Skip to main content

Set-Covering-Based Approximate Algorithm Using Enhanced Savings for Solving Vehicle Routing Problem

  • Chapter
Innovative Management and Firm Performance

Abstract

Transportation is widely present in human activities and supports many economic activities. Using phones, reading mails, traveling, and flying involve the routing of messages, people, and goods. One of the present aims of research is to fill the gap between academic research and practical applications. Our aim is to present a simple and flexible heuristic for solving the capacitated vehicle routing problem and heterogeneous fleet vehicle routing problems, and discuss its advantages compared to other well-known heuristics. The flexibility of our approach comes from the simplicity of the solution procedure and is especially important when the algorithm is going to be applied to solving real-life problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altinel, I.K., & Öncan, T. (2005). A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem. Journal of the Operational Research Society, 56(8), 954–961. doi: 10.1057/palgrave.jors.2601916.

    Article  Google Scholar 

  • Augerat, P., Belenguer, J.M., Benavent, E., Corberán, A., Naddef, D., & Rinaldi, G. (1995). Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem. Research Report 949-M, Universite Joseph Fourier, Grenoble, France.

    Google Scholar 

  • Baldacci, R., Battara, M., & Vigo, D. (2008). Routing a heterogeneous fleet of vehicles, in: B. Golden, S. Raghavan, and E. Wasil (eds), The Vehicle Routing Problem — Latest Advanced and New Challenges, Springer, 3–28.

    Chapter  Google Scholar 

  • Baldacci, R., & Mingozzi, A. (2009) A unified exact method for solving different classes of vehicle routing problems, Mathematical Programming, 120(2), 347–380. doi: 10.1007/s10107-008-0218-9.

    Article  Google Scholar 

  • Balinski, M., & Quandt, R. (1964). On an integer program for a delivery problem, Operations Research, 12, 300–304.

    Article  Google Scholar 

  • Battara, M., Benedettini, S., & Roli, A. (2011). Leveraging saving-based algorithms by master-slave genetic algorithms, Engineering Applications of Artificial Intelligence, 24(4), 555–566. doi: 10.1016/j.engappai.2011.01.007.

    Article  Google Scholar 

  • Bramel, J., & Simchi-Levi, D. (2002). Set-covering-based algorithms for the capacitated VRP, in: P. Toth and D. Vigo (eds), The Vehicle routing, SIAM Publishing: Bologna, 85–108.

    Chapter  Google Scholar 

  • Brandao, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem, Computers & Operations Research, 38, 140–151. doi: 10.1016/j.cor.2010.04.008.

    Article  Google Scholar 

  • Cocan, M., Florea, I., & Pop (married Stanojević), B. (2008), Models for Combinatorial Optimization and Methaheuristics in Operations Research (in Romanian: Modele si metode de optimizare combinatoriala si metaeuristica in cercetari operationale), Editura Universitatii Transilvania, Brasov, ISBN 978–973–598–188–4.

    Google Scholar 

  • Charon, I., & Hudry, O. (2001), The noising methods: a generalization of some metaheuristics, European Journal of Operational research, 135(1), 86–101. doi: 10.1016/S0377-2217(00)00305-2.

    Article  Google Scholar 

  • Choi, E., & Tcha, D.-W. (2007). A column generation approach to the heterogeneous fleet vehicle routing problem. Computers and Operatins Research, 34, 2080–2095. doi: 10.1016/j.cor.2005.08.002.

    Article  Google Scholar 

  • Clarke, G., & Wright, J.V. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12, 568–581.

    Article  Google Scholar 

  • Corominas, A., Garcia-Villoria, A., & Pastor, R. (2010). Fine-tuning a parametric Clarke and Wright heuristic by means of EAGH (empirically adjusted greedy heuristics). Journal of Operational Researches Society, 61, 1309–1314. doi: 10.1057/jors.2009.89.

    Google Scholar 

  • Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle dispatching problem. Operations Research Quarterly, 20, 309–318.

    Article  Google Scholar 

  • Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem, in: N. Christofides, A. Mingozzi, P. Toth, & L. Sandi (eds). Combinatorial Optimization, Wiley, Chichester, 315–338.

    Google Scholar 

  • Dantzig, G.B. & Ramser, J.H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91.

    Article  Google Scholar 

  • Duhamel, C., Lacomme, P., & Prodhon, C. (2012). A hybrid evolutionary local search with depth first search split procedure for the heterogeneous vehicle routing problems. Engineering Applications of Artificial Intelligence, 25, 345–358. doi: 10.1016/j.engappai.2011.10.002.

    Article  Google Scholar 

  • Fulga, C., &@@@@ Pop (married Stanojević), B. (2007). Portfolio selection with transaction costs, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 50(4), 317–330, WOS:000255161800004.

    Google Scholar 

  • Golden, B., Assad, A., Levy, L., & Gheysens, F. (1984). The fleet size and mix vehicle routing problem, Computers & Operations Research, 11(1), 49–66. doi: 10.1016/0305-0548(84)90007-8.

    Article  Google Scholar 

  • Groer, C. (2012). VRPH. Retrieved from http://www.coin-or.org/projects/VRPH.xml.

  • Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated VRP, in: P. Toth and D. Vigo (e ds), The Vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications, SIAM Publishing: Bologna, 109–128.

    Chapter  Google Scholar 

  • Li, F., Golden, B. & Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem, Computers & Operations Research, 34, 2734–2742. doi: 10.1016/j.cor.2005.10.015.

    Article  Google Scholar 

  • Penna, P.H.V., Subramanian, A., Ochi, L.S. (2013). An iterated local search heuristic for the heterogeneous fleet vehicle routing problem, Journal of Heuristics, 19, 201–232. doi: 10.1007/s10732-011-9186-y.

    Article  Google Scholar 

  • Pop (married Stanojević), @@@@B., & Dzit¸ac, I. (2007). Mixed variables fuzzy programming algorithms, Studies in Informatics and Control, 16(2), 411–416.

    Google Scholar 

  • Pop (married Stanojević), B., & Dzit¸ac, I. (2006). On a fuzzy approach to solving multiple criteria fractional programming problem, International Journal of Computers, Communications and Control, 1, 381–385. WOS: 000203014800064.

    Google Scholar 

  • Pop (married Stanojević), B., & Stancu-Minasian, I.M. (2008). A method of solving fully fuzzified linear fractional programming problems, Journal of Applied Mathematics and Computing, 27(1–2), 227–242. doi: 10.1007/s12190-008-0052-5.

    Article  Google Scholar 

  • Pop, P., & Pop Sitar, C. (2011). A new efficient transformation of the generalized vehicle routing problem into the classical vehicle routing problem, Yugoslav Journal of Operations Research, 21(2), 187–198. doi: 10.2298/YJOR1102187P.

    Article  Google Scholar 

  • Prins, C. (2009). Two memetic algorithms for heterogeonous fleet vehicle routing problems, Engineering Applications of Artificial Intelligence, 22, 916–928. doi: 10.1016/j.engappai.2008.10.006.

    Article  Google Scholar 

  • Stanojević, B., & Stancu-Minasian, I.M. (2012). Evaluating fuzzy inequalities and solving fully fuzzified linear fractional programs, Yugoslav Journal of Operations Research, 22(1), 41–50. doi: 10.2298/YJOR110522001S.

    Article  Google Scholar 

  • Stanojević, B., & Stanojević, M. (2013a), Solving method for linear fractional optimization problem with fuzzy coefficients in the objective function, International Journal of Computers, Communications and Control, 8(1), 146–152. WOS: 000312043600016.

    Article  Google Scholar 

  • Stanojević, B., & Stanojević, M. (2013b). On the efficiency test in multi-objective linear fractional programming problems by Lotfi et al. 2010, accepted for publication in: Applied Mathematical Modelling, doi: 10.1016/j.apm.2013.01.041.

    Google Scholar 

  • Stanojević, M., Stanojević, B., & Vujošević, M. (2013a). Enhanced savings calculation and its applications for solving capacitated vehicle routing problem. Applied Mathematics and Computation (accepted for publication) doi: 10.1016/j.amc.2013.04.002.

    Google Scholar 

  • Stanojević, M., Vujošević, M., & Stanojević, B. (2013b). On the cardinality of the non-dominated set of multi-objective combinatorial optimization problems, Operations Research Letters, 41(2), 197–200, doi: 10.1016/j.orl.2013.01.006.

    Article  Google Scholar 

  • Stanojević, M., Stanojević, B., & Vujošević, M. (2009, September). A new savings algorithm for the vehicle routing problem. Paper presented at the 9th Balkan Conference on Operational Research.

    Google Scholar 

  • Stanojević, M., Vujošević, M., & Stanojević, B. (2008a). Computation results of finding all efficient points in multiobjective combinatorial optimization, International Journal of Computers, Communications and Control, 3(4), 374–383. WOS:000260214800006.

    Google Scholar 

  • Stanojević, M., Vujošević, M., & Stanojević, B. (2008b). Number of efficient points in some multiobjective combinatorial optimization problems, International Journal of Computers, Communications and Control, 3(Supplementary Issue), 497–502. WOS:000257497600082.

    Google Scholar 

  • Stanojević, M., & Vujošević, M. (2006). An exact algorithm for Steiner tree problem on graphs, International Journal of Computers, Communications and Control, 1(1), 41–46.

    Google Scholar 

  • Taillard, E.D. (1999). A heuristic column generation method for the heterogeneous fleet VRP, RAIRO Operations Research, 33(1), 1–14. doi: 10.1051/ro:1999101.

    Article  Google Scholar 

  • Vujošević, M., Stanojević, M., & Mladenović, N., (1996). Optimization methods — networks, location and multiple criteria models (in Serbian, Metode Optimizacie — Mrezni, lokacijski, visecriteriumski modeli), DOPIS Beograd.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2014 Milan Stanojević and Bogdana Stanojević

About this chapter

Cite this chapter

Stanojević, M., Stanojević, B. (2014). Set-Covering-Based Approximate Algorithm Using Enhanced Savings for Solving Vehicle Routing Problem. In: Jakšić, M.L., Rakočević, S.B., Martić, M. (eds) Innovative Management and Firm Performance. Palgrave Macmillan, London. https://doi.org/10.1057/9781137402226_22

Download citation

Publish with us

Policies and ethics