Skip to main content

Airborne Nitrogen and Climate Change

  • Chapter
Book cover Nitrogen and Climate Change
  • 313 Accesses

Abstract

Nitric oxide (NO) and nitrogen dioxide (NO2) are both gases and are commonly grouped together as NOx (pronounced ‘nox’). Like nitrous oxide, the NOx gases are oxidised forms of nitrogen, with fossil fuel burning, biomass burning and cultivated soils being their largest anthropogenic sources1,2 (Figure 5.1). Unlike nitrous oxide, these gases are highly reactive, with short atmospheric lifetimes and the ability to cause severe illness and even death in humans. Early fossil fuel-driven emissions of these NOx gases were dominated by the release of the trace amounts of reactive nitrogen contained in coal as it was burned3. With the advent of higher temperature boilers and the rapid spread of the internal combustion engine, more and more NOx was produced by the direct reaction of dinitrogen gas with oxygen — the high temperatures in power station furnaces and vehicle engines breaking apart the twin atoms of nitrogen gas and combining them with oxygen. The NOx gases that flow from exhausts and chimneys are usually in the highly reactive form of nitric oxide. Being so very reactive, this gas quickly combines with more oxygen and is converted into the brownish, acrid-smelling gas called nitrogen dioxide. The amounts released from burning fossil fuels have rocketed over the past century, especially since the Second World War. As the sulphur-enriched smogs of the 1950s began to clear, the injections of NOx into the atmosphere became more intense4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delmas, R., Serca, D. & Jambert, C. Global inventory of NOx sources. Nutrient Cycling in Agroecosystems 48, 51–60 (1997).

    Article  Google Scholar 

  2. Jaeglé, L., Steinberger, L., Martin, R. V. & Chance, K. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discussions 130, 407–423 (2005).

    Article  Google Scholar 

  3. Kambara, S., Takarada, T., Toyoshima, M. & Kato, K. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion. Fuel 74, 1247–1253 (1995).

    Article  Google Scholar 

  4. Dignon, J. & Hameed, S. Global emissions of nitrogen and sulfur oxides from 1860 to 1980. JAPCA 39, 180–186 (1989).

    Article  Google Scholar 

  5. Galloway, J. N. The global nitrogen cycle: past, present and future. Science in China. Series C, Life Sciences/Chinese Academy of Sciences 48 Suppl. 2, 669–678, doi:10.1007/BF03187108 (2005).

    Google Scholar 

  6. Davidson, E. A. & Kingerlee, W. A global inventory of nitric oxide emissions from soils. Nutrient Cycling in Agroecosystems 48, 37–50 (1997).

    Article  Google Scholar 

  7. Yienger, J. & Levy, H. Empirical model of global soil-biogenic NOx emissions. Journal of Geophysical Research: Atmospheres (1984–2012) 100, 11447–11464 (1995).

    Article  Google Scholar 

  8. Jain, A. K., Tao, Z., Yang, X. & Gillespie, C. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2. Journal of Geophysical Research: Atmospheres (1984–2012) 111, D06304 (2006).

    Article  Google Scholar 

  9. Samet, J. & Utell, M. The risk of nitrogen dioxide: what have we learned from epidemiological and clinical studies? Toxicology and Industrial Health 6, 247–262 (1990).

    Google Scholar 

  10. Dales, R., Burnett, R. T., Smith-Doiron, M., Stieb, D. M. & Brook, J. R. Air pollution and sudden infant death syndrome. Pediatrics 113, e628–e631 (2004).

    Article  Google Scholar 

  11. Sillman, S., Logan, J. A. & Wofsy, S. C. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research: Atmospheres (1984–2012) 95, 1837–1851 (1990).

    Article  Google Scholar 

  12. Koren, H. S. et al. Ozone-induced inflammation in the lower airways of human subjects. American Review of Respiratory Disease 139, 407–415 (1989).

    Article  Google Scholar 

  13. Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M. & Dominici, F. Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA: The Journal of the American Medical Association 292, 2372–2378 (2004).

    Article  Google Scholar 

  14. Harrison, R. M. & Yin, J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the Total Environment 249, 85–101 (2000).

    Article  Google Scholar 

  15. Bell, M. L. & Davis, D. L. Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental Health Perspectives 109, 389 (2001).

    Article  Google Scholar 

  16. Sillman, S. & Samson, P. J. Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. Journal of Geophysical Research: Atmospheres (1984–2012) 100, 11497–11508 (1995).

    Article  Google Scholar 

  17. Loomis, D., Castillejos, M., Gold, D. R., McDonnell, W. & Borja-Aburto, V. H. Air pollution and infant mortality in Mexico City. Epidemiology 10, 118–123 (1999).

    Article  Google Scholar 

  18. Finlayson-Pitts, B. & Pitts Jr, J. Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications. Air & Waste 43, 1091–1100 (1993).

    Article  Google Scholar 

  19. Kesselmeier, J. & Staudt, M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33, 23–88 (1999).

    Article  Google Scholar 

  20. Zolghadri, A., Monsion, M., Henry, D., Marchionini, C. & Petrique, O. Development of an operational model-based warning system for tropospheric ozone concentrations in Bordeaux, France. Environmental Modelling & Software 19, 369–382 (2004).

    Article  Google Scholar 

  21. Farrell, A., Carter, R. & Raufer, R. The NOx budget: market-based control of tropospheric ozone in the northeastern United States. Resource and Energy Economics 21, 103–124 (1999).

    Article  Google Scholar 

  22. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nature Geoscience 1, 430–437, doi:10.1038/ngeo230 (2008).

    Article  Google Scholar 

  23. Burtraw, D., Palmer, K., Bharvirkar, R. & Paul, A. Cost-effective reduction of NOx emissions from electricity generation. Journal of the Air & Waste Management Association 51, 1476–1489 (2001).

    Article  Google Scholar 

  24. ApSimon, H. M. & Warren, R. F. Transboundary air pollution in Europe. Energy Policy 24, 631–640 (1996).

    Article  Google Scholar 

  25. Lawrence, M. G. & Crutzen, P. J. Influence of NOx emissions from ships on tropospheric photochemistry and climate. Nature 402, 167–170 (1999).

    Article  Google Scholar 

  26. Derwent, R. & Friedl, R. Impacts of aircraft emissions on atmospheric ozone. In IPCC Special Report on Aviation and the Global Atmosphere, edited by J. E. Penner et al., 29–64 (Cambridge University Press, UK, 1999).

    Google Scholar 

  27. Stevenson, D. S. & Derwent, R. G. Does the location of aircraft nitrogen oxide emissions affect their climate impact? Geophysical Research Letters 36, L17810 (2009).

    Article  Google Scholar 

  28. Holland, E. A., Dentener, F. J., Braswell, B. H. & Sulzman, J. M. Contemporary and pre-industrial global reactive nitrogen budgets. In New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas, edited by A. R. Townsend, 7–43 (Springer, 1999).

    Chapter  Google Scholar 

  29. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7, 737–750 (1997).

    Google Scholar 

  30. Sutton, M., Dragosits, U., Tang, Y. & Fowler, D. Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment 34, 855–869 (2000).

    Article  Google Scholar 

  31. Schwartz, J., Laden, F. & Zanobetti, A. The concentration-response relation between PM (2.5) and daily deaths. Environmental Health Perspectives 110, 1025 (2002).

    Article  Google Scholar 

  32. Haeuber, R., Peel, J., Garcia, V., Neas, L. & Russell, A. Implications of nitrogen-climate interactions for ambient air pollution and human health. In AGU Fall Meeting Abstracts, 4 pp., 2011AGUFM.B42C-04 (American Geophysical Union, USA, 2011).

    Google Scholar 

  33. Knowlton, K. et al. Assessing ozone-related health impacts under a changing climate. Environmental Health Perspectives 112, 1557–1563 (2004).

    Article  Google Scholar 

  34. Zeng, G., Pyle, J. & Young, P. Impact of climate change on tropospheric ozone and its global budgets. Atmospheric Chemistry and Physics 8, 369–387 (2008).

    Article  Google Scholar 

  35. Taha, H. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings 25, 99–103 (1997).

    Article  Google Scholar 

  36. Rosenfeld, A. H., Akbari, H., Romm, J. J. & Pomerantz, M. Cool communities: strategies for heat island mitigation and smog reduction. Energy and Buildings 28, 51–62 (1998).

    Article  Google Scholar 

  37. Benjamin, M. T. & Winer, A. M. Estimating the ozone-forming potential of urban trees and shrubs. Atmospheric Environment 32, 53–68 (1998).

    Article  Google Scholar 

  38. Suddick, E. C., Whitney, P., Townsend, A. R. & Davidson, E. A. The role of nitrogen in climate change and the impacts of nitrogen-climate interactions in the United States: foreword to thematic issue. Biogeochemistry 114, 1–10 (2013).

    Article  Google Scholar 

  39. Jacob, D. J. & Winner, D. A. Effect of climate change on air quality. Atmospheric Environment 43, 51–63 (2009).

    Article  Google Scholar 

  40. Wilby, R. L. Constructing climate change scenarios of urban heat island intensity and air quality. Environment and Planning. B, Planning & Design 35, 902 (2008).

    Article  Google Scholar 

  41. Wu, S. et al. Effects of 2000–2050 global change on ozone air quality in the United States. Journal of Geophysical Research: Atmospheres (1984–2012) 113, D06302 (2008).

    Article  Google Scholar 

  42. Seinfeld, J. H. & Pandis, S. N. Atmospheric chemistry and physics: from air pollution to climate change. (John Wiley & Sons, 2012).

    Google Scholar 

  43. Solomon, S. Climate change 2007 — the physical science basis: Working Group I contribution to the fourth assessment report of the IPCC. Vol. 4. (Cambridge University Press, 2007).

    Google Scholar 

  44. Wild, O., Prather, M. J. & Akimoto, H. Indirect long-term global radiative cooling from NOx emissions. Geophysical Research Letters 28, 1719–1722 (2001).

    Article  Google Scholar 

  45. Derwent, R. et al. Radiative forcing from surface NOx emissions: spatial and seasonal variations. Climatic Change 88, 385–401 (2008).

    Article  Google Scholar 

  46. Butterbach-Bahl, K. et al. Nitrogen as a threat to the European greenhouse balance. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives, edited by M. A. Sutton et al., chap. 19, 434–462 (Cambridge University Press, UK, 2011).

    Chapter  Google Scholar 

  47. Ellis, J. & Treanton, K. Recent trends in energy-related CO2 emissions. Energy Policy 26, 159–166 (1998).

    Article  Google Scholar 

  48. Macintosh, A. & Wallace, L. International aviation emissions to 2025: can emissions be stabilised without restricting demand? Energy Policy 37, 264–273 (2009).

    Article  Google Scholar 

  49. Bows, A. & Anderson, K. L. Policy clash: can projected aviation growth be reconciled with the UK Government’s 60% carbon-reduction target? Transport Policy 14, 103–110 (2007).

    Article  Google Scholar 

  50. Bows, A., Upham, P. & Anderson, K. Growth Scenarios for EU & UK Aviation: contradictions with climate policy. Tyndall Centre for Climate Change/Friends of the Earth, Manchester (2005).

    Google Scholar 

  51. Felzer, B. S. et al. Past and future effects of ozone on net primary production and carbon sequestration using a global biogeochemical model. In MIT Joint Program on the Science and Policy of Global Change. Report no. 103, http://hdl.handle.net/1721.1/4053 (2003).

    Google Scholar 

  52. Sitch, S., Cox, P. , Collins, W. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Article  Google Scholar 

  53. Felzer, B. et al. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change 73, 345–373 (2005).

    Article  Google Scholar 

  54. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2015 Dave Reay

About this chapter

Cite this chapter

Reay, D. (2015). Airborne Nitrogen and Climate Change. In: Nitrogen and Climate Change. Palgrave Macmillan, London. https://doi.org/10.1057/9781137286963_6

Download citation

Publish with us

Policies and ethics