontaneously hypertensive rats. Endocrinology 1993;132:1715–1722.PubMedGoogle Scholar
  208. 208.
    Matsuoka Y, Li X, Bennett V. Adducin: structure, function and regulation. Cell Mol Life Sci 2000; 57:884–895.PubMedGoogle Scholar
  209. 209.
    Bianchi G, Tripodi G, Casari G, et al. Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci USA 1994;91;3999–4003.PubMedGoogle Scholar
  210. 210.
    Wang JG, Staessen JA, Barlassina C, et al. Association between hypertension and variation in the alpha-and beta-adducin genes in a white population. Kidney Int 2002;62:2152–2159.PubMedGoogle Scholar
  211. 211.
    Zagato L, Modica R, Florio M, et al Genetic mapping of blood pressure quantitative trait loci in Milan hypertensive rats. Hypertension 2000;36:734–739.PubMedGoogle Scholar
  212. 212.
    Marro ML, Scremin OU, Jordan MC, et al. Hypertension in beta-adducin-deficient mice. Hypertension 2000;36,449-453.Google Scholar
  213. 213.
    Yang H, Reaves PY, Katovich MJ, Raizada MK. Decreases in hypothalamic gamma adducin in rat models of hypertension. Hypertension 2004;43:324–328.PubMedGoogle Scholar
  214. 214.
    Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, Gonzalez FJ. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 2000;275:40,504–40,510.PubMedGoogle Scholar
  215. 215.
    Baudin B, Berard M, Carrier JL, Legrand Y, Drouet L. Vascular origin determines angiotensin I-converting enzyme expression in endothelial cells. Endothelium 1997;5:73–84.PubMedGoogle Scholar
  216. 216.
    Schulz WW, Hagler HK, Buja LM, Erdos EG. Ultrastructural localization of angiotensin I-converting enzyme (EC 3.4.15.1) and neutral metalloendopeptidase (EC 3.4.24.11) in the proximal tubule of the human kidney. Lab Invest 1988;59:789–797.PubMedGoogle Scholar
  217. 217.
    McKinley MJ, Albiston AL, Allen AM, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003;35:901–918.PubMedGoogle Scholar
  218. 218.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie, G. A human homolog of angiotensin-converting enzyme. J Biol Chem 2000;275;33,238–33,243.PubMedGoogle Scholar
  219. 219.
    Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angtiotensin 1-9. Circ Res 2000;87:1–9.Google Scholar
  220. 220.
    Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE2, a novel homologue of Angiotensin converting enzyme. FEBS Lett 2002;532:107–110.PubMedGoogle Scholar
  221. 221.
    Stegbauer J, Vonend O, Oberhauser V, Rump, LC. Effects of Angiotensin-(1-7) and other bioactive components of the renin-angiotensin system on vascular resistance and noradrenaline release in rat kidney. J Hypertens 2003; 21:1391–1399.PubMedGoogle Scholar
  222. 222.
    Zhu Z, Zhong J, Zhu S, Liu D, van der Giet M, Tepel M. Angiotensin 1-7 inhibits angiotensin II inducted signal transduction. J Cardiovasc Pharmacol 2002;40:693–700.PubMedGoogle Scholar
  223. 223.
    Cesari M, Rossi GP, Pessina AC. Biological properties of the Angiotensin peptides other than Angiotensin II: implications for hypertension and other cardiovascular diseases. J Hypertens 2002;20:793–799.PubMedGoogle Scholar
  224. 224.
    Reaux A, Fournie-Zaluski MC, Lloren-Cortes C. Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 2001;12:157–162.PubMedGoogle Scholar
  225. 225.
    Roks AJM, Henning RH. Angiotensin peptides: ready to re(de)fine the Angiotensin system? J Hypertens 2003;21:1269–1271.PubMedGoogle Scholar
  226. 226.
    Tom B, Dendorfer A, Danser AHJ. Bradykinin, angiotensin 1-7 and ACE inhibitors: how do they interact. Int. J Biochem Cell Biol 2003;35:792–801.PubMedGoogle Scholar
  227. 227.
    Allred AJ, Donoghue M, Acton S, Coffman TM. Regulation of blood pressure by the Angiotensin converting enzyme homologue ACE2. 35th annual meeting of the American Soc Nephrol Nov 1–4, 2002.Google Scholar
  228. 228.
    Donoghue M, Wakimoto H, Maguire CT, et al. Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol 2003;35:1043–1053.PubMedGoogle Scholar
  229. 229.
    Chung O, Stoll M, Unger T. Physiological and pharmacological implications of AT1 versus AT2 receptors. Blood Press Suppl 1996;2:47–52.PubMedGoogle Scholar
  230. 230.
    Matsukawa T, Ichikawa I. Biological function of angiotensin and its receptors. Ann Rev Physiol 1997; 59:395–412.Google Scholar
  231. 231.
    Gallinat S, Busche S, Raizada MK, Sumners C. The angiotensin II type 2 receptor: an enigma with multiple variations. Am J Physiol Endocrinol Metab 2000;278:E357–E374.PubMedGoogle Scholar
  232. 232.
    DeGasparo M, Catt K, Inagami J, Wright JW, Unger T. International Union of Pharmacology. XVIII. The Angiotensin II receptors. Pharmacol Rev 2000;52:415–472.Google Scholar
  233. 233.
    Unger T, The angiotensin type 2 receptor. Variations on an enigmatic theme. J Hypertens 1999;17: 1775–1786.PubMedGoogle Scholar
  234. 234.
    Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. Behavioral and cardiovascular effects of disrupting the angiotensin II type 2 receptor gene in mice. Nature 1995;377:744–747.PubMedGoogle Scholar
  235. 235.
    Ichiki T, Labosky PA, Shiota C, et al. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 1995;377:748–750.PubMedGoogle Scholar
  236. 236.
    Miura S, Karnik SS. Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. Embro J 2000;19:4026–4035.Google Scholar
  237. 237.
    Dzau, V.J. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med 1993; 153:937–942.PubMedGoogle Scholar
  238. 238.
    Dzau, V.J. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 1988;77:(6 Pt 2):I4–I13.PubMedGoogle Scholar
  239. 239.
    Crockcroft JR, O’Kane KPJ, Webb DJ. Tissue angiotensin generation and regulation of vascular tone. Pharmacol Ther 1995;65:193–213.Google Scholar
  240. 240.
    Bader M, Peters J, Baltatu O, Muller DN, Luft FC, Ganten D. Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 2001;79:76–102.PubMedGoogle Scholar
  241. 241.
    Crockcroft JR, O’Kane KPJ, Webb DJ. Tissue angiotensin generation and regulation of vascular tone. Pharmacol Ther 1995;65:193–213.Google Scholar
  242. 242.
    Bader M, Peters J, Baltatu O, Muller DN, Luft FC, Ganten D. Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 2001;79:76–102.PubMedGoogle Scholar
  243. 243.
    Blaufarb IS, Sonnenblick EH. The renin angiotensin system in left ventricular remodeling. Am J Cardiol 1996;77:8C–16C.PubMedGoogle Scholar
  244. 244.
    Yu Z, Xu F, Huse LM, et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res. 2000;87:992–998.PubMedGoogle Scholar
  245. 245.
    Fornage M, Hinojos CA, Nurowska BW, et al. Polymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats. Hypertension 2000;40:485–490.Google Scholar
  246. 246.
    Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002;20:1006–1010.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Michael J. Katovich
    • 1
  • Justin L. Grobe
    • 1
  • Mohan K. Raizada
    • 2
  1. 1.Department of PharmacodynamicsUniversity of Florida College of PharmacyGainesville
  2. 2.Department of Physiology and Functional GenomicsUniversity of Florida College of MedicineGainesville

Personalised recommendations