Skip to main content

The Early History of the Protein-only Hypothesis: Scientific Change and Multidisciplinary Research

  • Chapter
Infectious Processes

Abstract

In 1997, the American neurologist and biochemist Stanley B. Prusiner received the Nobel Prize in medicine for his discovery of ‘prions’ - a new biological principle of infection. Preceding this discovery lies a complicated history of the research on a number of neurodegenerative diseases, including the sheep disease scrapie. During the 1960s, research on scrapie revealed that the infectious agent had very unusual characteristics, and a variety of hypotheses regarding the principle of scrapie infection were advanced. However, not until the 1980s did a single hypothesis, Prusiner’s prion hypothesis — which is basically a protein-only hypothesis1 — succeed in attracting the attention of the majority of the scientific community. Interestingly, protein-only hypotheses had been advanced as early as the mid-1960s but without receiving any notable support from other scientists than those who had advanced them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. H. and E. A. Caspary (1967) ‘Nature of the Scrapie Virus’, British Medical Journal 3: 173.

    Article  Google Scholar 

  • Adams, D. H. and E. J. Field (1968) ‘The Infective Process in Scrapie’, Lancet 2: 714–16.

    Article  Google Scholar 

  • Alper, T. et al. (1966) ‘The Exceptionally Small Size of the Scrapie Agent’, Biochemical and Biophysical Research Communications 22: 278–84.

    Google Scholar 

  • Alper, T. et al. (1967) ‘Does the Agent of Scrapie Replicate without Nucleic Acid?’, Nature 214: 764–6.

    Article  Google Scholar 

  • Alper, T. et al. (1978) ‘The Scrapie Agent: Evidence against its Dependence for Replication on Intrinsic Nucleic Acid’, Journal of General Virology 41: 503–16.

    Article  Google Scholar 

  • Andersen, H. (1996) ‘Categorization, Anomalies, and the Discovery of Nuclear Fission’, Studies in the History and Philosophy of Modem Physics 27: 463–92.

    Article  Google Scholar 

  • Baltimore, D. (1970) ‘Viral RNA-dependent DNA Polymerase’, Nature 226: 1209–11.

    Article  Google Scholar 

  • Barker, P. et al. (2002) ‘Kuhn on Concepts and Categorization’, in T. Nickles (ed.) Thomas Kuhn. Cambridge: Cambridge University Press: 212–45.

    Chapter  Google Scholar 

  • Barry, R. A. et al. (1986) ‘Scrapie and Cellular Prion Proteins Share Polypeptide Epitopes’, Journal of Infectious Diseases 153: 848–54.

    Article  Google Scholar 

  • Basler, K. et al. (1986) ‘Scrapie and Cellular Prp Isoforms Are Encoded by the Same Chromosomal Gene’, Cell 46: 417–28.

    Article  Google Scholar 

  • Bastian, F. O. (1979) ‘Spiroplasma-like Inclusions in Creutzfeldt-Jakob Disease’, Archives of Pathology and Laboratory Medicine 103: 665–9.

    Google Scholar 

  • Bellinger-Kawahara, C. et al. (1987a) ‘Purified Scrapie Prions Resist Inactivation by Uv Irradiation’, Journal of Virology 61: 159–66.

    Google Scholar 

  • Bellinger-Kawahara, C. et al. (1987b) ‘Purified Scrapie Prions Resist Inactivation by Procedures That Hydrolyze, Modify, or Shear Nucleic Acids’, Virology 160: 271–4.

    Article  Google Scholar 

  • Bellinger-Kawahara, C. G. et al. (1988) ‘Scrapie Prion Liposomes and Rods Exhibit Target Sizes of 55,000 Da’, Virology 164: 537–41.

    Article  Google Scholar 

  • Bolton, D. C. and P. E. Bendheim (1988) ‘A Modified Host Protein Model of Scrapie’, Ciba Foundation Symposium 135: 164–81.

    Google Scholar 

  • Bolton, D. C. et al. (1982) ‘Identification of a Protein That Purifies with the Scrapie Prion’, Science 218: 1309–11.

    Article  Google Scholar 

  • Cantor, G. N. (1975) ‘The Edinburgh Phrenology Debate’, Ann. Sci. 32: 195–218.

    Article  Google Scholar 

  • Chandler, R. L. (1959) ‘Attempts to Demonstrate Antibodies in Scrapie Disease’, Veterinary Record 71: 58–9.

    Google Scholar 

  • Chandler, R. L. (1961) ‘Encephalopathy in Mice Produced by Inoculation with Scrapie Brain Material’, Lancet 1: 1378–9.

    Article  Google Scholar 

  • Chesebro, B. et al. (1985) ‘Identification of Scrapie Prion Protein-Specific Messenger-RNA in Scrapie-Infected and Uninfected Brain’, Nature 315: 331–3.

    Article  Google Scholar 

  • Cuillé, J. and P. L. Chelle (1936) ‘La Maladie Dite Tremblante du Mouton. Est-elle Inoculable?’, Comptes Rendus Heb. des Séances de lAcadémie des Sciences 203: 1552–4.

    Google Scholar 

  • Cuillé, J. and P. L. Chelle (1939) ‘Transmission Expérimentale de la Tremblante à La Chèvre’, Comptes Rendus Heb. des Séances de lAcadémie des Sciences 208: 1058–60.

    Google Scholar 

  • Darden, L. (1992) ‘Strategies for Anomaly Resolution’, in R. Giere (ed.) Cognitive Models of Science. Minnesota Studies in the Philosophy of Science Vol. XV, Minneapolis: University of Minnesota Press: 251–73.

    Google Scholar 

  • Darden, L. (1998) ‘Exemplars, Abstractions, and Anomalies: Representation and Theory Change in Mendelian and Molecular Genetics’, in G. Wolters, J. G. Lennox and P. McLaughlin (eds) Concepts, Theories and Rationality in the Biological Sciences: the Second Pittsburgh-Konstanz Colloquium in the Philosophy of Science. Konstanz/Pittsburgh: Universitätsverlag Konstanz/University of Pittsburgh Press: 137–58.

    Google Scholar 

  • Diener, T. O. (1972) ‘Is the Scrapie Agent a Viroid?’, Nature - New Biology 235: 218–19.

    Article  Google Scholar 

  • Diener, T. O. (1973) ‘Similarities between the Scrapie Agent and the Agent of the Potato Spindle Tuber Disease’, Annals of Clinical Research 5: 268–78.

    Google Scholar 

  • Eklund, C. M. et al. (1967) ‘Pathogenesis of Scrapie Virus Infection in the Mouse’, Journal of Infectious Diseases 117: 15–22.

    Article  Google Scholar 

  • Feyerabend, P. K. (1970) ‘Consolations for the Specialist’, in I. Lakatos and A. Musgrave (eds) Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press: 197–230.

    Google Scholar 

  • Field, E. J. (1966) ‘Transmission Experiments with Multiple Sclerosis: an Interim Report’, British Medical Journal 2: 564–5.

    Article  Google Scholar 

  • Gajdusek, D. C. and C. J. Gibbs (1968) ‘Infections of the Nervous System’, Research Publications Association for Research in Nervous and Mental Disease 44: 259.

    Google Scholar 

  • Gajdusek, D. C. et al. (1966) ‘Experimental Transmission of a Kuru-like Syndrome to Chimpanzees’, Nature 209: 794–6.

    Article  Google Scholar 

  • Gibbons, R. A. and G. D. Hunter (1967) ‘Nature of the Scrapie Agent’, Nature 215: 1041–3.

    Article  Google Scholar 

  • Gibbs, C. J. and D. C. Gajdusek (1969) ‘Infection as the Etiology of Spongiform Encephalopathy (Creutzfeldt-Jakob Disease)’, Science 165: 1023–5.

    Article  Google Scholar 

  • Gibbs, C. J. et al. (1968) ‘Creutzfeldt-Jakob Disease (Spongiform Encephalopathy): Transmission to the Chimpanzee’, Science 161: 388–9.

    Article  Google Scholar 

  • Gordon, W. S. (1946) ‘Advances in Veterinary Research’, Veterinary Record 58: 516–20.

    Google Scholar 

  • Greig, J. Russell (1950) ‘Scrapie in Sheep’, Journal of Comparative Pathology 60: 263–6.

    Article  Google Scholar 

  • Griffith, J. S. (1967) ‘Self-replication and Scrapie’, Nature 215: 1043–4.

    Article  Google Scholar 

  • Griffith, J. S. (1968a) ‘Mathematics of Cellular Control Processes. I. Negative Feedback to One Gene’, Journal of Theoretical Biology 20: 202–8.

    Article  Google Scholar 

  • Griffith, J. S. (1968b) ‘Mathematics of Cellular Control Processes. II. Positive Feedback to One Gene’, Journal of Theoretical Biology 20: 209–16.

    Article  Google Scholar 

  • Hadlow, W. J. (1959) ‘Scrapie and Kuru’, Lancet 2: 289–90.

    Article  Google Scholar 

  • Haig, D. A. et al. (1969) ‘Further Studies on the Inactivation of the Scrapie Agent by Ultraviolet Light’, Journal of General Virology 5: 455–7.

    Article  Google Scholar 

  • Hay, B. et al. (1987) ‘Evidence for a Secretory Form of the Cellular Prion Protein’, Biochemistry 26: 8110–15.

    Article  Google Scholar 

  • Hsiao, K. et al. (1989) ‘Linkage of a Prion Protein Missense Variant to Gerstmann-Straussler Syndrome’, Nature 338: 342–5.

    Article  Google Scholar 

  • Hull, D. et al. (1978) ‘Planck’s Principle. Do Younger Scientists Accept New Scientific Ideas with Greater Alacrity than Older Scientists?’, Science 202: 717–23.

    Article  Google Scholar 

  • Hunter, G. D. (1969) ‘The Size and Intracellular Location of the Scrapie Agent’, Biochemical Journal 114: 22P–23P.

    Article  Google Scholar 

  • Hunter, G. D. (1992) ‘The Search for the Scrapie Agent: 1961–1981’, in S. B. Prusiner et al. (eds) Prion Diseases of Humans and Animals. New York: Ellis Horwood: 23–9.

    Google Scholar 

  • Hunter, G. D. and G. C. Millson (1964) ‘Studies on the Heat Stability and Chromatographic Behaviour of the Scrapie Agent’, Journal of General Microbiology 37: 251–8.

    Article  Google Scholar 

  • Keyes, M. E. (1999a) ‘The Prion Challenge to the “Central Dogma” of Molecular Biology, 1965–1991. Part I: Prelude to Prions’, Studies in the History and Philosophy of Biological and Biomedical Sciences 30: 1–20.

    Article  Google Scholar 

  • Keyes, M. E. (1999b) ‘The Prion Challenge to the “Central Dogma” of Molecular Biology, 1965–1991. Part II: The Problem with Prions’, Studies in the History and Philosophy of Biological and Biomedical Sciences 30: 181–218.

    Article  Google Scholar 

  • Klatzo, I. et al. (1959) ‘Pathology of Kuru’, Laboratory Investigation 8: 799–847.

    Google Scholar 

  • Kuhn, T. S. (1962) The Structure of Scientific Revolutions, 2nd edn 1970. Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1970) ‘Falsification and the Methodology of Research Programmes’, in I. Lakatos and A. Musgrave (eds) Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press: 91–196.

    Google Scholar 

  • Laudan, L. (1977) Progress and Its Problems. Berkeley: University of California Press.

    Google Scholar 

  • Laurent, M. (1997) ‘Autocatalytic Processes in Cooperative Mechanisms of Prion Diseases’, FEBS Letters 407: 1–6.

    Article  Google Scholar 

  • M’Fadyean, J. (1918) ‘Scrapie’, Journal of Comparative Pathology and Therapeutics 31: 102–31.

    Article  Google Scholar 

  • M’Gowan, J. P. (1914) Investigation into the Disease of Sheep called ‘Scrapie’. Edinburgh: William Blackwood.

    Google Scholar 

  • Mckinley, M. P. et al. (1983) ‘A Protease-Resistant Protein Is a Structural Component of the Scrapie Prion’, Cell 35: 57–62.

    Article  Google Scholar 

  • McMullin, E. (1992) ‘Rationality and Paradigm Change in Science’, in P. Horwich (ed.) World Changes. Cambridge, Mass.: MIT Press: 55–80.

    Google Scholar 

  • Masiarz, F. R. et al. (1980) ‘Purification of the Scrapie Agent-Strategy and Recent Progress’, in A. Boese (ed.) Search for the Cause of Multiple Sclerosis and other Chronic Diseases of the Central Nervous System. Weinheim: Verlag Chemie: 321–32.

    Google Scholar 

  • Messeri, P. (1988) ‘Age Differences in the Reception of New Scientific Theories: the Case of Plate Tectonics’, Social Studies of Science 18: 91–112.

    Article  Google Scholar 

  • Narang, H. K. (1974) ‘Ruthenium Red and Lanthanum Nitrate a Possible Tracer and Negative Stain for Scrapie “Particles”?’, Acta Neuropathologica 29: 37–43.

    Article  Google Scholar 

  • Oesch, B. et al. (1985) ‘A Cellular Gene Encodes Scrapie Prp 27–30 Protein’, Cell 40: 735–46.

    Article  Google Scholar 

  • Oesch, B. et al. (1988) ‘Search for a Scrapie-specific Nucleic Acid: a Progress Report’, Ciba Foundation Symposium 135: 209–23.

    Google Scholar 

  • Parry, H. B. (1962) ‘Scrapie: a Transmissible and Hereditary Disease of Sheep’, Heredity 17: 75–105.

    Article  Google Scholar 

  • Pattison, I. H. (1965) ‘Resistance of the Scrapie Agent to Formalin’, Journal of Comparative Pathology 75: 159–64.

    Article  Google Scholar 

  • Pattison, I. H. (1966a) ‘Experiments with Scrapie with Special Reference to the Nature of the Agent and the Pathology of the Disease’, in D. C. Gajdusek et al. (eds) Slow, Latent, and Temperate Virus Infections. NINDB monograph No. 2. Public health service publication: 249–57.

    Google Scholar 

  • Pattison, I. H. (1966b) ‘The Relative Susceptibility of Sheep, Goats and Mice to Two Types of the Goat Scrapie Agent’, Research in Veterinary Science 7: 207–12.

    Google Scholar 

  • Pattison, I. H. (1970) ‘Recent Work on Scrapie’, Pathologie Biologie 18: 673–8.

    Google Scholar 

  • Pattison, I. H. (1988) ‘Fifty Years with Scrapie: a Personal Reminiscence’, Veterinary Record 123: 661–6.

    Article  Google Scholar 

  • Pattison, I. H. (1992) ‘A Sideways Look at the Scrapie Saga: 1732–1991’, in S. B. Prusiner et al. (eds) Prion Diseases of Humans and Animals. New York: Ellis Horwood: 15–22.

    Google Scholar 

  • Pattison, I. H. and K. M. Jones. (1967) ‘The Possible Nature of the Transmissible Agent of Scrapie’, Veterinary Record 80: 2–9.

    Article  Google Scholar 

  • Pattison, I. H. and G. C. Millson (1960) ‘Further Observations on the Experimental Production of Scrapie in Goats and Sheep’, fournal of Comparative Pathology and Therapeutics 70: 182–93.

    Article  Google Scholar 

  • Pattison, I. H. and Millson, G. C. (1961a) ‘Further Experimental Observations on Scrapie’, Journal of Comparative Pathology and Therapeutics 71: 350–9.

    Article  Google Scholar 

  • Pattison, I. H. and G. C. Millson (1961b) ‘Scrapie Produced Experimentally in Goats with Special Reference to the Clinical Syndrome’, Journal of Comparative Pathology and Therapeutics 71: 101–8.

    Article  Google Scholar 

  • Penrose, L. S. and R. Penrose (1957) ‘A Self-reproducing Analogue’, Nature 179: 1183.

    Article  Google Scholar 

  • Prusiner, S. B. (1982) ‘Novel Proteinaceous Infectious Particles Cause Scrapie’, Science 216: 136–44.

    Article  Google Scholar 

  • Prusiner, S. B. (1984) ‘Prions’, Scientific American 251: 48–57.

    Article  Google Scholar 

  • Prusiner, S. B. (1991) ‘Molecular-Biology of Prion Diseases’, Science 252: 1515–22.

    Article  Google Scholar 

  • Prusiner, S. B. (1995) ‘The Prion Diseases’, Scientific American 272: 30–7.

    Article  Google Scholar 

  • Prusiner, S. B. (1999) ‘Development of the Prion Concept’, in S. B. Prusiner (ed.) Prion Biology and Diseases. New York: Cold Spring Harbor Laboratory Press: 67–112.

    Google Scholar 

  • Prusiner, S. B. et al. (1981) ‘Scrapie Agent Contains a Hydrophobic Protein’, Proceedings of the National Academy of Sciences of the United States of America - Biological Sciences 78: 6675–9.

    Article  Google Scholar 

  • Prusiner, S. B. et al. (1982) ‘Further Purification and Characterization of Scrapie Prions’, Biochemistry 21: 6942–50.

    Article  Google Scholar 

  • Prusiner, S. B. et al. (1990) ‘Transgenetic Studies Implicate Interactions between Homologous PRP Isoforms in Scrapie Prion Replication’, Cell 63: 673–86.

    Article  Google Scholar 

  • Rappa, M. and K. Debackere (1993) ‘Youth and Scientific Innovation: the Role of Young Scientists in the Development of a New Field’, Minerva 31: 1–20.

    Article  Google Scholar 

  • Rohwer, R. G. and D. C. Gajdusek (1980) ‘Scrapie - Virus or Viroid. The Case for a Virus’, in A. Boese (ed.) Search for the Cause of Multiple Sclerosis and other Chronic Diseases of the Central Nervous System. Weinheim: Verlag Chemie: 333–55.

    Google Scholar 

  • Scott, M. et al. (1989) ‘Transgenic Mice Expressing Hamster Prion Protein Produce Species-Specific Scrapie Infectivity and Amyloid Plaques’, Cell 59: 847–57.

    Article  Google Scholar 

  • Sigurdsson, B. (1954) ‘Rida, a Chronic Encephalitis of Sheep’, British Veterinary Journal 110: 341–54.

    Google Scholar 

  • Stamp, J. T. (1962) ‘Scrapie: a Transmissible Disease of Sheep’, Veterinary Record 74: 357–62.

    Google Scholar 

  • Stamp, J. T. (1967) ‘Scrapie and its Wider Implications’, British Medical Bulletin 23: 133–7.

    Google Scholar 

  • Stockman, S. (1926) ‘Contribution to the Study of the Disease Known as Scrapie’, Journal of Comparative Pathology and Therapeutics 39: 42–71.

    Article  Google Scholar 

  • Temin, H. M. and S. Mizutani (1970) ‘RNA-dependent DNA-polymerase in Virions of Rous Sarcoma Virus’, Nature 226: 1211–13.

    Article  Google Scholar 

  • Toulmin, S. (1972) Human Understanding, Vol. 1. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Yost, C. S. et al. (1990) ‘Non-hydrophobic Extracytoplasmic Determinant of Stop Transfer in the Prion Protein’, Nature 343: 669–72.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2004 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Poulsen, MB.J., Andersen, H. (2004). The Early History of the Protein-only Hypothesis: Scientific Change and Multidisciplinary Research. In: Seguin, E. (eds) Infectious Processes. Science, Technology and Medicine in Modern History. Palgrave Macmillan, London. https://doi.org/10.1057/9780230524392_2

Download citation

  • DOI: https://doi.org/10.1057/9780230524392_2

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-51588-2

  • Online ISBN: 978-0-230-52439-2

  • eBook Packages: Palgrave History CollectionHistory (R0)

Publish with us

Policies and ethics