Skip to main content

Terrestrial Nitrogen and Climate Change

  • Chapter
Nitrogen and Climate Change

Abstract

In terms of global climate, a leading impact of changing nitrogen input to terrestrial ecosystems is the huge alteration in nitrous oxide emissions it induces, especially in agricultural soils (see Chapter 4). As inputs have spiralled upwards over the last century, emissions of nitrous oxide via denitrification and nitrification in soils have followed suit. Globally, emissions from agricultural activities are now estimated to be between five and seven million tonnes of nitrogen as nitrous oxide each year1. The bulk of this comes directly from the nitrogen-enriched soils themselves, with the remainder either being emitted from manure stores or arising from the reactive nitrogen that is lost from the soils due to leaching or volatilisation. Nitrous oxide has a global warming potential (GWP) of around 300 times that of carbon dioxide on a mass basis — GWP is a way of standardising the amount of warming caused by different greenhouse gases so they can be compared to carbon dioxide2. Annual nitrous oxide emissions from agriculture are therefore equivalent to enhancing the greenhouse effect to the tune of about three billion extra tonnes of carbon dioxide a year — the annual emissions of a billion cars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nature Climate Change 2, 410–416, doi:10.1038/nclimate1458 (2012).

    Article  Google Scholar 

  2. Solomon, S. Climate change 2007 — the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Vol. 4 (Cambridge University Press, 2007).

    Google Scholar 

  3. Smil, V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production (MIT Press, 2001).

    Google Scholar 

  4. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639, doi:10.1038/ngeo325 (2008).

    Article  Google Scholar 

  5. Lawes, J. B., Gilbert, J. H. & Rothamsted Experimental Station. Determinations of nitrogen in the soils of some of the experimental fields at Rothamsted: and the bearing of the results on the question of the sources of the nitrogen of our crops. (Harrison and Sons, 1883).

    Google Scholar 

  6. Tabashnik, B. E. Responses of pest and non-pest Colias butterfly larvae to intraspecific variation in leaf nitrogen and water content. Oecologia 55, 389–394 (1982).

    Article  Google Scholar 

  7. Huber, D. & Watson, R. Nitrogen form and plant disease. Annual Review of Phytopathology 12, 139–165 (1974).

    Article  Google Scholar 

  8. Batjes, N. H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151–163 (1996).

    Article  Google Scholar 

  9. Galloway, J. N. The global nitrogen cycle: past, present and future. Science in China. Series C, Life Sciences/Chinese Academy of Sciences 48 Spec No, 669–677 (2005).

    Google Scholar 

  10. Saikh, H., Varadachari, C. & Ghosh, K. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: a case study in Simlipal National Park, India. Plant and Soil 198, 137–145 (1998).

    Article  Google Scholar 

  11. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nature Geoscience 1, 430–437, doi:10.1038/ngeo230 (2008).

    Article  Google Scholar 

  12. Sutton, M., Asman, W. & Schjoerring, J. Dry deposition of reduced nitrogen. Tellus B 46, 255–273 (1994).

    Article  Google Scholar 

  13. Hanson, P. J. & Lindberg, S. E. Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmospheric Environment. Part A. General Topics 25, 1615–1634 (1991).

    Article  Google Scholar 

  14. Lovett, G. M. & Lindberg, S. E. Atmospheric deposition and canopy interactions of nitrogen in forests. Canadian Journal of Forest Research 23, 1603–1616 (1993).

    Article  Google Scholar 

  15. Tuck, A. Production of nitrogen oxides by lightning discharges. Quarterly Journal of the Royal Meteorological Society 102, 749–755 (1976).

    Article  Google Scholar 

  16. Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles 21 (2007).

    Google Scholar 

  17. Churkina, G., Trusilova, K., Vetter, M. & Dentener, F. Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance and Management 2 (2007).

    Google Scholar 

  18. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  19. Turner, D. P., Koerper, G. J., Harmon, M. E. & Lee, J. J. A carbon budget for forests of the conterminous United States. Ecological Applications 5, 421–436 (1995).

    Article  Google Scholar 

  20. Nadelhoffer, K. J. et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148 (1999).

    Article  Google Scholar 

  21. Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).

    Article  Google Scholar 

  22. Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles 20, GB4003 (2006).

    Article  Google Scholar 

  23. De Vries, W., Reinds, G. J., Gundersen, P. & Sterba, H. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology 12, 1151–1173 (2006).

    Article  Google Scholar 

  24. Huttunen, J. T. et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52, 609–621 (2003).

    Article  Google Scholar 

  25. Achtnich, C., Bak, F. & Conrad, R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils 19, 65–72 (1995).

    Article  Google Scholar 

  26. Klüber, H. D. & Conrad, R. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiology Ecology 25, 301–318 (1998).

    Article  Google Scholar 

  27. Reay, D. S. & Nedwell, D. B. Methane oxidation in temperate soils: effects of inorganic N. Soil Biology & Biochemistry 36, 2059–2065, doi:10.1016/j.soilbio.2004.06.002 (2004).

    Article  Google Scholar 

  28. Reay, D. S., Nedwell, D. B., McNamara, N. & Ineson, P. Effect of tree species on methane and ammonium oxidation capacity in forest soils. Soil Biology & Biochemistry 37, 719–730, doi:10.1016/j.soilbio.2004.10.004 (2005).

    Article  Google Scholar 

  29. Mosier, A., Schimel, D., Valentine, D., Bronson, K. & Parton, W. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350, 330–332 (1991).

    Article  Google Scholar 

  30. Bodelier, P. L. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47, 265–277 (2004).

    Article  Google Scholar 

  31. Eckard, R. & Cullen, B. Impacts of future climate scenarios on nitrous oxide emissions from pasture based dairy systems in south eastern Australia. Animal Feed Science and Technology 166, 736–748 (2011).

    Article  Google Scholar 

  32. Abdalla, M. et al. Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmospheric Environment 44, 2961–2970 (2010).

    Article  Google Scholar 

  33. Kamp, T., Steindl, H., Hantschel, R., Beese, F. & Munch, J.-C. Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biology and Fertility of Soils 27, 307–314 (1998).

    Article  Google Scholar 

  34. Cantarel, A. A., Bloor, J. M., Deltroy, N. & Soussana, J.-F. Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland. Ecosystems 14, 223–233 (2011).

    Article  Google Scholar 

  35. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14, 53–67 (2004).

    Article  Google Scholar 

  36. Davidson, E. A. Representative concentration pathways and mitigation scenarios for nitrous oxide. Environmental Research Letters 7, 024005 (2012).

    Article  Google Scholar 

  37. Olesen, J. E. et al. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81, 123–143 (2007).

    Article  Google Scholar 

  38. Mkhabela, M., Gordon, R., Burton, D., Smith, E. & Madani, A. The impact of management practices and meteorological conditions on ammonia and nitrous oxide emissions following application of hog slurry to forage grass in Nova Scotia. Agriculture, Ecosystems & Environment 130, 41–49 (2009).

    Article  Google Scholar 

  39. Sommer, S. G. et al. Processes controlling ammonia emission from livestock slurry in the field. European Journal of Agronomy 19, 465–486 (2003).

    Article  Google Scholar 

  40. Suddick, E. & Davidson, E. The role of nitrogen in climate change and the impacts of nitrogen-climate interactions on terrestrial and aquatic ecosystems, agriculture, and human health in the United States: a technical report submitted to the US National Climate Assessment. North American Nitrogen Center of the International Nitrogen Initiative (NANC-INI), Woods Hole Research Center 149, 208 (2012).

    Google Scholar 

  41. Butterbach-Bahl, K. et al. Nitrogen as a threat to the European greenhouse balance. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, edited by M. A. Sutton et al., Chap. 19, 434–462 (Cambridge University Press, UK, 2011).

    Chapter  Google Scholar 

  42. Butterbach-Bahl, K. et al. Nitrogen processes in terrestrial ecosystems. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, edited by M. A. Sutton et al., Chap. 6, 99–125 (Cambridge University Press, UK, 2011).

    Chapter  Google Scholar 

  43. Bobbink, R., Hornung, M. & Roelofs, J. G. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86, 717–738 (1998).

    Article  Google Scholar 

  44. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications: A Publication of the Ecological Society of America 20, 30–59 (2010).

    Article  Google Scholar 

  45. Throop, H. L. & Lerdau, M. T. Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7, 109–133 (2004).

    Article  Google Scholar 

  46. Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8, 1–16 (2002).

    Article  Google Scholar 

  47. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article  Google Scholar 

  48. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article  Google Scholar 

  49. Phoenix, G. K. et al. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology 12, 470–476 (2006).

    Article  Google Scholar 

  50. Keuken, M., Bakker, F., Möls, J., Broersen, B. & Slanina, J. Atmospheric deposition and conversion of ammonium to nitric acid on a historic building: a pilot study. International Journal of Environmental Analytical Chemistry 38, 47–62 (1990).

    Article  Google Scholar 

  51. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7, 737–750 (1997).

    Google Scholar 

  52. Fangmeier, A., Hadwiger-Fangmeier, A., Van der Eerden, L. & Jäger, H.-J. Effects of atmospheric ammonia on vegetation — a review. Environmental Pollution 86, 43–82 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2015 Dave Reay

About this chapter

Cite this chapter

Reay, D. (2015). Terrestrial Nitrogen and Climate Change. In: Nitrogen and Climate Change. Palgrave Macmillan, London. https://doi.org/10.1057/9781137286963_7

Download citation

Publish with us

Policies and ethics