Skip to main content

Visualizing Prions: Graphic Representations and the Biography of Prions

  • Chapter
Infectious Processes

Part of the book series: Science, Technology and Medicine in Modern History ((STMMH))

  • 44 Accesses

Abstract

Prions are proteins generally characterized by the ability to exist in two different forms or more precisely two different three-dimensional structures, one of them possibly causing disease when it aggregates. The prion hypothesis, as formulated by Stanley Prusiner, states that this aggregation causes specific neurological diseases such as bovine spongiform encephalopathy (BSE). Even if both the mechanisms of this change of conformation and that of the aggregation are still enigmatic, the prion hypothesis has become a dominant model to which much heuristic power has been attributed in the 1990s. This could be a first paradox. Moreover, whereas three-dimensional structures clearly appear to be at the heart of the matter, Prusiner used mostly biochemical evidence to develop his hypothesis, without using, in the early days, any other graphic representations than that given by electron microscopy. This constitutes the second paradox at the origin of the present chapter since only computer representations of three-dimensional structures can explain and justify the prion theory as a model. Here, models are defined as theories with two distinct properties. First, models have an explanatory power more or less confirmed by experimental evidence, which distinguishes them from mere hypotheses. Second, models can be applied in domains other than those where they come from. Such application is possible due to the underlying formalism of models, or, as in the prion case, to the diffusion of a specific visualization culture.

A scientific concept that is not supported by direct visualization is always difficult to establish, whatever its origin may be.

D. Dormont

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguzzi, A. et al. (1997) ‘Neuro-immune Connection in Spread of Prions in the Body?’, The Lancet 349: 742–3.

    Article  Google Scholar 

  • Aigle, M. and F. Lacroute (1975) ‘Genetical aspects of [URE3], a Non-mitochon- drial, Cytoplasmically Inherited Mutation in Yeast’, Mol. Gen. Genet. 136: 327–35.

    Article  Google Scholar 

  • Amann, K. and K. Knorr-Cetina (1990) ‘The Fixation of (Visual) Evidence’, in M. Lynch and S. Woolgar (eds) Representation in Scientific Practice. Cambridge: MIT Press: 85–122.

    Google Scholar 

  • Anfinsen, C. (1973) ‘Principles that Govern the Folding of Protein Chains’, Science 181: 223–30.

    Article  Google Scholar 

  • Appel, R. D. et al. (1994) ‘A New Generation of Information Retrieval Tools for Biologists: the Example of the ExPASy WWW Server’, Trends Biochem. Sci. 19: 258–60.

    Article  Google Scholar 

  • Baldwin, M. A. et al. (1998) ‘The Three-dimensional Structure of Prion Protein: Implications for Prion Disease’, Biochemical Society Transactions 26: 481–6.

    Article  Google Scholar 

  • Bousset, L. et al. (2001) ‘Structure of the Globular Region of the Prion Protein Ure2 from the Yeast Saccharomyces cerevisiae’, Structure (Camb.) 9(1): 39–46.

    Article  Google Scholar 

  • Bousset, L. et al. (2002) ‘Structure and Assembly Properties of the Yeast Prion Ure2’, C.R. Biologies 325: 3–8.

    Article  Google Scholar 

  • Brandner, S. et al. (1996) ‘Normal Host Prion Protein (PrPC) is Required for Scrapie Spread within the Central Nervous System’, PNAS USA 93: 13148–51.

    Article  Google Scholar 

  • Cambrosio, A. (2000) ‘Argumentation, représentation, intervention: les rôles de l’imagerie dans les discours scientifiques’, ASp 27/30: 95–112.

    Article  Google Scholar 

  • Chernoff, Y. O. et al. (1995) ‘Role of the Chaperone Protein Hspl04 in Propagation of the Yeast Prion-like Factor [psi+]’, Science 268(5212): 880–4.

    Article  Google Scholar 

  • Corth, C. et al. (1997) ‘Prion (PrPSc)-specific Epitope Defined by a Monoclonal Antibody’, Nature 390(6655): 74–7.

    Article  Google Scholar 

  • Couzin, J. (2002) ‘In Yeast, Prions’ Killer Image Doesn’t Apply’, Science 297: 758–61.

    Article  Google Scholar 

  • Cox, B. S. (1965) ‘PSI, a Cytoplasmic Suppressor of Super-suppressor in Yeast’, Heredity 20: 505–21.

    Article  Google Scholar 

  • Crick, F. (1958) ‘On Protein Synthesis’, in F. K. Sanders (ed.) The Biological Replication of Macromolecules. Cambridge: Cambridge University Press: 138–63.

    Google Scholar 

  • Donne, D. G. et al. (1997) ‘Structure of the Recombinant Full-length Hamster Prion Protein PrP(29–231): the N Terminus is Highly Flexible’, PNAS USA 94(25): 13452–7.

    Article  Google Scholar 

  • Fernandez-Bellot, E. and C. Cullin (2001) ‘The Protein-only Theory and the Yeast Saccharomyces cerevisiae: the Prions and the Propagons’, Cell Mol. Life Sci. 58(12–13): 1857–78.

    Article  Google Scholar 

  • Ferrin, T. E. et al. (1988) ‘The MIDAS Display System’, J. Mol. Graphics 6(1): 13–27, 36–7.

    Article  Google Scholar 

  • Francoeur, E. (2001) ‘Molecular Models and the Articulation of Structural Constraints in Chemistry’, in U. Klein (ed.) Tools and Modes of Representation in the Laboratory Sciences. Dordrecht: Kluwer Academic Publishers: 95–115.

    Chapter  Google Scholar 

  • Francoeur, E. and J. Segal (2004) ‘From Model Kits to Interactive Computer Graphics’, in S. de Chadarevian and N. Hopwood (eds) Models: the Third Dimension of Science. Stanford: Stanford University Press.

    Google Scholar 

  • Gasset, M. et al. (1992) ‘Predicted Alpha-helical Regions of the Prion Protein when Synthesized as Peptides Form Amyloid’, PNAS USA 89(22): 10940–4.

    Article  Google Scholar 

  • Glatzel, M. and A. Aguzzi (2000) ‘PrPC Expression in the Peripheral Nervous System is a Determinant of Prion Neuroinvasion’, Journal of General Virology 81: 2813–21.

    Article  Google Scholar 

  • Glockshuber, R. et al. (1997) ‘Three-dimensional NMR Structure of a Self-folding Domain of the Prion Protein PrP(121–231)’, Trends in Biochemical Sciences 22(7): 241–2.

    Article  Google Scholar 

  • Griesemer, J. R. (1991) ‘Must Scientific Diagrams Be Eliminable? The Case of Path Analysis’, Biology and Philosophy 6: 155–80.

    Article  Google Scholar 

  • Güntert, P. et al. (1991) ‘Efficient Computation of Three-dimensional Protein Structures in Solution from Nuclear Magnetic Resonance Data Using the Program DIANA and the Supporting Programs CALIBA, HABAS and GLOMSA’, J. Mol. Biol. 217: 517–30.

    Article  Google Scholar 

  • Huang, Z. et al. (1994) ‘Proposed Three-dimensional Structure for the Cellular Prion Protein’, PNAS USA 91(15): 7139–43.

    Article  Google Scholar 

  • Huang, Z. et al. (1996) ‘Structures of Prion Proteins and Conformational Models for Prion Diseases’, Curr. Top. Microbiol. Immunol. 207: 49–67.

    Google Scholar 

  • James, T. L. et al. (1997) ‘Solution Structure of a 142-residue Recombinant Prion Protein Corresponding to the Infectious Fragment of the Scrapie Isoform’, PNAS USA 94(19): 10086–91.

    Article  Google Scholar 

  • Johnson, C. K. (1965) OR TEP: a FORTRAN Thermal-ellipsoid Plot Program for Crystal Structure Illustrations. ONRL Report No. 3794. Oak Ridge, Tenn.: Oak Ridge National Laboratory.

    Google Scholar 

  • Kaneko, K. et al. (1997) ‘Evidence for Protein X Binding to a Discontinuous Epitope on the Cellular Prion Protein during Scrapie Prion Propagation’, PNAS USA 94: 10069–74.

    Article  Google Scholar 

  • Kay, L. E. (2000) Who Wrote the Book of Life? A History of the Genetic Code. Chicago: University of Chicago Press.

    Google Scholar 

  • Keyes, M. E. (1999) ‘The Prion Challenge to the “Central Dogma” of Molecular Biology, 1965–1991. Part I: Prelude to Prions’ and ‘Part II: The Problem with Prions’, Studies in History and Philosophy of Biological and Biomedical Sciences 30 (1 and 2): 1–19, 181–218.

    Article  Google Scholar 

  • Koradi, R. et al. (1996) ‘MOLMOL: a Program for Display and Analysis of Macromolecular Structures’, Journal of Molecular Graphics 14(1): 51–5.

    Article  Google Scholar 

  • Kuhn, T. S. (1977) The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago Press.

    Google Scholar 

  • Lacroute, F. (1971) ‘Non-Mendelian Mutation Allowing Ureidosuccinic Acid Uptake in Yeast’, J. Bacteriol. 106: 519–22.

    Google Scholar 

  • Lakoff, G. and M. Johnson (1980) Metaphors We Live By. Chicago: University of Chicago Press.

    Google Scholar 

  • Latour, B. (1993) ‘Le “Pédofil” De Boa Vista - Montage Photo-Philosophique’, in B. Latour (ed.) La Clef de Berlin. Paris: La Découverte: 171–225.

    Google Scholar 

  • Latour, B. and S. Woolgar (1979) Laboratory Life: the Social Construction of Scientific Facts. Beverly Hills: Sage Publications.

    Google Scholar 

  • Levinthal, C. (1966) ‘Molecular Model-Building by Computers’, Scientific American 214: 42–52.

    Article  Google Scholar 

  • Lynch, M. (1985) ‘Discipline and the Material Form of Images’, Social Studies of Science 15(1): 37–66.

    Article  Google Scholar 

  • Lynch, M. (1998) ‘The Production of Scientific Images: Vision and Re-Vision in the History, Philosophy, and Sociology of Science’, Communication and Cognition 31(2–3): 213–28.

    Google Scholar 

  • Martz, E. and E. Francoeur (2001) ‘History of Visualization of Biological Macromolecules’, http://www.umass.edu/microbio/rasmol/history.htm (latest revision 9/2001).

    Google Scholar 

  • Masison, D. C. and R. B. Wickner (1995) ‘Prion-inducing Domain of Yeast Ure2p and Protease Resistance of Ure2p in Prion-containing Cells’, Science 270(5233): 93–5.

    Article  Google Scholar 

  • Maunoury, M. T. et al. (1999) ‘Observer la science en action ou, comment les sciences de l’information permettent de suivre l’évolution et la convergence des concepts de prion et d’hérédité non mendélienne dans la littérature’, Médecine/Sciences 15(4): 577–82.

    Article  Google Scholar 

  • Merz, P. et al. (1981) ‘Abnormal Fibrils from Scrapie-infected Brain’, Acta Neuropathologica 54: 63–74.

    Article  Google Scholar 

  • Merz, P. et al. (1984) ‘Infection-Specific Particle from the Unconventional Slow Virus Diseases’, Science 225: 437–40.

    Article  Google Scholar 

  • Morange, M. (1998) A History of Molecular Biology. Cambridge: Harvard University Press.

    Google Scholar 

  • Ottiger, M. et al. (1994) ‘The NMR Solution Structure of the Pheromone Er-2 from the Ciliated Protozoan Euplotes Raikovi’, Protein Science 3: 1515–26.

    Article  Google Scholar 

  • Pauling, L. et al. (1951) ‘The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain’, PNAS USA 37: 205–11.

    Article  Google Scholar 

  • Prusiner, S. (1982) ‘Novel Proteinaceous Infectious Particles Cause Scrapie’, Science 216: 136–44.

    Article  Google Scholar 

  • Prusiner, S. (1984) ‘Prions’, Scientific American 251: 48–57.

    Article  Google Scholar 

  • Prusiner, S. (1988) ‘Molecular Structure, Biology, and Genetics of Prions’, Advances in Virus Research 35: 83–136.

    Article  Google Scholar 

  • Prusiner, S. (1992) ‘Chemistry and Biology of Prions’, Biochemistry 31(49): 12277–88.

    Article  Google Scholar 

  • Prusiner, S. (1994) ‘Biology and Genetics of Prion Diseases’, Annu. Rev. Microbiol. 48: 655–86.

    Article  Google Scholar 

  • Prusiner, S. (1998) ‘Prions’, PNAS USA 95(23): 13363–83.

    Article  Google Scholar 

  • Prusiner, S. et al. (1983) ‘Scrapie Prions Aggregate to Form Amyloid-like Birefringent Rods’, Cell 35: 349–58.

    Article  Google Scholar 

  • Prusiner, S. et al. (1987) ‘On the Biology of Prions’, Acta Neuropathologica 72: 299–314.

    Article  Google Scholar 

  • Raeber, A. J. et al. (1998) ‘Transgenic and Knockout Mice in Research on Prion Diseases’, Brain Pathology 8: 715–33.

    Article  Google Scholar 

  • Rheinberger, H. J. (1997) Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube (Writing Science). Stanford: Stanford University Press.

    Google Scholar 

  • Riek, R. et al. (1996) ‘NMR Structure of the Mouse Prion Protein PrP(121–231)’, Nature 382: 180–2.

    Article  Google Scholar 

  • Riek, R. et al. (1997) ‘NMR Characterization of the Full-length Recombinant Murine Prion Protein mPrP (23–231)’, FEBS Letters 413: 282–8.

    Article  Google Scholar 

  • Rudwick, M. J. S. (1976) ‘The Emergence of a Visual Language for Geological Science’, History of Science 14: 149–95.

    Article  Google Scholar 

  • Sarkar, S. S. (1996) ‘Thinking of Biology - Decoding “Coding” - Information and DNA’, Bioscience 46: 857–64.

    Article  Google Scholar 

  • Segal, J. (2002) ‘Les premiers “replieurs” français: Michel Goldberg à l’Institut Pasteur et Jeannine Yon à Orsay’, Revue pour lhistoire du CNRS 7: 50–6.

    Google Scholar 

  • Shulamn, R. G. (2000) ‘D. C. Phillips’, Biographical Memoirs of the National Academy of Sciences. National Academy Press: 166–81 (or http://books.nap.edu/books/030907035X/html/166.html)

    Google Scholar 

  • Soojung-Kim Pang, A. (1997) ‘Visual Representation and Post-Constructivist History of Science’, Historical Studies in the Physical and Biological Sciences 28: 139–71.

    Article  Google Scholar 

  • Thieffry, D. (1996) ‘E. coli as a Model System with which to Study Cell- differentiation’, Hist. Philos. Life Sci. 18: 163–93.

    Google Scholar 

  • Thual, C. et al. (1999) ‘Structural Characterization of Saccharomyces cerevisiae Prion-like Protein Ure2’, J. Biol. Chem. 274(19): 13666–74.

    Article  Google Scholar 

  • Umland, T. C. et al. (2001) ‘The Crystal Structure of the Nitrogen Regulation Fragment of the Yeast Prion Protein Ure2p’, PNAS USA 98(4): 1459–64.

    Article  Google Scholar 

  • Wickner, R. B. (1994) ‘[URE3] as an Altered URE2 Protein: Evidence for a Prion Analog in Saccharomyces cerevisiae’, Science 264(5158): 566–9.

    Article  Google Scholar 

  • Wickner, R. B. et al. (1995) ‘[PSI] and [URE3] as Yeast Prions’, Yeast 11(16): 1671–85.

    Article  Google Scholar 

  • Wüthrich, K. (2001) The Way to NMR Structures of Proteins’, Nature Structural Biology 8: 923–5.

    Article  Google Scholar 

  • Zahn, R. et al. (2000) ‘NMR Solution Structure of the Human Prion Protein’, PNAS USA 97(1): 145–50.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2004 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Segal, J., Francoeur, E. (2004). Visualizing Prions: Graphic Representations and the Biography of Prions. In: Seguin, E. (eds) Infectious Processes. Science, Technology and Medicine in Modern History. Palgrave Macmillan, London. https://doi.org/10.1057/9780230524392_5

Download citation

  • DOI: https://doi.org/10.1057/9780230524392_5

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-51588-2

  • Online ISBN: 978-0-230-52439-2

  • eBook Packages: Palgrave History CollectionHistory (R0)

Publish with us

Policies and ethics