Skip to main content
  • 110 Accesses

Abstract

Exposure to radiation increases risks for a range of diseases and genetic disorders. Yet, precise dose effects are difficult to predict with certainty because of the complexity of modeling bio-accumulation and bio-magnification processes and because of the historic Cold-War politics of a “permissible dose.” Consequently, extant dose-effects models may underrepresent genomic risks from bio-accumulation, bio-magnification, and from individual and developmental susceptibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. National Academy of Sciences (1956) The Biological Effects of Atomic Radiation: A Report to the Public from a Study by the National Academy of Sciences. Washington: National Academy of Sciences-National Research Council.

    Google Scholar 

  2. International Atomic Energy Agency (2012) “A Short History of the IAEA,” http://www.iaea.org/About/history.html, date accessed 3 June 2012.

    Google Scholar 

  3. D. Fischer (1997) History of the International Atomic Energy Agency: The First Forty Years, http://www-pub.iaea.org/MTCD/publications/PD F/ Pub1032_web.pdf, date accessed 23 September 2012.

    Google Scholar 

  4. United Nations Scientific Committee on the Effects of Atomic Radiation (2012) “About Us,” http://www.unscear.org/unscear/en/about_us.html, date accessed 7 July 2012.

    Google Scholar 

  5. National Research Council (2006) Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2, 323, http://books.nap.edu/openbook.php?record_id=11340&page=323, date accessed 3 September 2012.

    Google Scholar 

  6. Wikipedia (2012) “ALARP,” http://en.wikipedia.org/wiki/As_low_as_Reasonably practicable, date accessed 5 September 2012.

    Google Scholar 

  7. J. Robert and A. Smith (2008) “Conceptual and Normative Dimensions of Toxicogenomics,” in J. Grodsky, G. Marchant, and R. Sharp (eds) Genomics and Environmental Regulation (Baltimore: John Hopkins University Press).

    Google Scholar 

  8. J. M. Gould and B. A. Goldman (1993) Deadly Deceit: Low Level Radiation High Level Cover — Up (New York: Four Walls Eight Windows), p. 7.

    Google Scholar 

  9. European Committee on Radiation Risk (2010) The Health Effects of Exposure to Low Doses of Ionizing Radiation, http://www.euradcom.org/2011/ecrr2010. pdf, date accessed 23 October 2012.

    Google Scholar 

  10. Environmental Protection Agency (1999) Cancer Risk Coefficients for Environmental Exposure to Radionuclides: Federal Guidance Report No.13, http://www.epa.gov/radiation/docs/federal/402-r-99–001.pdf, date accessed 25 November 2012.

    Google Scholar 

  11. U.S. Geological Survey (2011) Bioaccumulation, http://toxics.usgs.gov/definitions/bioaccumulation.html, date accessed 2 August 2012.

    Google Scholar 

  12. T. Hirose (2011) Fukushima Meltdown (Osaka, Japan: Asahi Shinsho Books), p. 73.

    Google Scholar 

  13. A. Hofman (2008) The Code Killers: Why DNA and Ionizing Radiation Are a Dangerous Mix: An Exposé of the Nuclear Industry (Carlsbad: Ace Hoffman), p. 9.

    Google Scholar 

  14. C. Pickover (2012) The Medical Book: From Witch Doctors to Robot Surgeons, 250 Milestones in the History of Medicine (New York: Sterling Publishing), p. 276.

    Google Scholar 

  15. S. Walker (2000) Permissible Dose: A History of Radiation Protection in the Twentieth Century (Berkeley, California: University of California Press), p. 1.

    Book  Google Scholar 

  16. N. Pasachof (1996) Marie Curie and the Science of Radioactivity (New York and Oxford: Oxford University Press).

    Google Scholar 

  17. E. Rutherford (1899) “Uranium Radiation and the Electrical Conduction Produced By I,” Philosophical Magazine, 47.284, 109–163.

    Article  Google Scholar 

  18. E. Rutherford and F. Soddy (1902) “The Cause and Nature of Radioactivity,” Philosophical Magazine, 4, 370–396.

    Article  Google Scholar 

  19. R. Macklis (1993) “The Great Radium Scandal,” Scientific American, 8, 94–99.

    Article  Google Scholar 

  20. H. J. Muller (1927) “Artifcial Transmutation of the Gene,” Science, 46, 84–87.

    Article  Google Scholar 

  21. F. Hanson and F. Heys (3 August 1928) “The Effects of Radium in Producing Lethal Mutations in Drosophila Melanogaster,” Science, 68.1753, 115–116.

    Article  Google Scholar 

  22. W. LeBaron (1998) America’s Nuclear Legacy (Commack, New York: Nova Science Publishers), p. 14.

    Google Scholar 

  23. G. Mitchell (2012) Atomic Cover-Up: Two U.S. Soldiers, Hiroshima and Nagasaki and the Greatest Movie Never Made (New York: Sinclair Books).

    Google Scholar 

  24. E. Welsome (1999) The Plutonium Files (New York: Dell).

    Google Scholar 

  25. A. Goliszek (2003) In the Name of Science: A History of Secret Programs, Medical Research, and Human Experimentation (New York: St. Martin’s Press), p. 126.

    Google Scholar 

  26. P. Langley (2012) Medicine and the Bomb: Deceptions from Trinity to Maralinga (Aldinga Beach, South Australia: Paul Langley), http://pothi.com/pothi/book/ebook-paul-langley-medicine-and-bomb, date accessed 21 December 2012.

    Google Scholar 

  27. J. G. Hamilton (1947) “The Metabolism of the Fission Products and the Heaviest Elements,” Radiology, 49, 325–343, http://radiology.rsna.org/content/49/3/325, date accessed 27 June 2012.

    Article  Google Scholar 

  28. A. Kraf (2009) “Atomic Medicine: The Cold War Origins of Biological Research,” History Today, 59.11, 172–218.

    Google Scholar 

  29. K. Ozasa, Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama, and K. Kodama (2012) “Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases,” Radiation Research, 177, 229–243.

    Article  Google Scholar 

  30. A. Bouville, C. Land, and S. Simon (2006) “Fallout from Nuclear Weapons Tests and Cancer Risks,” American Scientist, 94, 48–59, p. 50.

    Article  Google Scholar 

  31. J. Hamblin (2007) “A Dispassionate and Objective Effort: Negotiating the First Study on the Effects of Atomic Radiation,” Journal of the History of Biology, 40.1, 147–148, p. 152.

    Article  Google Scholar 

  32. National Cancer Institute (2010) Reducing Environmental Cancer Risk, http://deainfo.nci.nih.gov/advisory/pcp/annualreports/pcp08–09rpt/PCP_Report_08–09_508.pdf, date accessed 12 July 2012.

    Google Scholar 

  33. P. Pringle and J. Spigelman (1983) The Nuclear Barons, 2nd edn (New York: Avon), p. 315.

    Google Scholar 

  34. E. Sternglass (1963) “Cancer: Relation of Prenatal Radiation to Development of the Disease in Childhood,” Science, 140.3571, 1102–1104.

    Article  Google Scholar 

  35. L. Freeman (1982) Nuclear Witnesses: Insiders Speak Out (New York: WW Norton & Co.), p. 100.

    Google Scholar 

  36. M. Blettner, P. Kaatsch, S, Schmiedel, R. Schulze-Rath, and C. Spix (2008) “Leukaemia in Young Children Living in the Vicinity of German Nuclear Power Plant,” International Journal of Cancer, 122, 721–726;

    Article  Google Scholar 

  37. M. Blettner, P. Kaatsch, S, Schmiedel, R. Schulze-Rath, and C. Spix (2008) “Case-Control Study on Childhood Cancer in the Vicinity of Nuclear Power Plants in Germany 1980–2003,” European Journal of Cancer, 44, 275–284.

    Article  Google Scholar 

  38. H. Caldicott (2006) Nuclear Power Is Not the Answer (New York: The New Press), p. 13.

    Google Scholar 

  39. C. Bradshaw and B. Jaeschke (2013) “Bioaccumulation of Tritiated Water in Phytoplankton and Trophic Transfer of Organically Bound Tritium to the Blue Mussel, Mytilus Edulis,” Journal of Environmental Radioactivity, 115, 28–33.

    Article  Google Scholar 

  40. C. Stagner (2012) Hidden Tritium (Morgan Hills, CA: Bookstand).

    Google Scholar 

  41. University of Oxford (2012) “Natural Gamma Rays Linked to Childhood Leukemia,” http://www.ox.ac.uk/media/news_stories/2012/120612.html, date accessed 22 November 2012.

    Google Scholar 

  42. A. Rosen (2006) Effects of the Chernobyl Catastrophe: Literature Review, http://ippnw.org/resources-abolition-nuclear-weapons.html, date accessed 22 September 2012.

    Google Scholar 

  43. A. V. Nesterenko, V. B. Nesterenko, and A. V. Yablokov (2009) “Introduction: The Difficult Truth about Chernobyl,” in A. Yablokov, V. Nesterenko, A. Nesterenko, and J. D. Sherman-Nevinger (eds) Chernobyl: Consequences of the Catastrophe for People and the Environment (New York: New York Academy of Sciences).

    Google Scholar 

  44. Chernobyl Forum (2006) Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine, http://www.iaea.org/Publications/Booklets/Chernobyl/chernobyl.pdf, date accessed 20 August 2012.

    Google Scholar 

  45. S. Kirsch (2004) “Harold Knapp and the Geography of Normal Controversy: Radioiodine in the Historical Environment,” Osiris, 19, 167–181.

    Article  Google Scholar 

  46. A. Aghajanyan and I. Suskov (2009) “Transgenerational Genomic Instability in Children of Irradiated Parents as a Result of the Chernobyl Nuclear Accident,” Mutation Research, 671, 52–57.

    Article  Google Scholar 

  47. A. Fucic, G. Brunbog, R. Lasan, D. Jezek, L. E. Knudsen, and D. F. Merlo (2008) “Genomic Damage in Children Accidentally Exposed to Ionizing Radiation: A Review of the Literature,” Mutation Research, 658, 111–123.

    Article  Google Scholar 

  48. See, for example, A. Körblein, and H. Küchenhof (1997) “Perinatal Mortality in Germany Following the Chernobyl Accident,” Radiation and Environmental Biophysics, 36.1, 3–7, http://www.alfred-koerblein.de/chernobyl/downloads/KoKu1997.pdf, date accessed 4 March 2012.

    Article  Google Scholar 

  49. A. Moller and T. Mousseau (2013) “The Effects of Natural Variation in Background Radioactivity on Humans, Animals and Other Organisms,” Biological Reviews, 88.1, 226–254, p. 249.

    Article  Google Scholar 

  50. A. Moller and T. Mousseau (2006) “Biological Consequences of Chernobyl: 20 Years after the Disaster,” Trends in Ecology and Evolution, 21, 200–207.

    Article  Google Scholar 

  51. A. Moller, I. Nishiumi, H. Suzuki, K. Ueda, and T. Mousseau (2013) “Differences in Effects of Radiation of Animals in Fukushima and Chernobyl,” Ecological Indicators, 24, 75–81, p. 80.

    Article  Google Scholar 

  52. S. Sanders, M. Murtha, A. Gupta, J. Murdoch, and M. Raubeson et al. (4 April 2012) “De Novo Mutations Revealed by Whole-Exome Sequencing Are Strongly Associated with Autism,” Nature, 485.7397, 237–241.

    Article  Google Scholar 

  53. H. Redman, R. McClellan, R. Jones, B. Boecker, T. Chiffelle, J. Pickrell, and E. Rypka (1972) “Toxicity of 137 Cs in the Beagle, Early Biological Effects,” Radiation Research, 50.3, 629–648.

    Article  Google Scholar 

  54. R. Pfleger, B. Boecker, H. Redman, J. Pickrell, J. Mauderly, R. Jones, S. Benjamin, and R. McClellan (1975) “Biological Alterations Resulting from Chronic Lung Irradiation: I. The Pulmonary Lipid Composition, Physiology and Pathology after Inhalation by Beagle Dogs of Fused Clay Aerosols,” Radiation Research, 63.2, 275–298.

    Article  Google Scholar 

  55. M. H. Bourguignon, P. Gisone, M. Perez, S. Michelin, D. Dubner, and M. Di Giorgio (2005) “Genetic and Epigenetic Features in Radiation Safety,” European Journal of Nuclear Medicine and Molecular Imaging, 32.3, 351–368.

    Article  Google Scholar 

  56. E. Friedberg, G. Walker, W. Siede, R. Wood, R. Schultz, and T. Ellenberger (2006) DNA Repair and Mutagenesis 2nd edn (Washington DC: ASM Press), p. 5.

    Google Scholar 

  57. W. Morgan (2003) “Non-targeted and Delayed Effects of Exposure to Ionizing Radiation: I. Radiation Induced Genomic Instability and Bystander Effects in Vitro,” Radiation Research, 159.5, 567–580, p. 567.

    Article  Google Scholar 

  58. L. Huang, W. F. Morgan, and A. R. Snyder (2003) “Radiation-Induced Genomic Instability and Its Implications for Radiation Carcinogenesis,” Oncogene, 22, 5848–5854,

    Article  Google Scholar 

  59. A. Hooker, M. Bhat, T. Day, J. Lane, S. Swinburne, A. Morley, and P. Sykes (2004) “The Linear No-Treshold Model Does Not Hold for Low-Dose Ionizing Radiation,” Radiation Research, 162.4, 447–452.

    Article  Google Scholar 

  60. D. Averbeck (2010) “Towards a New Paradigm for Evaluating the Effects of Exposure to Ionizing Radiation Mutation Research,” Fundamental and Molecular Mechanisms of Mutagenesis, 687, 7–12.

    Article  Google Scholar 

  61. J. Zlotogora (1998) “Germ Line Mosaicism,” Human Genetics, 102.4, 381–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2013 Majia Holmer Nadesan

About this chapter

Cite this chapter

Nadesan, M.H. (2013). Radiation Effects. In: Fukushima and the Privatization of Risk. Palgrave Pivot, London. https://doi.org/10.1057/9781137343123_4

Download citation

Publish with us

Policies and ethics