Skip to main content

Multiplicity in Non-Linear Systems

  • Chapter
Understanding Change
  • 350 Accesses

Abstract

While analysing the processes of rapid and fundamental change in the contemporary world with diverse cultures, it is clear that reality of the present is different from what was prophesied based on past social theories of the evo lution of modernity. Different societies are in no sense becoming identical fol lowing the cultural programme of ‘western’ modernity (Eisenstadt, 2000). Originator of the term ‘multiple modernities’ and considered a pioneer in advancing an alternative view, Shmuel N. Eisenstadt, in his paper in the workshop ‘Paradigms of Change’, developed the concept of ‘multiple moder nities’ in the context of a comparative evolutionary perspective in the social sciences. He based his arguments on the central concept — in classical struc tural evolutionary theory — that of differentiation, cultural and social differ entiation and evolution. At the same time he questioned their stress on the unilineal development of all societies. He sees the process of differentiation as a tendency for expansion of human action, and the core of such processes of differentiation as the ‘decoupling of “formerly” mutually embedded activi ties. Such differentiation may develop with respect to both the structural and symbolic dimensions of social interaction and structure’. Eisenstadt argues that the cultural and institutional patterns constitute different responses to the challenges and possibilities inherent in the core characteristics of the dis tinct civilizational premises of modernity, thereby giving importance to the social processes along with the structural differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Cavalli Sforza, L. L. & Feldman, M. W. (1981) Cultural Transmission and Evolution: a Quantitative Approach. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Csete, M. E. & Doyle, J. C. (2002) ‘Reverse engineering of biological complexity’. Science 295 1664–9.

    Article  Google Scholar 

  • Daedaluss (Winter, 2000) Multiple Modernities. 129–1.

    Google Scholar 

  • Devaney, R. L. (1985) An Introduction to Chaotic Dynamical Systems. Menlo Park, CA: Addison-Wesley.

    Google Scholar 

  • Dietrich, M. R. (1992) ‘Macromutation’. In: Fox Keller, E. & Lloyd, E. A. ed. Keywords in Evolutionary Biology. Cambridge: Harvard University Press 194–201.

    Google Scholar 

  • Donoghue, Michael J. (1992) ‘Homology’. In: Fox Keller, E. & Lloyd, E. A. ed. Keywords in Evolutionary Biology. Cambridge, MA: Harvard University Press 170–9.

    Google Scholar 

  • Eisenstadt, S. N. (2000) ‘Multiple modernities’. Daedalus. 129 (1) 1–29.

    Google Scholar 

  • Haldane, J. B. S. (1931) The Causes of Evolution. Princeton: Princeton University Press (1990).

    Google Scholar 

  • Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) ‘From molecular to modular cell biology’. Nature. 402 (supp), c47–c52.

    Article  Google Scholar 

  • Hilborn, R. C. (1994) Chaos and Nonlinear Dynamics. Oxford: Oxford University Press.

    Google Scholar 

  • Hogeweg, P. (2002) ‘Multilevel processes in evolution and development: computa tional models and biological insights’. In: Lässig, M. & Valleriani, A. eds. Statistical Physics. Springer-Verlag 217–39.

    Google Scholar 

  • Holland, John H. (1998) Emergence: From Chaos to Order. Reading, MA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Kaneko, K. & Yomo, T. (1997) ‘Isologous diversification: a theory of cell differentiation’. Bulletin of Mathematical Biology. 59 139–96.

    Article  Google Scholar 

  • Kauffman, S.A. (1993) The Origins of Order (chs. 5 and 12). New York: Oxford University Press.

    Google Scholar 

  • Kaviraj, Sudipto. (2000) ‘Modernity and politics in India’. Daedaluss. 129 (1) 137–62.

    Google Scholar 

  • Langton, Christopher G. (1989) Artificial Life. Santa Fe Institute Studies in the Sciences of Complexity, vol. 6. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Levin, S. A. & Pacala, S. W. (2003) ‘Ecosystem dynamics’. In: K.-G. Mäler and J. Vincent, eds. Handbook of Environmental Economics. Amsterdam: Elsevier/North Holland 61–95.

    Google Scholar 

  • Lorenz, E. N. (1963) ‘Deterministic non-periodic flow’. Journal of the Atmospheric Sciences. 20 (2) 130–41.

    Article  Google Scholar 

  • Marée, A. F. M. & Hogeweg, R (2001). ‘How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum’. Proceedings of the National Academy of Sciences. USA 98 3879–83.

    Article  Google Scholar 

  • May, R. M. (1976) ‘Simple mathematical models with very complicated dynamics’. Nature. 261 459–67.

    Article  Google Scholar 

  • McAdams, H. & Arkin, A. (1997) ‘Stochastic mechanisms in gene expression’. Proceedings of the National Academy of Science. USA 94 814–19.

    Article  Google Scholar 

  • McAdams, H. H. & Arkin, A. (1999) ‘It’s a noisy business! genetic regulation at the nano-molar scale’. Trends in Genetics. 15 65–9.

    Article  Google Scholar 

  • Mittenthal, J. E. & Baskin, A. R. eds. (1992) The Principles of Organization in Organisms.. Proceedings Volume XIII Santa Fe Institute Studies in the Sciences of Complexity. Reading, MA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Murray, J. D. (1989) Mathematical Biology. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003) Niche Construction: the Neglected Process in Evolution. Monographs in Population Biology. Princeton University Press.

    Google Scholar 

  • Parekh, Nita & Sinha, Somdatta. (2002) ‘Controlling spatiotemporal dynamics in excitable systems’. Physical Review. E 65 036227–1 to 9.

    Google Scholar 

  • Parekh, Nita & Sinha, Somdatta. (2003) ‘Controllability of spatiotemporal systems using constant pinnings’. Physica. A 318 200–12.

    Article  Google Scholar 

  • Parekh, Nita, Parthasarathy, S. & Sinha, Somdatta. (1998) ‘Global and local control of spatiotemporal chaos in coupled map lattices’. Physical Review Letters. 81 1401–4.

    Article  Google Scholar 

  • Parthasarathy, S. & Sinha, Somdatta. (1995) ‘Controlling chaos in unidimensional maps using constant feedback’. Physical Review. 51 (6) 6239–42.

    Google Scholar 

  • Sinha, Somdatta & Parthasarathy, S. (1996) ‘Unusual dynamics of extinction in a simple ecological model’. Proceedings of the National Academy of Sciences. USA 93 1504–8.

    Article  Google Scholar 

  • Slack, J. M. W. (1983) From Egg to Embryo. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sole, R. V., Vails, J. & Bascomte, J. (1992) ‘Stability and complexity of spatially extended two-species competition’. Journal of Theoretical Biology 159 469–80.

    Article  Google Scholar 

  • Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Westview Press.

    Google Scholar 

  • Subrahmanyam, Sanjay. (1998) ‘Hearing voices: vignettes of early modernity in South Asia 1400–1750’. Daedalus. 127 (3) 75–104.

    Google Scholar 

  • Swain, P. S., Elowitz, M. B. & Siggia, E. D. (2002) ‘Intrinsic and extrinsic contributions to stochasticity in gene expression’. Proceedings of the National Academy of Science., USA 99 (20) 12795–800.

    Article  Google Scholar 

  • Tagore, Rabindranath. (1961) (1908) ‘East and west’. In Towards Universal Man. a collection of essays. Asia Publishing House, New York 1961.

    Google Scholar 

  • Thom, Rene. (1983) Mathematical Models of Morphogenesis. Chichester: Ellis Harwood.

    Google Scholar 

  • Turing, A. M. (1952) ‘The chemical basis of morphogenesis’. Philosophical Transactions of the Royal Society. London. B237 37–72.

    Google Scholar 

  • Tyson, John J., Chen, Kathy & Novak, Bela. (2001) ‘Network dynamics and cell physiology’. Nature Reviews. (Molecular & Cellular Biology) 2 908–16.

    Article  Google Scholar 

  • Via, S. & Lande, R. (1985) ‘Genotype-environment interaction and the evolution of phenotypic plasticity’. Evolution. 39 505–22.

    Article  Google Scholar 

  • Wake, David B. (1991) ‘Homoplasy: the result of natural selection, or evidence of design limitations?’ The American Naturealist. 138 (8) 543–67.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2006 Somdatta Sinha

About this chapter

Cite this chapter

Sinha, S. (2006). Multiplicity in Non-Linear Systems. In: Wimmer, A., Kössler, R. (eds) Understanding Change. Palgrave Macmillan, London. https://doi.org/10.1057/9780230524644_16

Download citation

Publish with us

Policies and ethics