Skip to main content

Path Dependence and Historical Contingency in Biology

  • Chapter
Book cover Understanding Change

Abstract

As Smith & Morowitz (1982) once aptly wrote, biology is a discipline ‘between history and physics’. On one hand, we do have laws in biology, on top of those coming from physics and chemistry. The model system of population genetics is not very different from laws of theoretical physics, except that it contains more variables and parameters. In mechanics we must know the mass of objects, some key forces and the gravitational constant: in population genetics we must know about population size, allele frequencies, linkage, mutation and migration rates, selection coefficients and so on. But this could still be regarded as ‘ordinary’ theoretical science, albeit a bit complicated. On the other hand the laws (or rules, if we are more modest) of population genetics are of the ‘if A, then B’ nature, and often there is nothing within the theory that could decide whether A in fact holds or not. That decision comes from physics, chemistry, or — crucially for our present enquiry — history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aunger, R. (2002) The Electric Meme: A New Theory of How We Think. Free Press.

    Google Scholar 

  • Barrow, John D. & Tippler, Frank J. (1988) The Anthropic Cosmological Principle. Oxford University Press.

    Google Scholar 

  • Bassanini, A. & Dosi, G. (1999) ‘When and how chance and human will can twist the arms of Clio’. LEM Working Paper Series 1999/05. Pisa.

    Google Scholar 

  • Benner, S. A. (2002) ‘The past is the key to the present: resurrection of ancient proteins from eosinophils’. Proc. Natl. Acad. Sci. US. 99, 4760–1.

    Article  Google Scholar 

  • Bickerton, D. (1990) Language and Species. The University of Chicago Press.

    Google Scholar 

  • Cavalier-Smith, T. (1987) ‘The origin of eukaryotic and archaebacterial cells’. Ann. N. Y. Acad. Sci. 503, 17–54.

    Article  Google Scholar 

  • Changeux, J.-P. (1983) L’Homme Neuronal. Librairie Arthème Fayard, Paris.

    Google Scholar 

  • Dawkins, R. (1976) The Selfish Gene. Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1996) Climbing Mount Improbable. W. W. Norton.

    Google Scholar 

  • De Duve, C. (2002) Life Evolving: Molecules, Min,. and Meaning. Oxford University Press.

    Google Scholar 

  • Eigen, M. (1971) ‘Self-organization of matter and the evolution of biological macromolecules’. Naturewissenschaften. 58, 465–523.

    Article  Google Scholar 

  • Jablonka, E. & Lamb, M. J. (1995) Epigenetic Inheritance and Evolution. Oxford University Press.

    Google Scholar 

  • Jastrow, R. (1971) Red Giants and White Dwarfs. Harper and Row, New York.

    Google Scholar 

  • Johnson, P. A., Lenski, R. E. & Hoppensteadt, F. C. (1995) ‘Theoretical analysis of diver gence in mean fitness between genetically identical populations’. Proc. R. Soc. Lond B. 259, 125–30.

    Article  Google Scholar 

  • Lenski, R. E. & Travisano, M. (1994) ‘Dynamics of adaptation and diversification: a 10,000 generation experiment with bacterial populations’. Proc. Natl. Acad. Sci. USA. 91, 6808–14.

    Article  Google Scholar 

  • Marshall, C. R., Raff, E. C. & Raff, R. A. (1994) ‘Dollow’s law and the death and resur rection of genes’. Proc. Natl. Acad. Sci. US. 91, 12283–7.

    Article  Google Scholar 

  • Maynard Smith, J. (1970) ‘Natureal selection and the concept of a protein space’. Nature. 225, 563–4.

    Article  Google Scholar 

  • Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge University Press.

    Book  Google Scholar 

  • Maynard Smith, J. (1986) The Problems of Biology. Oxford University Press.

    Google Scholar 

  • Maynard Smith, J. & Szathmáry, E. (1995) The Major Transitions in Evolution. Freeman, Oxford.

    Google Scholar 

  • Maynard Smith, J. & Szathmáry, E. (1999) The Origins of Life. Oxford University Press.

    Google Scholar 

  • Orgel, L. E. (1992) Molecular replication. Nature. 358, 203–9.

    Google Scholar 

  • Pichaud, F., Briscoe, A. & Desplan, C. (1999) ‘Evolution of color vision’. Curr. Op. Neurobiol. 9, 622–7.

    Article  Google Scholar 

  • Smith, T. F. & Morowitz, H. J. (1982) ‘Between history and physics’… Mol. Evol. 18, 265–82.

    Article  Google Scholar 

  • Smolin, L. (1999) The Life of the Cosmos. Oxford University Press.

    Google Scholar 

  • Szathmáry, E. (2000) ‘The evolution of replicators’. Phil. Trans. R. Soc. Lond. B. 355, 1669–76.

    Article  Google Scholar 

  • Szathmáry, E. (2002a) ‘Units of evolution and units of life’. In: Pályi, G., Zucchi, L. & Caglioti, L. (eds) Fundamentals of Life. pp. 181–95. Elsevier, Paris.

    Google Scholar 

  • Szathmáry, E. (2002b) ‘Cultural processes: the latest major transition in evolution’. In: Lynn Nadel (ed.), Encyclopedia of Cognitive Science. Macmillan Reference, London.

    Google Scholar 

  • Szathmáry, E. (2002c) ‘The gospel of inevitability: was the Universe destined to lead to the evolution of humans?’ Nature. 419, 779–80.

    Article  Google Scholar 

  • Wahl, L. M. & Krakauer, D. C. (2000) ‘Models of experimental evolution: the role of genetic chance and selective necessity’. Genetics. 156, 1437–48.

    Google Scholar 

  • Wächtershäuser, G. (1988) ‘Before enzymes and templates: theory of surface metabolism’. Microbobiol. Rev. 52, 452–84.

    Google Scholar 

  • Wächtershäuser, G. (1992) ‘Groundworks for an evolutionary biochemistry: the iron-sulfur world’. Prog. Biophys. Molec. Biol. 58, 85–201.

    Article  Google Scholar 

  • Yedid, G. & Bell, G. (2002) ‘Macroevolution simulated with autonomously replicating computer programs’. Nature. 420, 810–12.

    Article  Google Scholar 

  • Zhang, J. & Rosenberg, H. R (2002) ‘Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates’. Proc. Natl. Acad. Sci. US. 99, 5486–91.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2006 Eörs Szathmáry

About this chapter

Cite this chapter

Szathmáry, E. (2006). Path Dependence and Historical Contingency in Biology. In: Wimmer, A., Kössler, R. (eds) Understanding Change. Palgrave Macmillan, London. https://doi.org/10.1057/9780230524644_10

Download citation

Publish with us

Policies and ethics