Skip to main content

Nitrogen and Climate Change Adaptation

  • Chapter
Book cover Nitrogen and Climate Change

Abstract

Climate change adaptation is the process whereby something or someone’s ability to cope with climate change is increased. In the built environment this could involve construction of higher food defences or larger drains, while in the transport sector it might entail the use of more heat-resistant road surfaces or the design of alternative travel plans for use in the event of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stocker, T. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2014).

    Google Scholar 

  2. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14, 53–67 (2004).

    Article  Google Scholar 

  3. Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    Article  Google Scholar 

  4. Howden, S. M. et al. Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 104, 19691–19696 (2007).

    Article  Google Scholar 

  5. Thornton, P. K., Jones, P. G., Alagarswamy, G. & Andresen, J. Spatial variation of crop yield response to climate change in East Africa. Global Environmental Change 19, 54–65 (2009).

    Article  Google Scholar 

  6. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Article  Google Scholar 

  7. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639, doi:10.1038/ngeo325 (2008).

    Article  Google Scholar 

  8. Sutton, M. A. et al. The European nitrogen assessment: sources, effects and policy perspectives. (Cambridge University Press, 2011).

    Book  Google Scholar 

  9. Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    Article  Google Scholar 

  10. Denning, G. et al. Input subsidies to improve smallholder maize productivity in Malawi: toward an African Green Revolution. PLoS Biology 7, e1000023 (2009).

    Article  Google Scholar 

  11. Wassmann, R. et al. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy 101, 59–122 (2009).

    Article  Google Scholar 

  12. Hassanali, A., Herren, H., Khan, Z. R., Pickett, J. A. & Woodcock, C. M. Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 611–621 (2008).

    Article  Google Scholar 

  13. Verchot, L. V. et al. Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change 12, 901–918 (2007).

    Article  Google Scholar 

  14. Lin, B. B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology 144, 85–94 (2007).

    Article  Google Scholar 

  15. Garrity, D. P. et al. Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Security 2, 197–214 (2010).

    Article  Google Scholar 

  16. Olesen, J. E. & Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16, 239–262 (2002).

    Article  Google Scholar 

  17. Falloon, P. & Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation — the importance of an integrated approach. Science of the Total Environment 408, 5667–5687 (2010).

    Article  Google Scholar 

  18. Hessen, D. O., Hindar, A. & Holtan, G. The significance of nitrogen runoff for eutrophication of freshwater and marine recipients. Ambio 26, 312–320 (1997).

    Google Scholar 

  19. Andersen, H. E. et al. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment 365, 223–237 (2006).

    Article  Google Scholar 

  20. Grizzetti, B. et al. Nitrogen as a threat to European water quality. In The European Nitrogen Assessment, edited by M. Sutton et al., 379–404 (Cambridge University Press, UK, 2011).

    Chapter  Google Scholar 

  21. Raun, W. R. & Johnson, G. V. Improving nitrogen use efficiency for cereal production. Agronomy Journal 91, 357–363 (1999).

    Article  Google Scholar 

  22. Goodchild, R. EU policies for the reduction of nitrogen in water: the example of the Nitrates Directive. Environmental Pollution 102, 737–740 (1998).

    Article  Google Scholar 

  23. Osborn, S. & Cook, H. F. Nitrate vulnerable zones and nitrate sensitive areas: a policy and technical analysis of groundwater source protection in England and Wales. Journal of Environmental Planning and Management 40, 217–234 (1997).

    Article  Google Scholar 

  24. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article  Google Scholar 

  25. Rounsevell, M. D. A. & Reay, D. S. Land use and climate change in the UK. Land Use Policy 26, S160–S169, doi:10.1016/j.landusepol.2009.09.007 (2009).

    Article  Google Scholar 

  26. Hefting, M. M. & de Klein, J. J. Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. Environmental Pollution 102, 521–526 (1998).

    Article  Google Scholar 

  27. Fortier, J., Gagnon, D., Truax, B. & Lambert, F. Nutrient accumulation and carbon sequestration in 6-year-old hybrid poplars in multiclonal agricultural riparian buffer strips. Agriculture, Ecosystems & Environment 137, 276–287 (2010).

    Article  Google Scholar 

  28. Hefting, M. M., Bobbink, R. & de Caluwe, H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality 32, 1194–1203 (2003).

    Article  Google Scholar 

  29. Mitsch, W. J. et al. Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to Counter a Persistent Ecological Problem Ecotechnology — the use of natural ecosystems to solve environmental problems — should be a part of efforts to shrink the zone of hypoxia in the Gulf of Mexico. BioScience 51, 373–388 (2001).

    Article  Google Scholar 

  30. Dosskey, M. G. Setting priorities for research on pollution reduction functions of agricultural buffers. Environmental Management 30, 641–650 (2002).

    Article  Google Scholar 

  31. Reay, D. S. Fertilizer ‘solution’ could turn local problem global — protecting soil and water from pollution may mean releasing more greenhouse gas. Nature 427, 485 doi:10.1038/427485a (2004).

    Article  Google Scholar 

  32. Parry, M. L. Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Vol. 4. (Cambridge University Press, 2007).

    Google Scholar 

  33. Biesboer, D. D., Binford, M. W. & Kolata, A. Nitrogen fixation in soils and canals of rehabilitated raised-fields of the bolivian altiplano. Biotropica 31, 255–267 (1999).

    Article  Google Scholar 

  34. Thornton, P., Van de Steeg, J., Notenbaert, A. & Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agricultural Systems 101, 113–127 (2009).

    Article  Google Scholar 

  35. Edwards, A. C. et al. Farmyards, an overlooked source for highly contaminated runoff. Journal of Environmental Management 87, 551–559 (2008).

    Article  Google Scholar 

  36. Oenema, O., Oudendag, D. & Velthof, G. L. Nutrient losses from manure management in the European Union. Livestock Science 112, 261–272 (2007).

    Article  Google Scholar 

  37. Purse, B. V. et al. Climate change and the recent emergence of bluetongue in Europe. Nature Reviews Microbiology 3, 171–181 (2005).

    Article  Google Scholar 

  38. West, J. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science 86, 2131–2144 (2003).

    Article  Google Scholar 

  39. Payne, W. A review of the possibilities for integrating cattle and tree crop production systems in the tropics. Forest Ecology and Management 12, 1–36 (1985).

    Article  Google Scholar 

  40. Mader, T. L. Environmental stress in confined beef cattle. Journal of Animal Science 81, E110–E119 (2003).

    Google Scholar 

  41. Sommer, S. G. & Hutchings, N. Ammonia emission from field applied manure and its reduction — invited paper. European Journal of Agronomy 15, 1–15 (2001).

    Article  Google Scholar 

  42. Meisinger, J. & Jokela, W. Ammonia volatilization from dairy and poultry manure. Managing nutrients and pathogens from animal agriculture. Natural Resource, Agriculture, and Engineering Service, Ithaca, NY, NRAES-130, 334–354 (2000).

    Google Scholar 

  43. Patterson, P. et al. The potential for plants to trap emissions from farms with laying hens. 1. Ammonia. The Journal of Applied Poultry Research 17, 54–63 (2008).

    Article  Google Scholar 

  44. Malone, G. & Van Wicklen, G. Trees as a vegetative filter. Poultry Digest Online 3, 7 (2001).

    Google Scholar 

  45. Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 3065–3081 (2010).

    Article  Google Scholar 

  46. James, S. & James, C. The food cold-chain and climate change. Food Research International 43, 1944–1956 (2010).

    Article  Google Scholar 

  47. Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. Climate change and food systems. Annual Review of Environment and Resources 37, 195 (2012).

    Article  Google Scholar 

  48. Haile, M. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 2169–2182 (2005).

    Article  Google Scholar 

  49. Hanjra, M. A. & Qureshi, M. E. Global water crisis and future food security in an era of climate change. Food Policy 35, 365–377 (2010).

    Article  Google Scholar 

  50. O’Brien, K. L. & Leichenko, R. M. Double exposure: assessing the impacts of climate change within the context of economic globalization. Global Environmental Change 10, 221–232 (2000).

    Article  Google Scholar 

  51. Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    Article  Google Scholar 

  52. Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C. & Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology 170, 206–215 (2013).

    Article  Google Scholar 

  53. Meleux, F., Solmon, F. & Giorgi, F. Increase in summer European ozone amounts due to climate change. Atmospheric Environment 41, 7577–7587 (2007).

    Article  Google Scholar 

  54. Rosenfeld, A. H., Akbari, H., Romm, J. J. & Pomerantz, M. Cool communities: strategies for heat island mitigation and smog reduction. Energy and Buildings 28, 51–62 (1998).

    Article  Google Scholar 

  55. van Vliet, M. T. et al. Vulnerability of US and European electricity supply to climate change. Nature Climate Change 2, 676–681 (2012).

    Article  Google Scholar 

  56. Jaffe, D. A. & Wigder, N. L. Ozone production from wildfires: a critical review. Atmospheric Environment 51, 1–10 (2012).

    Article  Google Scholar 

  57. Levine, J. S. Biomass burning and its inter-relationships with the climate system 15–31 (Springer, 2000).

    Book  Google Scholar 

  58. Baron, J. et al. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114, 71–92 (2013).

    Article  Google Scholar 

  59. O’Hare, M. T. et al. Eutrophication impacts on a river macrophyte. Aquatic Botany 92, 173–178 (2010).

    Article  Google Scholar 

  60. Semadeni-Davies, A., Hernebring, C., Svensson, G. & Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: combined sewer system. Journal of Hydrology 350, 100–113 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2015 Dave Reay

About this chapter

Cite this chapter

Reay, D. (2015). Nitrogen and Climate Change Adaptation. In: Nitrogen and Climate Change. Palgrave Macmillan, London. https://doi.org/10.1057/9781137286963_14

Download citation

Publish with us

Policies and ethics