Skip to main content

A Brief History of Nitrogen

  • Chapter
Nitrogen and Climate Change
  • 321 Accesses

Abstract

It has been 100 years since a German scientist named Fritz Haber came up with a large-scale way to convert more of the sea of nitrogen gas around us into a usable form1. Before then, how much food we could produce from the fields was largely down to how well we recycled manure and made use of the nitrogen-fixing magic produced by plants like peas and beans. Haber’s invention has allowed us to green the world’s increasingly exhausted fields and put food on the table of billions. A staggering two out of every five people alive today are thought to owe their continued existence to his process2, yet millions still go hungry, and producing enough food for the burgeoning human population of the 21st century will test how well we manage the limit for the use of this precious substance. To date, our record is not a good one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witschi, H. Fritz Haber: December 9, 1868–January 29, 1934. Toxicology 149, 3–15 (2000).

    Article  Google Scholar 

  2. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639, doi:10.1038/ngeo325 (2008).

    Article  Google Scholar 

  3. Paerl, H. W. & Scott, J. T. Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science & Technology 44, 7756–7758, doi:10.1021/es102665e (2010).

    Article  Google Scholar 

  4. Li, D. et al. A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture. Journal of Environmental Management 128, 893–903, doi:10.1016/j.jenvman.2013.06.026 (2013).

    Article  Google Scholar 

  5. Bradley, M. J. & Jones, B. M. Reducing global NOx emissions: developing advanced energy and transportation technologies. Ambio 31, 141–149 (2002).

    Article  Google Scholar 

  6. Manchester, K. L. Man of destiny: the life and work of Fritz Haber. Endeavour 26, 64–69 (2002).

    Article  Google Scholar 

  7. Ferguson, E. E. & Libby, W. F. Mechanism for the fixation of nitrogen by lightning. Nature 229, 37, doi:10.1038/229037a0 (1971).

    Article  Google Scholar 

  8. Tuck, A. Production of nitrogen oxides by lightning discharges. Quarterly Journal of the Royal Meteorological Society 102, 749–755 (1976).

    Article  Google Scholar 

  9. Navarro-Gonzalez, R., McKay, C. P. & Mvondo, D. N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412, 61–64, doi:10.1038/35083537 (2001).

    Article  Google Scholar 

  10. Berman-Frank, I., Lundgren, P. & Falkowski, P. Nitrogen fixation and photo-synthetic oxygen evolution in cyanobacteria. Research in Microbiology 154, 157–164, doi:10.1016/S0923–2508(03)00029–9 (2003).

    Article  Google Scholar 

  11. Miyamoto, K., Hallenbeck, P. C. & Benemann, J. R. Nitrogen fixation by thermophilic blue-green algae (cyanobacteria): temperature characteristics and potential use in biophotolysis. Applied and Environmental Microbiology 37, 454–458 (1979).

    Google Scholar 

  12. Pandey, K. D. et al. Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cellular and Molecular Biology 50, 575–584 (2004).

    Google Scholar 

  13. Nunez-Vazquez, E. J., Tovar-Ramirez, D., Heredia-Tapia, A. & Ochoa, J. L. Freeze survival of the cyanobacteria Microcoleus chthonoplastes without cryoprotector. Journal of Environmental Biology/Academy of Environmental Biology, India 32, 407–412 (2011).

    Google Scholar 

  14. Andersen, D. T., McKay, C. P., Wharton, R. A. & Rummel, J. D. Testing a Mars science outpost in the Antarctic dry valleys. Advances in Space Research: The Official Journal of the Committee on Space Research 12, 205–209 (1992).

    Article  Google Scholar 

  15. Spengler, R. et al. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proceedings. Biological Sciences/The Royal Society 281, 20133382, doi:10.1098/rspb.2013.3382 (2014).

    Article  Google Scholar 

  16. Zohary, D. & Hopf, M. Domestication of pulses in the Old World: legumes were companions of wheat and barley when agriculture began in the Near East. Science 182, 887–894, doi:10.1126/science.182.4115.887 (1973).

    Article  Google Scholar 

  17. Phillips, R. Starchy legumes in human nutrition, health and culture. Plant Foods for Human Nutrition 44, 195–211 (1993).

    Article  Google Scholar 

  18. Ofori, F. & Stern, W. Cereal-legume intercropping systems. Advances in Agronomy 41, 41–90 (1987).

    Article  Google Scholar 

  19. Liebman, M., Graef, R. L., Nettleton, D. & Cambardella, C. A. Use of legume green manures as nitrogen sources for corn production. Renewable Agriculture and Food Systems 27, 180–191, doi:10.1017/s1742170511000299 (2012).

    Article  Google Scholar 

  20. Scorgie, M. E. & Ji, X.-D. Production planning in seventeenth century China. Accounting History 1, 37–54 (1996).

    Article  Google Scholar 

  21. Rutherford, D. Dissertatio inauguralis de aere fixo dicto, aut mephitico: quam annuente summo numine: ex auctoritate reverendi admodum viri, Gulielmi Robertson, S.S.T.P. Academiae Edinburgenae Praefecti: nec non amplissimi senatus academici consensu, et nobilissimae facultatis medicae decreto: pro gradu doctoratus, summisque in medicina honoribus et privilegiis rite et legitime consequendis, eruditorum examini subjicit (Edinburgi: Apud Balfour et Smellie, academiae typographos, M, DCC, LXXII, 1772).

    Google Scholar 

  22. Claude, G. & Cottrell, H. E. P. xxv, 418 pages (J. & A. Churchill, London, 1913).

    Google Scholar 

  23. Donovan, A. Antoine Lavoisier: science, administration, and revolution. (Blackwell, 1993).

    Google Scholar 

  24. Peers, C., Haddad, G. G., Chandel, N. S. & New York Academy of Sciences. In Annals of the New York Academy of Sciences 1177, vi, 205 pp. (New York Academy of Sciences; John Wiley distributor, New York, Chichester, 2009).

    Google Scholar 

  25. Amyotte, P. R., MacDonald, D. K. & Khan, F. I. An analysis of CSB investigation reports concerning the hierarchy of controls. Process Safety Progress 30, 261–265 (2011).

    Article  Google Scholar 

  26. Brock, W. H. Justus von Liebig: the chemical gatekeeper. (Cambridge University Press, 1997).

    Google Scholar 

  27. Bawden, F. C. John Bennet Lawes (December 28, 1814–August 31, 1900) Joseph Henry Gilbert (August 1, 1817–December 23, 1901). Biographical sketches. The Journal of Nutrition 90, 3–12 (1966).

    Google Scholar 

  28. Boussingault, J. B. Rural economy, in its relations with chemistry, physics, and meteorology, or, An application of the principles of chemistry and physiology to the details of practical farming. (H. Bailliere, 1845).

    Google Scholar 

  29. Aulie, R. P. Boussingault and the nitrogen cycle. Proceedings of the American Philosophical Society 114, 435–479 (1970).

    Google Scholar 

  30. Burns, R. C. & Hardy, R. W. Nitrogen fixation in bacteria and higher plants. Molecular Biology, Biochemistry and Biophysics 21, 189 (Springer-Verlag, 1975).

    Google Scholar 

  31. Ashby, S. Some observations on the assimilation of atmospheric nitrogen by a free living soil organism — Azotobacter chroococcum of Beijerinck. The Journal of Agricultural Science 2, 35–51 (1907).

    Article  Google Scholar 

  32. Dilworth, M. J. & SpringerLink (Online service). In Nitrogen Fixation 7, xix, 402 pp. (Springer, Dordrecht, 2008).

    Google Scholar 

  33. Postgate, J. R. The fundamentals of nitrogen fixation. (CUP Archive, 1982).

    Google Scholar 

  34. Atkins, C. A., Shelp, B. J., Storer, P. J. & Pate, J. S. Nitrogen nutrition and the development of biochemical functions associated with nitrogen fixation and ammonia assimilation of nodules on cowpea seedlings. Planta 162, 327–333, doi:10.1007/BF00396744 (1984).

    Article  Google Scholar 

  35. Kumar, K., Mella-Herrera, R. A. & Golden, J. W. Cyanobacterial heterocysts. Cold Spring Harbor Perspectives in Biology 2, a000315, doi:10.1101/cshperspect. a000315 (2010).

    Article  Google Scholar 

  36. Payne, W. J. Denitrification. (Wiley, 1981).

    Google Scholar 

  37. Prosser, J. I. & Society for General Microbiology. Nitrification. (Published for the Society for General Microbiology by IRL, 1986).

    Google Scholar 

  38. Cockcroft, P. D. The low temperature storage of bovine embryos in liquid nitrogen (Centre for Tropical Veterinary Medicine, University of Edinburgh, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2015 Dave Reay

About this chapter

Cite this chapter

Reay, D. (2015). A Brief History of Nitrogen. In: Nitrogen and Climate Change. Palgrave Macmillan, London. https://doi.org/10.1057/9781137286963_2

Download citation

Publish with us

Policies and ethics