Skip to main content
  • 730 Accesses

Abstract

Probability, statistics and stochastic differential equations have had considerable success in finance and economics. We have discussed the evolution of the concept of risk in modern finance in Chapter 2. Here we will touch on many of the major modelling-based developments in modern risk and finance and their statistical underpinnings. We present a broad overview of probabilistic methods in use in banking and finance today and how probabilistic thinking has moved the sector forward significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Britten-Jones, M. (1999) ‘The sampling error in estimates of mean-variance efficient portfolio weights’, Journal of Finance 54(2), pp. 655–671.

    Article  Google Scholar 

  2. Frankfurter, G.M., Phillips, H.E. and Seagle, J.P. (1976) ‘Performance of the sharpe portfolio selection model: a comparison’, Journal of Finance and Quantitative Analysis 6, pp. 191–204

    Google Scholar 

  3. Jobson, J.D. and Korkie, B. (1980) ‘Estimation for Markowitz efficient portfolios’, Journal of the American Statistical Association 75, pp. 544–554.

    Article  Google Scholar 

  4. Lai, T.L., Xing, H. and Zhao, C. (2011) ‘Mean-variance portfolio optimization when means and covariances are unknown’, The Annals of Applied Statistics 5(2A), pp. 798–823.

    Article  Google Scholar 

  5. Markowitz, H.M. and Usmen, N. (2003) ‘Resampled frontiers versus diffuse bayes: an experiment’, Journal of Investment Management 1(4), pp. 9–25.

    Google Scholar 

  6. Harvey, C.R., Liechty, J.C. and Liechty, M.W. (2008) ‘Bayes vs resampling: a rematch’, Journal of Investment Management 6(1), pp. 1–17.

    Google Scholar 

  7. Ledoit, P. and Wolf, M. (2004) ‘Honey, I shrunk the sample covariance matrix’, Journal of Portfolio Management 30, pp. 110–119.

    Article  Google Scholar 

  8. Black, F. and Litterman, R. (1990) Asset Allocation: Combining Investor Views with Market Equilibrium, New York: Goldman Sachs and Co.

    Google Scholar 

  9. Jorion, P. (1986) ‘Bayes-Stein estimation for portfolio analysis’, Journal of Financial Quantitative Analysis 21, pp. 279–291.

    Article  Google Scholar 

  10. Avramov, D. and Zhou, G. (2010) ‘Bayesian portfolio analysis’, Annual Review of Financial Economics 2, pp. 25–47.

    Article  Google Scholar 

  11. Kritzman, M., Page, S. and Turkington, D. (2010) ‘In defense of optimization: the fallacy of 1/N’, Financial Analysis Journal 66(2), pp. 31–39.

    Article  Google Scholar 

  12. Ait-Sahalia, Y. and Brandt, M.W. (2001) ‘Variable selection for portfolio choice’, Journal of Finance 56(4), pp. 1297–1351.

    Article  Google Scholar 

  13. Tütüncü, R.H. and Koenig, M. (2004) ‘Robust asset allocation’, Annals of Operations Research 132, pp. 1–4.

    Article  Google Scholar 

  14. Ceria, S. and Stubbs, R.A. (2006) ‘Incorporating estimation errors into portfolio selection: robust portfolio construction’, Journal of Asset Management 7(2), pp. 109–127.

    Article  Google Scholar 

  15. DeMiguel, V. and Nogales, F.J. (2009) ‘Portfolio selection with robust estimation’, Operations Research 57(3), pp. 560–577.

    Article  Google Scholar 

  16. Hansen, L.P. and Sargent, T. (2007) Robustness, Princeton: Princeton University Press.

    Google Scholar 

  17. Çelik, Ş (2012) ‘Theoretical and empirical review of asset pricing models: a structural synthesis’, International Journal of Economic and Financial Issues 2(2), pp. 141–178.

    Google Scholar 

  18. Tobin, J. (1958) ‘Liquidity preference as behavior towards risk’, Review of Economic Studies 25(1), pp. 65–86.

    Article  Google Scholar 

  19. Sharpe, W.F. (1964) ‘Capital asset prices: a theory of market equilibrium under conditions of risk’, Journal of Finance 20, pp. 425–442.

    Google Scholar 

  20. Lintner, J. (1965)’ security prices, risk and maximal gains from diversification’, Journal of Finance February, pp. 587–615; Lintner, J. (1965) ‘The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets’, Review of Economics and Statistics 51, pp. 13–37.

    Article  Google Scholar 

  21. Merton, R.C. (1951) ‘An intertemporal capital asset pricing model’, Econometrica 41, pp. 867–887.

    Article  Google Scholar 

  22. Breeden, D.T. (1979) ‘An intertemporal asset pricing model with stochastic consumption and investment opportunities’, Journal of Finance and Economics 7, pp. 265–296.

    Article  Google Scholar 

  23. Rubinstein, M. (1976) ‘The valuation of uncertain income streams and the pricing of options’, Bell Journal of Economics 7, pp. 407–425.

    Article  Google Scholar 

  24. Lucas, Jr., R.E. (1978) ‘Asset prices in an exchange economy’, Econometrica 46, pp. 1429–1445.

    Article  Google Scholar 

  25. Grossman, S.J. and Shiller, R.J. (1981) ‘The determinants of the variability of stock market prices’, American Economic Review 71, pp. 222–227.

    Google Scholar 

  26. Wong, W-K., and Bian, G. (2000) “Robust estimation in capital asset pricing model,” Advances in Decision Sciences 4(1), pp. 65–82.

    Article  Google Scholar 

  27. Merton, R.C. (1974) ‘On the pricing of corporate debt: The risk structure of interest rates’, The Journal of Finance 29(2), pp. 449–470.

    Google Scholar 

  28. Cox, J.C. and Ross, S.A. (1976) ‘The valuation of options for alternative stochastic processes’, Journal of Financial Economics 3, pp. 145–166.

    Article  Google Scholar 

  29. Harrison, J. Michael and Kreps, David M. (1979) ‘Martingales and arbitrage in multiperiod securities markets’, Journal of Economic Theory 20, pp. 381–408.

    Article  Google Scholar 

  30. Harrison, J. Michael and Pliska, Stanley R. (1981) ‘Martingales and stochastic integrals in the theory of continuous trading’, Stochastic Processes and Their Applications 11, pp. 215–260

    Article  Google Scholar 

  31. Harrison, J. Michael and Pliska, Stanley R. (1983) ‘A stochastic calculus model of continuous trading: Complete markets’, Stochastic Processes and Their Applications 15, pp. 313–316.

    Article  Google Scholar 

  32. Back, K. and Pliska, S.R. (1991) ‘On the fundamental theorem of asset pricing with an infinite state space’, Journal of Mathematical Economics 20, pp. 1–18.

    Article  Google Scholar 

  33. Arrow, K.J. and Debreu, G. (1954) ‘Existence of an equilibrium for a competitive economy’, Econometrica 22(3), pp. 265–290; Debreu, G. (1959) The Theory of Value: An Axiomatic Analysis of Economic Equilibrium, Yale University Press

    Article  Google Scholar 

  34. McKenzie, Lionel W. (1959) ‘On the existence of general equilibrium for a competitive economy’, Econometrica 27(1), pp. 54–71.

    Article  Google Scholar 

  35. Vasicek, Oldrich (1977) ‘An equilibrium characterization of the term structure’, Journal of Financial Economics 5(2), pp. 177–188.

    Article  Google Scholar 

  36. Black, F., Derman, E. and Toy, W. (1990) ‘A one-factor model of interest rates and its application to treasury bond options’, Financial Analysts Journal 46(1), pp. 33–39.

    Article  Google Scholar 

  37. Cox, J.C., Ingersoll, Jr., Jonathan E. and Ross, S.A. (1985) ‘A theory of the term structure of interest rates’, Econometrica: Journal of the Econometric Society 53, pp. 385–407.

    Article  Google Scholar 

  38. Beckers, S. (1980) ‘The constant elasticity of variance model and its implications for option pricing’, The Journal of Finance 35(3), pp. 661–673.

    Article  Google Scholar 

  39. Duffie, D. and Kan, R. (1996) ‘A yield-factor model of interest rates’, Mathematical Finance 6(4), pp. 379–406.

    Article  Google Scholar 

  40. Heath, D., Jarrow, R. and Morton, A. (1992) ‘Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation’, Econometrica: Journal of the Econometric Society 25, pp. 77–105.

    Article  Google Scholar 

  41. Brace, A., Gatarek, D. and Musiela, M. (1997) ‘The market model of interest rate dynamics’, Mathematical Finance 7(2), pp. 127–155.

    Article  Google Scholar 

  42. Duffie, D. and Singleton, Kenneth J. (1999) ‘Modeling term structures of defaultable bonds’, Review of Financial Studies 12(4), pp. 687–720.

    Article  Google Scholar 

  43. Jarrow, R. and Turnbull, S. (1995) ‘Pricing derivatives on financial securities subject to credit risk’, Journal of Finance 50, pp. 53–85.

    Article  Google Scholar 

  44. Ait-Sahalia, Y. (1996) ‘Nonparametric pricing of interest rate derivative securities’, Econometrica 64(3), pp. 527–560

    Article  Google Scholar 

  45. Ait-Sahalia, Y and Kimmel, R. (2007) ‘Maximum likelihood estimation for stochastic volatility models’, Journal of Financial Economy 83, pp. 413–452.

    Article  Google Scholar 

  46. Wiggins, J. (1987) ‘Option values under stochastic volatility: Theory and empirical estimates’, Journal of Financial Economy 19, pp. 351–372.

    Article  Google Scholar 

  47. Heston, Steven L. (1993) ‘A closed-form solution for options with stochastic volatility with applications to bond and currency options’, The Review of Financial Studies 6(2), pp. 327–343.

    Article  Google Scholar 

  48. Merton, R.C. (1976) ‘Option pricing when underlying stock returns are discontinuous’, Journal of Financial Economy 3, pp. 125–144.

    Article  Google Scholar 

  49. Cvitanić, J. and Ma, J. (1996) ‘Hedging options for a large investor and forward-backward SDEs’, Annals of Applied Probability 6, pp. 370–398

    Article  Google Scholar 

  50. Liu, H. and Yong, J. (2005) ‘Option pricing with an illiquid underlying asset market’, Journal of Economic Dynamics & Control 29, pp. 2125–2156

    Article  Google Scholar 

  51. Rogers, L.C. and Singh, S. (2010) ‘The cost of illiquidity and its effects on hedging’, Mathematical Finance 20(4), pp. 597–615; Li, T.M. and Almgren, R. (2013) ‘A fully dynamic closed form solutions for Δ-hedging with market impact’, Operations Research Guéant, O. and Pu, J. (2014) ‘Option pricing and hedging with execution costs and market impact’, ArXiv: 1311.4342, http://arxiv.org/abs/1311.4342

    Article  Google Scholar 

  52. Leland, H.E. (1985) ‘Option pricing and replication with transactions costs’, Journal of Finance 40(5), pp. 1283–1301.

    Article  Google Scholar 

  53. Scott, L.O. (1997) ‘Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of fourier inversion methods’, Mathematical Finance 7, pp. 13–426

    Article  Google Scholar 

  54. Bakshi, G., Cao, C. and Chen, Z. (2000) ‘Pricing and hedging long-term options’, Econometrics 94, pp. 277–318

    Article  Google Scholar 

  55. Abudy, M. and Izhakian, Y. (2013) ‘Pricing stock options with stochastic interest rate’, International Journal of Portfolio Analysis and Management 1(3), pp. 250–277.

    Article  Google Scholar 

  56. Fama, E.F. and Bliss, R.R. (1987) ‘The information in long-maturity forward rates’, American Economics Review 77(4), pp. 680–692.

    Google Scholar 

  57. Campbell, J.Y. and Shiller, R.J. (1991) ‘Yield spreads and interest rate movements: A bird’s eye view’, Review of Economic Studies 58(3), pp. 495–514.

    Article  Google Scholar 

  58. Lyons, T.J. (1995) ‘Uncertain volatility and the risk-free synthesis of derivatives’, Applied Mathematical Finance 2, pp. 117–133.

    Article  Google Scholar 

  59. El Karoui, N., Jeanblanc, M. and Shreve, S. (1998) ‘Robustness of the Black and Scholes formula’, Mathematical Finance 8(2), pp. 93–126.

    Article  Google Scholar 

  60. Denis, L. and Martini, C. (2006) ‘A theoretical framework for the pricing of contingent claims in the presence of model uncertainty’, Annals of Applied Probability 16, pp. 827–852.

    Article  Google Scholar 

  61. Cont, R. (2006) ‘Model uncertainty and its impact on the pricing of derivative instruments’, Mathematical Finance 16(3), pp. 519–547.

    Article  Google Scholar 

  62. Alexander, C. (2009) Market Risk Analysis: Volume 4, Value at Risk Models, London: John Wiley.

    Google Scholar 

  63. Britten-Jones, M. and Schaefer, S.M. (1999) ‘Non-linear value-at-risk’, European Finance Review 2(2), pp. 161–187.

    Article  Google Scholar 

  64. McNeil, A., Frey, R. and Embrechts, P. (2005) Quantitative Risk Management, Princeton: Princeton University Press.

    Google Scholar 

  65. Danielsson, J., de Haan, L., Peng, L. and de Vries, C.G. (2001) ‘Using a bootstrap method to choose the sample fraction in tail index estimation’, Journal of Multivariate Analysis 76, pp. 226–248.

    Article  Google Scholar 

  66. Pagan, A.R., and Schwert, W.G. (1990) ‘Testing for covariance stationarity in stock market data’, Economics Letters 33(2), pp. 165–170

    Article  Google Scholar 

  67. Brenner, M. and Smidt, S. (1977) ‘A simple model of non-stationarity of systematic risk’, Journal of Finance 32(4), pp. 1081–1092.

    Article  Google Scholar 

  68. Engle, R.F. and Manganelli, S. (2004) ‘CAViaR: conditional autoregressive value at risk by regression quantiles’, Journal of Business & Economic Statistics 22, pp. 367–381.

    Article  Google Scholar 

  69. Alexander, C. (2003) ‘Managing operational risks with Bayesian networks’, Operational Risk: Regulation, Analysis and Management 1, pp. 285–294

    Google Scholar 

  70. Neil, M., Fenton, N. and Tailor, M. (2005) ‘Using Bayesian networks to model expected and unexpected operational losses’, Risk Analysis 25(4), pp. 963–972

    Article  Google Scholar 

  71. Cowell, R.G., Verrall, R.J. and Yoon, Y.K. (2007) ‘Modeling operational risk with Bayesian networks’, Journal of Risk and Insurance 74(4), pp. 795–827.

    Article  Google Scholar 

Download references

Authors

Copyright information

© 2016 Nick B. Firoozye and Fauziah Ariff

About this chapter

Cite this chapter

Firoozye, N.B., Ariff, F. (2016). Probability Applied. In: Managing Uncertainty, Mitigating Risk. Palgrave Macmillan, London. https://doi.org/10.1057/9781137334541_5

Download citation

Publish with us

Policies and ethics