Skip to main content

Brain–Machine Interface (BMI) as a Tool for Understanding Human–Machine Cooperation

  • Chapter
Inquiring into Human Enhancement

Part of the book series: Health, Technology and Society ((HTE))

  • 259 Accesses

Abstract

The abbreviation of the expression ‘Brain Machine Interface’ (BMI), represents a popular research area generating media excitement over a great number of promising applications. Even though medical applications are the most researched, the decision makers in the world of industry (including those interested in military applications), entertainment, security, and so on, are not simply observing what is happening in this field but are also investing in their own research. In fact, science fiction has often preceded scientists and engineers in imagining the technologies of the future. For example, what from the Star Trek television series of the 1960s can still be considered an improbable or unbelievable image, other than the presence on board of Mr Spock, a scientist who was a hybrid of the human and Vulcan species? The image of Captain Kirk talking to Dr McCoy through his mobile phone has already become a trivial, even a troubling picture of daily life. Robot factories may not be visible to everyone but they mass produce, maybe not the clever R2-D2 or C-3PO droids of the film Star Wars , but powerful, precise, high speed manipulators that can increase production while decreasing the necessary manpower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birbaumer N., Ghanayim N., Hinterberger T., Iversen I., Kotchoubey B., Kübler A., Perelmouter J., Taub E. and Flor H. (1999) ‘A spelling device for the paralysed’, Nature, 398, 297–8.

    Article  Google Scholar 

  • Berger T.W., Hampson R.E., Song D., Goonawardena A., Marmarelis V.Z. and Deadwhyler S.A. (2011) ‘A cortical neural prosthesis for restoring and enhancing memory’, Journal of Neural Engineering, 8(046017), 1–11, doi:10.1088/1741–2560/8/4/046017.

    Article  Google Scholar 

  • Botvinick M. and Cohen J. (1998) ‘Rubber hands “feel” touch that eyes see’, Nature, 391, 756.

    Article  Google Scholar 

  • Brown E.N., Kass R.E. and Mitra P.P. (2004) ‘Multiple neural spike train data anal-ysis: state-of-the-art and futur challenges’, Nature Neuroscience, 7 (5), 456–61.

    Article  Google Scholar 

  • Carmena J.M., Lebedev M.A., Crist R.E., O’Doherty J.E., Santucci D.M., Dimitrov D., Patil P.G., Henriquez C.S. and Nicolelis M.A. (2003) ‘Learning to control a brain–machine interface for reaching and grasping by primates’, PLoS Biology, 1, 193–208.

    Article  Google Scholar 

  • Chapin J.K., Moxon K.A., Markowitz R.S. and Nicolelis M.A. (1999) ‘Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex’, Natural Neuroscience, 2 (7), 664–70.

    Article  Google Scholar 

  • Costantini M. and Haggard P. (2007) ‘The rubber hand illusion: sensitivity and reference frame for body ownership’, Consciousness and Cognition , 16, 229–40.

    Article  Google Scholar 

  • Fetz E.E. and Finocchio D.V. (1975) ‘Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns’, Experimental Brain Research, 23, 217–24.

    Article  Google Scholar 

  • Fetz E.E. (2007) ‘Volitional control of neural activity: implication for brain– computer interfaces’, Journal of Physiology , 579(3), 571–9.

    Article  Google Scholar 

  • Fisher R.,Salanova V., Witt T., Worth R., Henry T., Gross R., Oommen K., Osorio I., Nazzaro J., Labar D., Kaplitt M., Sperling M., Sandok E., Neal J., Handforth A., Stern J., DeSalles A., Chung S., Shetter A, Bergen D., Bakay R., Henderson J., French J., Baltuch G., Rosenfeld W., Youkilis A., Marks W., Garcia P., Barbaro N., Fountain N., Bazil C., Goodman R., McKhann G., Krishnamurthy K.B., Papavassiliou S., Epstein C., Pollard J., Tonder L., Grebin J., Coffey R., Graves N. and the SANTE Study Group. (2010) ‘Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy’, Epilepsia, 51(5), 899–908.

    Article  Google Scholar 

  • Gallagher S. (2005) How the Body Shapes the Mind ( Oxford: Oxford University Press).

    Book  Google Scholar 

  • Georgopoulos A.P., Kettner R.E. and Schwartz A.B. (1988) ‘Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population’, Journal of Neuroscience, 8, 2928–37.

    Google Scholar 

  • Goffette J. (2010) ‘Quelques pas théoriques vers une psychogenèse du corps’, L’Évolution Psychiatrique , 75(3), 353–69.

    Article  Google Scholar 

  • Grau C., Ginhoux R., Riera A., Nguyen T.L., Chauvat H., Michel B., Amengual J.L., Pascual-Leone A. and Ruffini G. (2014) ‘Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies’, PLoS ONE 9(8): e105225. doi:10.1371/journal.pone.0105225

    Google Scholar 

  • Head H. and Holmes G. (1911) ‘Sensory disturbances from cerebral lesions’, Brain, 34(2–3), 102–254.

    Article  Google Scholar 

  • Héliot R. and Carmena J.M. (2010) ‘Brain–Machine Interfaces’, Encyclopedia of Behavioral Neuroscience, 221–5.

    Chapter  Google Scholar 

  • Hochberg L.R., Bacher D., Jarosiewicz B., Masse N.Y., Simeral J.D., Vogel J., Haddadin S., Liu J., Sydney S.C., van der Smagt P. and Donoghue J.P. (2012) ‘Reach and grasp by people with tetraplegia using a neurally controlled robotic arm’, Nature, 485, 372–5.

    Article  Google Scholar 

  • Hodgkin A.L. and Huxley A.F. (1952) ‘A quantitative description of membrane current and its application to conduction and excitation in nerve’, Journal of Physiology , 117, 500–544.

    Article  Google Scholar 

  • Hottois G. (2002), Species Technica ( Paris: Vrin).

    Google Scholar 

  • Husserl E. (1989) ‘Ideas pertaining to a pure phenomenology and to a phenomenological philosophy’, in Second Book: Studies in the Phenomenology of Constitution (Husserliana: Edmund Husserl Collected Works) ( Dordrecht: Kluwer Academic Publishers).

    Google Scholar 

  • Jonas H. (1979) The Imperative of Responsibility. In Search of an Ethics for the Technological Age, translation (Chicago: University of Chicago Press, 1985 ).

    Google Scholar 

  • Kalman, R.E. (1960) ‘A new approach to linear filtering and prediction problems’, Journal of Basic Engineering , 82(1), 35–45.

    Article  Google Scholar 

  • Lebedev M.A., Carmena J.M., O’Doherty J.E., Zacksenhouse M., Henriquez C.S., Principe J.C. and Nicolelis M.A. (2005) ‘Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain–machine interface’, Journal of Neuroscience , 25(19), 4681–93.

    Article  Google Scholar 

  • Lhermitte J. (1939) L’image de notre corps ( Paris: L’Harmattan).

    Google Scholar 

  • Luzheng Bi, Xin-An Fan and Yili Liu (2013) ‘EEG-based brain controlled mobile robots: a survey’, IEEE Transactions on Human –Machine Syste ms, 43(2), 161–176.

    Article  Google Scholar 

  • Maier M.A., Bennett K.M., Hepp-Reymond M.C. and Lemon R.N. (1993) ‘Contribution of the monkey corticomotoneuronal system to the control of force in precision grip’, Journal of Neurophysiology , 69(3), 772–85.

    Google Scholar 

  • Maine de Biran P. (1859) ‘Essai sur les fondements de la psychologie’, in Œuvres inédites, 1 ( Paris: Dezobry, Magdeleine ).

    Google Scholar 

  • McClelland J.L., Rumelhart D.E. and the PDP research group (1986) Parallel Distributed Processing ( Cambridge MA: The MIT Press).

    Google Scholar 

  • McCulloch W.S. and Pitts W.H. (1943) ‘A logical calculus of the ideas immanent in nervous activity’, Bulletin of Mathematical Biophysics, 5, 115–33.

    Article  Google Scholar 

  • Merleau-Ponty (2002) Phenomenology of Perception , 2nd edn (New York: Routledge). [First French edition: Paris: NRF, Gallimard, 1945.]

    Google Scholar 

  • Musallam S.,Corneil B.D., Greger B., Scherberger H. and Andersen R.A. (2004) ‘Cognitive control signals for neural prosthetics’, Science , 305(3681), 258–62.

    Article  Google Scholar 

  • Nicolelis M.A. (2011) Beyond Boundaries: The New Neuroscience of Connecting Brains with Machines and How It Will Change our Lives (New York: Henry Holt & Co., LLC).

    Google Scholar 

  • Peckham P.H. and Knutson J.S., (2005) ‘Functional electrical stimulation for neuromuscular applications’, Annual Review of Biomedical Engineering, 7: 327–60.

    Article  Google Scholar 

  • Pine J. (2006) ‘A history of MEA development’, Advance in Network Electrophysiology, I, 3–23, doi: 10.1007/0–387–25858–2_1.

    Article  Google Scholar 

  • Rao R.P.N., Stocco A., Bryan M., Sarma D., Youngquist T.M., Wu J. and Prat C.S. (2014) ‘A Direct Brain-to-Brain Interface in Humans’. PLoS ONE 9(11): e1 11332. doi:10.13 71 /j ournal.pone.0111332

    Google Scholar 

  • Raspopovic S., Capogrosso M., Petrini M.F., Bonizzato M., Rigosa J., Di Pino G., Carpaneto J., Controzzi M., Boretius T., Fernandez E., Granata G., Oddo C.M., Citi L., Ciancio A.L., Cipriani C., Carrozza M.C., Jensen W., Guglielmelli E., Stieglitz T., Rossini P.M. and Micera S., (2014) ‘Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses’, Science Translational Medicine 6, 222ra19.

    Google Scholar 

  • Rickert J., Cardoso de Oliveira S., Vaadia E., Aertsen A. and Rotter S., (2005) ‘Encoding of movement direction in different frequency ranges of motor cortical local field potentials’, Journal of Neuroscience, 25, 8815–24.

    Article  Google Scholar 

  • Ouanezar S., Eskiizmirliler S. and Maier M. (2011) ‘Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control’, Journal of Integrative Neuroscience , 10(4), 489–511, DOI: 10.1142/S0219635211002853.

    Article  Google Scholar 

  • Schilder, P. (1935) Image and Appearance of the Human Body: Studies in the Constructive Energies of the Psyche. Psyche Monographs, 4, 1st edn (London: Kegan Paul, Trench, Trubner & Co.).

    Google Scholar 

  • Schmidt E.M. (1980) ‘Single neuron recording from motor cortex as a possible source of signals for control of external devices’, Annals of Biomedical Engineering, 8, 339–49.

    Article  Google Scholar 

  • Schwartz A.B., Kettner R.E. and Georgopoulos A.P. (1988) ‘Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement’, Journal of Neuroscience , 8(8), 2913–27.

    Google Scholar 

  • Schwartz A.B., Cui X.T., Weber D.J. and Moran D.W. (2006) ‘Brain-controlled interfaces: movement restoration with neural prosthetics’, Neuron, 52, 205–20.

    Article  Google Scholar 

  • Sloterdijk P. (2000) La domestication de l’être ( Paris: Mille et une nuits).

    Google Scholar 

  • Thomas C.A., Springer P.A., Loeb G.E., Berwald-Netter Y. and Okun L.M. (1972) ‘A miniature microelectrode array to monitor the bioelectric activity of cultured cells’, Experimental Cell Research, 74, 61–6.

    Article  Google Scholar 

  • Velliste M., Perel S., Spalding M.C., Whitford A.S. and Schwartz A.B. (2008) ‘Cortical control of a prosthetic arm of self-feeding’, Nature, 453, 1098–101.

    Article  Google Scholar 

  • de Vignemont F. (2011) ‘Embodiment, ownership and disownership’, Consciousness and Cognition, 20, 82–93.

    Article  Google Scholar 

  • Wallon H. (1934) Les origines du caractère chez l’enfant, 5th edn ( Paris: PUF).

    Google Scholar 

  • Welter M.L., Houeto J.L., Tezenas du Montcel S. et al. (2002) ‘Clinical predictive factors of subthalamic stimulation in Parkinson’s disease’, Brain, 125, 575–83.

    Article  Google Scholar 

  • Wessberg J., Stambaugh C.R., Kralik J.D., Beck P.D., Laubach M., Chapin J.K., Kim J., Biggs S.J., Srinivasan M.A. and Nicolelis M.A. (2000) ‘Real-time prediction of hand trajectory by ensembles of cortical neurons in primates’, Nature, 408, 361–5.

    Article  Google Scholar 

  • Wolfe B. (1952) Limbo ( New York: Random House).

    Google Scholar 

  • Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G., and Vaughan T.M. (2002) ‘Brain–computer interfaces for communication and control’, Clinical Neurophysiology, 113, 767–91.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2015 Selim Eskiizmirliler and Jérôme Goffette

About this chapter

Cite this chapter

Eskiizmirliler, S., Goffette, J. (2015). Brain–Machine Interface (BMI) as a Tool for Understanding Human–Machine Cooperation. In: Bateman, S., Gayon, J., Allouche, S., Goffette, J., Marzano, M. (eds) Inquiring into Human Enhancement. Health, Technology and Society. Palgrave Macmillan, London. https://doi.org/10.1057/9781137530073_8

Download citation

Publish with us

Policies and ethics