Neuroscience of Nonverbal Communication

  • Milkica Nešić
  • Vladimir Nešić


Nonverbal communication is essential for human social interaction, either through static physical cues, such as phenotypic traits, facial and body appearance, or dynamic cues, such as faces and bodies in motion. Communication may be via touching, i.e., haptic communication, or at the spatial distance, i.e., proxemic communication. Communication among animals is most commonly mediated by olfactory signals. In many primates, sense of smell is significantly reduced compared to the smell of other vertebrates, while the visual modality is critical for social communication. About a quarter of the cortex is devoted to human visual perception and analysis. Visual modality provides a large amount of information about the identity of other individuals, their social status, emotional state and intended actions. The importance of face processing for survival is reflected in the extraordinary memory abilities of facial features and expressions in humans and other primates, as well as expressed powers of observation of subtle differences between faces.


Facial Expression Face Recognition Blood Oxygen Level Dependent Face Processing Mirror Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolphs, R. (2002a). Neural systems for recognizing emotion. Current Opinions in Neurobiology, 12, 169–177.CrossRefGoogle Scholar
  2. Adolphs, R. (2002b). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1(1), 21–62.CrossRefGoogle Scholar
  3. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165–178.CrossRefGoogle Scholar
  4. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.CrossRefGoogle Scholar
  5. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. The Journal of Neuroscience, 75(9), 5879–5891.Google Scholar
  6. Alibali, M. W., Kita, S., & Young, A. J. (2000). Gesture and the process of speech production. We think, therefore we gesture. Language and Cognitive Processes, 15(6), 593–613.CrossRefGoogle Scholar
  7. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.CrossRefGoogle Scholar
  8. Arbib, M. A. (2010). Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain and Language, 112, 12–24.CrossRefGoogle Scholar
  9. Arbib, M. A., & Rizzolatti, G. (1997). Neural expectations: A possible evolutionary path from manual skills to language. Communication & Cognition, 29, 393–424.Google Scholar
  10. Asthana, H. S., & Mandal, M. K. (1996). Mirror-reversal of a face is perceived as expressing emotions more intensely. Behavioural Neurology, 9, 115–117.CrossRefGoogle Scholar
  11. Atzil, S., Hendler, T., Feldman, R. (2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behaviour in synchronous and intrusive mothers. Neuropsychopharmacology, 36, 2603–2615.CrossRefGoogle Scholar
  12. Bavelas, J., Gerwing, J., Sutton, C., & Prevost, D. (2008). Gesturing on the telephone: Independent effects of dialogue and visibility. Journal of Memory and Language, 58, 495–520.CrossRefGoogle Scholar
  13. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403, 309–312.CrossRefGoogle Scholar
  14. Bentin, S., Deouell, L. Y., & Soroker, N. (1999). Selective visual streaming in face recognition: Evidence from developmental prosopagnosia. Neuro Report, 10, 823–827.Google Scholar
  15. Berglund, H., Lindstrom, P., & Savic, I. (2006). Brain response to putative phero- mones in lesbian women. Proceedings of the National Academy of Sciences USA, 103, 8269–8274.CrossRefGoogle Scholar
  16. Blair, R. J. R. (2003). Facial expressions, their communicatory functions and neuro-cognitive substrates. In C. D. Frith & D. M. Wolpert (Eds.), The neuroscience of social interaction decoding, imitating, and influencing the actions of others (pp. 241–264). New York: Oxford University Press Inc.Google Scholar
  17. Bowlby, J. (1969). Attachment. New York: Basic Books.Google Scholar
  18. Bradley, M. M., Greenwald, M. K., Petry, M. C., & Lang, P. J. (1992). Remembering pictures: Pleasure and arousal in memory. The Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 379–390.Google Scholar
  19. Branchi, I., Curley, J. P., D’Andrea, I., Francesca, C., Champagne, F. A., & Alleva, E. (2013). Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels. Psychoneuroendocrinology, 38, 522–532.CrossRefGoogle Scholar
  20. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., … Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17, 875–887.CrossRefGoogle Scholar
  21. Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.CrossRefGoogle Scholar
  22. Bulthoff, H. H., Cunningham, D. W., & Wallraven, C. (2011). Dynamic aspects of face processing in humans. In S. Z. Li & A. K. Jain (Eds.), Handbook of face recognition (2nd ed., pp. 575–596). London: Springer-Verlag.CrossRefGoogle Scholar
  23. Calder, A. (2011). Does facial identity and facial expression recognition involve separate visual routes? In A. Calder, G. Rhodes, M. Johnson, & J. V. Haxby (Eds.), Oxford handbook of face perception (pp. 427–448). New York: Oxford University Press.Google Scholar
  24. Calvert, G. A., Calvert, T. T. G., Campbell, R., Williams, S. C. R., McGuire, P. K., Woodruff, P. W. R., … David, A. S. (1997). Activation of auditory cortex during silent lip reading. Science, 276, 593–596.CrossRefGoogle Scholar
  25. Cartmill, E. A., Beilock, S., & Goldin-Meadow, S. (2012). A word in the hand: Action, gesture and mental representation in humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 129–143.CrossRefGoogle Scholar
  26. Chakrabarti, B., Bullmore, E., & Baron-Cohen, S. (2006). Empathizing with basic emotions: Common and discrete neural substrates. Social Neuroscience, 1 (3–4), 364–384.CrossRefGoogle Scholar
  27. Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception- behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893–910.CrossRefGoogle Scholar
  28. Chiao, J. Y., Iidaka, T., Gordon, H. L., Nogawa, J., Bar, M., Aminoff, E., … Ambady, N. (2008). Cultural specificity in amygdala response to fear faces. Journal of Cognitive Neuroscience, 20, 2167–2174.CrossRefGoogle Scholar
  29. Condon, W. S., & Ogston, W. D. (1967). A segmentation of behavior. Journal of Psychiatric Research, 5, 221–235.CrossRefGoogle Scholar
  30. Condon, W. S., & Sander, L. W. (1974). Synchrony demonstrated between movements of neonate and adult speech. Child Development, 45, 456–462.CrossRefGoogle Scholar
  31. Corballis, M. C. (1999). The gestural origins of language. American Scientist, 87(2), 138. Retrieved from Scholar
  32. Corballis, M. C. (2002). From hand to mouth — The origins of language. Princeton, NJ: Princeton University Press.Google Scholar
  33. Damasio, A. R., Everitt, B. J., & Bishop, D. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1346), 1413–1420.CrossRefGoogle Scholar
  34. Damasio, A. R., Tranel, D., & Damasio, H. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 217–229). New York: Oxford University Press.Google Scholar
  35. Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44, 113–126.CrossRefGoogle Scholar
  36. de Gelder, B., & Bertelson, P. (2003). Multisensory integration, perception and ecological validity. Trends in Cognitive Sciences, 7, 460–467.CrossRefGoogle Scholar
  37. Eimer, M., & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45(1), 15–31.CrossRefGoogle Scholar
  38. Ekman, P. (1992). Telling lies: Clues to deceit in the marketplace, politics, and marriage (p. 114). New York, London: W. W. Norton & Company.Google Scholar
  39. Ekman, P., & Friesen, W. (1978). Facial action coding system: A technique for the measurement of facial movement. Palo Alto: Consulting Psychologists Press.Google Scholar
  40. Ekman, P., & Friesen, W. V. (1969). Nonverbal leakage and clues to deception. Psychiatry, 32, 88–106.Google Scholar
  41. Elfenbein, H. A., & Ambady, N. (2002). Is there an in-group advantage in emotion recognition? Psychological Bulletin, 128, 243–249.CrossRefGoogle Scholar
  42. Erickson, K., & Schulkin, J. (2003). Facial expressions of emotion: A cognitive neuroscience perspective. Brain and Cognition, 52, 52–60.CrossRefGoogle Scholar
  43. Fabbri-Destro, M., & Rizzolatti, G. (2008). Mirror neurons and mirror systems in monkeys and humans. Physiology, 23, 171–179.CrossRefGoogle Scholar
  44. Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (2000). Visuomotor neurons: Ambiguity of the discharge or “motor” perception? International Journal of Psychophysiology, 35, 165–177.CrossRefGoogle Scholar
  45. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 2608–2611.Google Scholar
  46. Farah, M., Humphreys, G. W., & Rodman, H. R. (1999). Object and face recognition. In J. M. Zigmond, E. F. Bloom, C. S. Landis, L. J. Roberts, & R. L. Squire (Eds.), Fundamental neuroscience (pp. 1339–1361). San Diego: Academic press.Google Scholar
  47. Feldman, R. (2012). Oxytocin and social affiliation in humans. Hormones and Behaviour, 61, 380–391.CrossRefGoogle Scholar
  48. Fox, C., Iaria, G., & Barton, J. (2009). Defining the face processing network: Optimization of the functional localizer in fMRI. Human Brain Mapping, 30(5), 1637–1651.CrossRefGoogle Scholar
  49. Fox, C. J., Hanif, H. M., Iaria, G., Duchaine, B. C., & Barton, J. J. S. (2011). Perceptual and anatomic patterns of selective deficits in facial identity and expression processing. Neuropsychologia, 49, 3188–3200.CrossRefGoogle Scholar
  50. Franks, D. D. (2010). Neurosociology: The nexus between neuroscience and social psychology (pp. 92, 94). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  51. Freeman, J. B., Ruleand, N. O., & Ambady, N. (2009). The cultural neuroscience of person perception. Progress in Brain Research, 178, 191–201.CrossRefGoogle Scholar
  52. Gainotti, G. (2007). Different patterns of famous people recognition disorders in patients with right and left anterior temporal lesions: A systematic review. Neuropsychologia, 45, 1591–1607.CrossRefGoogle Scholar
  53. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.CrossRefGoogle Scholar
  54. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefGoogle Scholar
  55. Garbarini, F., & Adenzato, M. (2004). At the root of embodied cognition: Cognitive science meets neurophysiology. Brain and Cognition, 56, 100–106. doi:10.1016/j.bandc.2004.06.003.CrossRefGoogle Scholar
  56. Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12, 495–504.CrossRefGoogle Scholar
  57. Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 1239–1255.CrossRefGoogle Scholar
  58. Gelstein, S., Yeshurun, Y., Rozenkrantz, L., Shushan, S., Frumin, I., Roth, Y., & Sobel, N. (2011). Human tears contain a chemosignal. Science, 331(6014), 226–230. doi: 10.1126/science.1198331.CrossRefGoogle Scholar
  59. George, M. S., Ketter, T. A., Gill, D. S., Haxby, J. V., Ungerleider, L. G., Herscovitch, P., & Post, R. M. (1993). Brain regions involved in recognizing facial emotion or identity: An oxygen-15 PET study. Journal of Neuropsychiatry & Clinical Neurosciences, 5, 384–394.CrossRefGoogle Scholar
  60. Goldin-Meadow, S., Wein, D., & Chang, C. (1992). Assessing knowledge through gesture: Using children’s hands to read their minds. Cognition and Instruction, 9, 201–219.CrossRefGoogle Scholar
  61. Greenfield, P. M. (1991). Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences, 14, 531–595.CrossRefGoogle Scholar
  62. Hart, A. J., Whalen, P. J., hin, L. M., McInerney, S. C., Fischer, H., & Rauch, S. L. (2000). Differential response in the human amygdala to racial outgroup vs ingroup face stimuli. Neuro Report, 11(11), 2351–2355.Google Scholar
  63. Hasselmo, M. E., Rolls, E. T., & Baylis, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behavioural Brain Research, 32, 203–218.CrossRefGoogle Scholar
  64. Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.CrossRefGoogle Scholar
  65. Haxby, J. V., & Gobbini, M. I. (2011). Distributed neural systems for face perception. In A. Calder, G. Rhodes, M. Johnson, & J. V. Haxby (Eds.), Oxford handbook of face perception (pp. 93–110). New York: Oxford University Press.Google Scholar
  66. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233.CrossRefGoogle Scholar
  67. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51(1), 59–67.CrossRefGoogle Scholar
  68. Hoffman, E., & Haxby, J. (2000). Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neuroscience, 3, 80–84.CrossRefGoogle Scholar
  69. Holmes, A., Bradley, B. P., Nielsen, M. K., & Mogg, K. (2009). Attentional selectivity for emotional faces: Evidence from human electrophysiology. Psychophysiology, 46(1), 62–68.CrossRefGoogle Scholar
  70. Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O’Doherty, J., Bullock, P. R., & Polkey, C. E. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 1691–1712.CrossRefGoogle Scholar
  71. Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15, 495–514.CrossRefGoogle Scholar
  72. Hostetter, A. B., & Alibali, M. W. (2010). Language, gesture, action! A test of the gesture as simulated action framework. Journal of Memory and Language, 63, 245–257.CrossRefGoogle Scholar
  73. Iacoboni, M. (2008). Mirroring people: The new science of how we connect with others (p. 103). New York: Farrar.Google Scholar
  74. Iacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I., Moritz, M., Throop, C. J., & Fiske, A. P. (2004). Watching social interactions produces dor- somedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. Neuroimage, 21, 1167–1173.CrossRefGoogle Scholar
  75. Insel, T. R. (1992). Oxytocin — A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17, 3–35.CrossRefGoogle Scholar
  76. Izard, C., & Dougherty, L. (1982). Two complementary systems for measuring facial expressions in infants and children. In C. Izard (Ed.), Measuring emotions in infants and children (pp. 97–126). New York: Cambridge University Press.Google Scholar
  77. Jacob, H., Brück, C., Domin, M., Lotze, M., & Wildgruber, D. (2014). I can’t keep your face and voice out of my head: Neural correlates of an attentional bias toward nonverbal emotional cues. Cerebral Cortex, 24, 1460–1473. Advance online publication. doi:10.1093/cercor/bhs417.CrossRefGoogle Scholar
  78. Jacob, H., Kreifelts, B., Brück, C., Erb, M., Hösl, F., & Wildgruber, D. (2012). Cerebral integration of verbal and nonverbal emotional cues: Impact of individual nonverbal dominance., Neuroimage, 61(3), 738–747. doi: 10.1016/j. neuroimage.2012.03.085.CrossRefGoogle Scholar
  79. Jacob, H., Kreifelts, B., Brück, C., Nizielski, S., Schütz, A., & Wildgruber, D. (2013). Nonverbal signals speak up: Association between perceptual nonverbal dominance and emotional intelligence. Cognition & Emotion, 27, 783–799. Advance online publication. doi:10.1080/02699931.2012.739999.CrossRefGoogle Scholar
  80. Junghöfer, M., Bradley, M. M., Elbert, T. R., & Lang, P. J. (2001). Fleeting images: A new look at early emotion discrimination. Psychophysiology, 38(2), 175–178.CrossRefGoogle Scholar
  81. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.Google Scholar
  82. Kim, S., Fonagy, P., Koos, O., Dorsett, K., & Strathearn, L. (2014). Maternal oxytocin response predicts mother-to-infant gaze. Brain Research, 1580, 133–142. Advance online publication. doi: 10.1016/j.brainres.2013.10.050.CrossRefGoogle Scholar
  83. Koechlin, E., & Jubault, T. (2006). Broca’s area and the hierarchical organization of human behavior. Neuron, 50(6), 963–974.CrossRefGoogle Scholar
  84. Kranz, F., & Ishai, A. (2006). Face perception is modulated by sexual preference. Current Biology, 16, 63–68.CrossRefGoogle Scholar
  85. Krauss, R. M., & Hadar, U. (1999). The role of speech-related arm/hand gestures in word retrieval. In L. Messing & R. Campbell (Eds.), Gesture, speech and sign (pp. 93–116). Oxford: Oxford University Press.CrossRefGoogle Scholar
  86. La France, M. (1979). Nonverbal synchrony and rapport: Analysis by the cross-lag panel technique. Social Psychology Quarterly, 42, 66–70.CrossRefGoogle Scholar
  87. Lieberman, M. D., Hariri, A., Jarcho, J. M., Eisenberger, N. I., & Bookheimer, S. Y. (2005). An fMRI investigation of race-related amygdala activity in African-American and Caucasian-American individuals. Nature Neuroscience, 8, 720–722.CrossRefGoogle Scholar
  88. Liuzzi, G., Ellger, T., Flöel, A., Breitenstein, C., Jansen, A., & Knecht, S. (2008). Walking the talk — Speech activates the leg motor cortex. Neuropsychologia, 46, 2824–2830.CrossRefGoogle Scholar
  89. Mandal, M. K., & Ambady, N. (2004). Laterality of facial expressions of emotion: Universal and culture-specific influences. Behavioural Neurology, 15(1–2), 23–34.CrossRefGoogle Scholar
  90. Martin, E., & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 15–31.CrossRefGoogle Scholar
  91. McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago, IL: University of Chicago Press.Google Scholar
  92. McNeill, D. (2005). Gesture and thought. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  93. Meeren, H. K. M., van Heijnsbergen, C. C. R. J., & de Gelder, B. (2005). Rapid perceptual integration of facial expression and emotional body language. PNAS, 102(45), 16518–16523.CrossRefGoogle Scholar
  94. Montgomery, K. J., Isenberg, N., & Haxby, J. V. (2007). Communicative hand gestures and object-directed hand movements activated the mirror neuron system. Social Cognitive and Affective Neuroscience, 2, 114–122.CrossRefGoogle Scholar
  95. Montgomery, K. J., Seeherman, K. R., & Haxby, J. V. (2009). The well-tempered social brain. Psychological Science, 20, 1211–1213.CrossRefGoogle Scholar
  96. Morecraft, R. J., Louie, J. L., Herrick, J. L., & Stilwell-Morecraft, K. S. (2001). Cortical innervation of the facial nucleus in the non-human primate: A new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain, 124(Pt 1), 176–208.CrossRefGoogle Scholar
  97. Morecraft, R. J., Stilwell-Morecraft, K. S., & Rossing, W. R. (2004). The motor cortex and facial expression: New insights from neuroscience. Neurologist, 10(5), 235–249.CrossRefGoogle Scholar
  98. Nešić, V., & Nešić, M. (2012). The origin and the features of ethnic stereotypes — Sociopsychological and neuropsychological approach. In B. Dimitrijević (Ed.), Other about Serbs, the Serbs about others (pp. 131–146). Niš: Faculty of Philosophy. (In Serbian).Google Scholar
  99. Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior: A node in the mammalian social behavior network. Annals of the New York Academy of Sciences, 877, 242–257.CrossRefGoogle Scholar
  100. Norris, C. J., Chen, E. E., Zhu, D. C., Small, S. L., & Cacioppo, J. T. (2004). The interaction of social and emotional processes in the brain. Journal of Cognitive Neuroscience, 16, 1818–1829.CrossRefGoogle Scholar
  101. O’Connell, L. A., & Hofmann, H. A. (2011). Genes, hormones, and circuits: An integrative approach to study the evolution of social behaviour. Frontiers in Neuroendocrinology, 32, 320–335.CrossRefGoogle Scholar
  102. O’Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., & Dolan, R. J. (2003). Beauty in a smile: The role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia, 41, 147–155.CrossRefGoogle Scholar
  103. O’Toole, A. J., Phillips, P. J., Weimer, S., Roark, D. A., Ayyad, J., Barwick, R., & Dunlop, J. (2011). Recognizing people from dynamic and static faces and bodies: Dissecting identity with a fusion approach. Vision Research, 51, 74–83.CrossRefGoogle Scholar
  104. Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., & Mackey, S. C. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16, 1746–1772.CrossRefGoogle Scholar
  105. Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466–478.CrossRefGoogle Scholar
  106. Ojemann, J. G., Ojemann, G. A., & Lettich, E. (1992). Neural activity related to faces and matching in human right nondominant temporal cortex. Brain, 115, 1–13.CrossRefGoogle Scholar
  107. Passamonti, L., Crockett, M. J., Apergis-Schoute, A. M., Clark, L., Rowe, J. B., Calder, A. J., & Robbins, T. W. (2012). Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biological Psychiatry, 71, 36–43.CrossRefGoogle Scholar
  108. Penton-Voak, I. S., Perrett, D. I., Castles, D. L., Kobayashi, T., Burt, D. M., Murray, L. K., & Minamisawa, R. (1999). Menstrual cycle alters face preference. Nature, 399, 741–742.CrossRefGoogle Scholar
  109. Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773–783.CrossRefGoogle Scholar
  110. Phelps, E. A., O’Connor, K. J., Cunningham, W. A., Funayama, E. S. J., Gatenby, C., … Banaji, M. R. (2000). Performance on indirect measures of race evaluation predicts amygdala activation. Journal of Cognitive Neuroscience, 12(5), 729–738.CrossRefGoogle Scholar
  111. Pitcher, D., Dilks, D. D., Saxe, R. R., Triantafyllou, C., & Kanwisher, N. (2011). Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage, 56, 2356–2363.CrossRefGoogle Scholar
  112. Posamentier, M. T., & Abdi, H. (2003). Processing faces and facial expressions. Neuropsychological Review, 13(3), 113–143.CrossRefGoogle Scholar
  113. Pourtois, G., Schettino, A., & Vuilleumier, P. (2012). Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology, 92(3), 492–512. doi:10.1016/j.biopsycho.2012.02.007.CrossRefGoogle Scholar
  114. Pulvermüller, F. (2002a). A brain perspective on language mechanisms: From discrete neuronal ensembles to serial order. Progress in Neurobiology, 67, 85–111.CrossRefGoogle Scholar
  115. Pulvermüller, F. (2002b). The neuroscience of language. Cambridge: CUP.Google Scholar
  116. Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 1–6.CrossRefGoogle Scholar
  117. Pulvermüller, F., Härle, M., & Hummel, F. (2001). Walking or talking? Behavioural and europhysiological correlates of action verb processing. Brain and Language, 78, 143–168.CrossRefGoogle Scholar
  118. Pulvermuller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences USA, 103(20), 7865–7870.CrossRefGoogle Scholar
  119. Ramachandran, V. S. (Ed.). (2012). Encyclopedia of human behavior (2nd ed., pp. 731–738). Elsevier.Google Scholar
  120. Recio, G., Sommer, W., & Schacht, A. (2011). Electrophysiological correlates of perceiving and evaluating static and dynamic facial emotional expressions. Brain Research, 1376, 66–75.CrossRefGoogle Scholar
  121. Rinn, W. E. (1984). The neuropsychology of facial expression: A review of the neurological and psychological mechanisms for producing facial expressions. Psychological Bulletin, 95, 52–77.CrossRefGoogle Scholar
  122. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–194.CrossRefGoogle Scholar
  123. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491–507.CrossRefGoogle Scholar
  124. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.CrossRefGoogle Scholar
  125. Rolls, E. T. (2014). Limbic systems for emotion and for memory, but no single limbic system. Cortex, Scholar
  126. Rolls, E. T., Critchley, H. D., Browning, A. S., & Inoue, K. (2006). Face-selective and auditory neurons in the primate orbitofrontal cortex. Experimental Brain Research, 170, 74–87.CrossRefGoogle Scholar
  127. Rolls, E. T., & Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 86, 216–244.CrossRefGoogle Scholar
  128. Savic, I. (2014). Pheromone processing in relation to sex and sexual orientation. In C. Mucignat-Caretta (Ed.), Neurobiology of chemical communication (pp. 517–528). Boca Raton, FL: CRC Press.Google Scholar
  129. Schacht, A., & Sommer, W. (2009). Emotions in word and face processing: Early and late cortical responses. Brain and Cognition, 69(3), 538–550.CrossRefGoogle Scholar
  130. Schultz, J., & Pilz, K. (2009). Natural facial motion enhances cortical responses to faces. Experimental Brain Research, 194(3), 465–475.CrossRefGoogle Scholar
  131. Schupp, H. T., Junghofer, M., Weike, A., & Hamm, A. (2003). Attention and emotion: An ERP analysis of facilitated emotional stimulus processing. Neuro Report, 14(8), 1107–1110.Google Scholar
  132. Schupp, H. T., Öhman, A., Junghofer, M., Weike, A. I., Stockburger, J., & Hamm, A. O. (2004). The facilitated processing of threatening faces: An ERP analysis. Emotion, 4, 189–200.CrossRefGoogle Scholar
  133. Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., … Fazio, F. (2005). Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience, 17(2), 273–281.CrossRefGoogle Scholar
  134. Thompson-Schill, S. L., Bedny, M., & Goldberg, R. F. (2005). The frontal lobes and the regulation of mental activity. Current Opinions in Neurobiology, 15(2), 219–224.CrossRefGoogle Scholar
  135. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences USA, 94(26), 14792–14797.CrossRefGoogle Scholar
  136. Tranel, D. (2000). Non-conscious brain processing indexed by psychophysiologi- cal measures. Progress in Brain Research, 122, 317–332.CrossRefGoogle Scholar
  137. Tranel, D., Damasio, H., & Damasio, A. R. (1995). Double dissociation between overt and covert face recognition. Journal of Cognitive Neuroscience, 7(4), 425–432. doi:10.1162/jocn.1995.7.4.425.CrossRefGoogle Scholar
  138. Trautmann, S. A., Fehr, T., & Herrmann, M. (2009). Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Research, 1284, 100–115.CrossRefGoogle Scholar
  139. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: The MIT Press.Google Scholar
  140. Van der Gaag, C., Minderaa, R. B., & Keysers, C. (2007). Facial expressions: What the mirror neuron system can and cannot tell us. Social Neuroscience, 2(3–4), 179–222. doi: 10.1080/17470910701376878.CrossRefGoogle Scholar
  141. Van Gelder, R. S., & Borod, J. E. (1990). Neurobiological and cultural aspects of facial asymmetry. Journal of Communication Disorders, 23, 273–286.CrossRefGoogle Scholar
  142. von dem Hagen, E. A. H., Passamonti, L., Nutland, S., Sambrook, J., & Calder, A. J. (2011). The serotonin transporter gene polymorphism and the effect of baseline on amygdala response to emotional faces. Neuropsychologia, 49, 674–680.CrossRefGoogle Scholar
  143. Vrtička, P., Sander, D., & Vuilleumier, P. (2013). Lateralized interactive social content and valence processing within the human amygdala. Frontiers in Human Neuroscience, 6, 1–12. doi: 10.3389/fnhum.2012.00358.CrossRefGoogle Scholar
  144. Vuilleumier, P., & Huang, Y-M. (2009). Emotional attention. Current Directions in Psychological Science, 18, 148–152.CrossRefGoogle Scholar
  145. Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45(1), 174–194.CrossRefGoogle Scholar
  146. Wartenburger, I., Kühn, E., Sassenberg, U., Foth, M., Franz, E. A., & van der Meer, E. (2010). On the relationship between fluid intelligence, gesture production, and brain structure. Intelligence, 38, 193–201.CrossRefGoogle Scholar
  147. Weisbuch, M., & Ambady, N. (2008). Affective divergence: Automatic responses to others’ emotions dependent on group membership. Journal of Personality & Social Psychology, 95, 1063–1079.CrossRefGoogle Scholar
  148. Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101, 278–289.CrossRefGoogle Scholar
  149. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9, 625–636. doi:10.3758/BF03196322.CrossRefGoogle Scholar
  150. Wolff, W. (1933). The experimental study of forms of expression. Journal of Personality, 2, 168–173.CrossRefGoogle Scholar
  151. Zajonc, R. B. (1985). Emotion and Facial Efference: A Theory Reclaimed. Science, 228, 15–21.CrossRefGoogle Scholar
  152. Zajonc, R. B., Adelmann, K. A., Murphy, S. T., & Niedenthal, P. M. (1987). Convergence in the physical appearance of spouses. Motivation and Emotion, 11, 335–346.CrossRefGoogle Scholar

Copyright information

© Milkica Nešić and Vladimir Nešić 2015

Authors and Affiliations

  • Milkica Nešić
  • Vladimir Nešić

There are no affiliations available

Personalised recommendations