Skip to main content

A Key Sector Approach to the Environmentally Extended Input-Output Analysis of the UK Economy

  • Chapter
Sustainability Analysis
  • 377 Accesses

Abstract

For a very long time, Gross Domestic Product (GDP) has been the key variable at the heart of macroeconomic policies all over the world. Due to the efforts of ecological economists, and especially Herman Daly (2000), a new vision was proposed: the vision of sustainable development as a qualitative creative change, as opposed to quantitative growth. Three key elements seem to be crucial for socio-ecological transformation if our society is to achieve sustainable development, overcome growing energy and resource requirements and rising volumes of emissions and wastes, and facilitate change to renewable energy sources and the conservation of biodiversity: first, the framework of industrial ecology (Graedel and Allenby, 2002), which highlights the importance of the intersectoral flows of matter and energy required for the production of goods and services analyzed in detail throughout the life-cycle of a given product or service, or regional or national system; second, a system of tools for decision-making (Söderbaum, 2000) based on multi-criteria methods which, applied at different levels, would shift the patterns of decision-making towards decisions that are more socially equitable and more environment-friendly, as well as more economically sound; and third, a system of macroeconomic goals or sustainability assessment methods which dominate on the macroeconomic scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A. and Manning, T. (1983), ‘The use of input-output analysis in evaluating water resource development’, Canadian Journal of Agricultural Economics, 31(1), pp. 15–26.

    Article  Google Scholar 

  • Aroche-Reyes, F. (2003), ‘A qualitative input-output method to find basic economic structures’, Papers in Regional Science, 82(4), pp. 581–590.

    Article  Google Scholar 

  • Ayres, R. (1978), Resources, Environment and Economics. Applications of the Materials-Energy Balance Principle, Wiley, New York.

    Google Scholar 

  • Ayres, R. and Ayres L. (2002), A Handbook of Industrial Ecology, Edward Elgar, Cheltenham.

    Book  Google Scholar 

  • Ayres, R. and Kneese, A. (1969), ‘Production, consumption, and externalities’, American Economic Review, 59(3), pp. 282–297.

    Google Scholar 

  • Ayres, R. and Kneese, A. (1971), ‘Economic and ecological effects of a stationary economy”, Annual Review of Ecology and Systematics, 2, pp. 1–22.

    Article  Google Scholar 

  • Ayres, R. and Shapanka, A. (1976), ‘Explicit technological substitution forecasts in long-range input-output models’, Technological Forecasting and Social Change, 9(1–2), pp. 113–138.

    Article  Google Scholar 

  • Ayres R. and Simonis U. (1994), Industrial Metabolism: Restructuring for Sustainable Development, United Nations University Press, Tokyo.

    Google Scholar 

  • Ayres R., D., Arge R. and Kneese A. (1970), Economics and the Environment: A Materials Balance Approach, Resources for the Future, Washington, DC.

    Google Scholar 

  • Barker, T. (1981), ‘Projecting economic structure with a large-scale econometric model’, Futures, 13(6), pp. 458–467.

    Article  Google Scholar 

  • Barker, T., Borooah, V., van der Ploeg, R., Winters A. (1980), ‘The Cambridge multisectoral dynamic model: an instrument for national economic policy analysis’, Journal of Policy Modeling, 2(3), pp. 319–344.

    Article  Google Scholar 

  • Barker, T., Ekins, P. and Foxon, T. (2007), ‘Macroeconomic effects of efficiency policies for energy-intensive industries: the case of the UK climate change agreements, 2000–2010’, Energy Economics, 29(4), pp. 760–778.

    Article  Google Scholar 

  • Barker, T., Junankar, S., Pollitt H., Summerton P.(2007), ‘Carbon leakage from unilateral Environmental Tax Reforms in Europe, 1995–2005’, Energy Policy, 35(12), pp. 6281–6292.

    Article  Google Scholar 

  • Cardenete, M. and Sancho, F. (2006), ‘Missing links in key sector analysis’, Economic Systems Research, 18(3), pp. 319–325.

    Article  Google Scholar 

  • Carter, A. (1974), ‘Energy, environment, and economic growth’, The Bell Journal of Economics and Management Science, 5(2), pp. 578–592.

    Article  Google Scholar 

  • Carter, A. (1976), Energy and the Environment: A Structural Analysis, Brandeis University Press, Waltham, MA.

    Google Scholar 

  • Carter, A. and Petri, P. (1979), ‘Aspects of a new world development strategy II: factors affecting the long-term prospects of developing nations’, Journal of Policy Modeling, 1(3), pp. 359–381.

    Article  Google Scholar 

  • Common, M. and Stagl S. (2005), Ecological Economics: An Introduction, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Daly, H. (2000), Ecological Economics and the Ecology of Economics: Essays in Criticism, Edward Elgar, Cheltenham.

    Google Scholar 

  • Dietzenbacher, E. and Velázquez, E. (2007), ‘Analysing Andalusian virtual water trade in an input-output framework’, Regional Studies, 41(2), pp. 185–196.

    Article  Google Scholar 

  • Duchin, F. (1986), ‘Computers, input-output, and the future”, Journal of Economic Issues, 20(2), pp. 499–507.

    Article  Google Scholar 

  • Duchin, F. (1990), ‘The conversion of biological materials and wastes to useful products’, Structural Change and Economic Dynamics, 1(2), pp. 243–261.

    Article  Google Scholar 

  • Duchin, F. (1992), ‘Industrial input-output analysis: implications for industrial ecology’, Proceedings of the National Academy of Sciences of the United States of America, 89(3), pp. 851–855.

    Article  Google Scholar 

  • Duchin, F. (1994), Household Use and Disposal of Plastics: An Input-output Case Study for New York City, New York University, New York.

    Google Scholar 

  • Duchin, F. (1998), Structural Economics: Measuring Change in Technology, Lifestyles and the Environment, Island Press, Washington, DC.

    Google Scholar 

  • Duchin, F. (2004), Input-Output Economics and Material Flows, Rensselaer Polytechnic Institute, New York.

    Google Scholar 

  • Duchin, F. and Hertwich, E. (2003), Industrial Ecology, available at http://www.ecoeco.org/education_encyclopedia.php

    Google Scholar 

  • Duchin, F. and Szyld, D. (1985), ‘A Dynamic input-output model with assured positive output’, Metroeconomica, 37(3), pp. 269–282.

    Article  Google Scholar 

  • Ferrer, G. and Ayres, R. (2000), ‘The impact of remanufacturing in the economy’, Ecological Economics, 32(3), pp. 413–429.

    Article  Google Scholar 

  • Fischer-Kowalski, M. (1998), ‘Society’s metabolism: the intellectual history of materials flow analysis, Part I, 1860–1970’, Journal of Industrial Ecology, 2(1), pp. 61–78.

    Article  Google Scholar 

  • Fischer-Kowalski, M. and Hattler, W. (1998), ‘Society’s metabolism: the intellectual history of materials flow analysis, Part II, 1970–1998’, Journal of Industrial Ecology, 2(4), pp. 107–136.

    Article  Google Scholar 

  • Fontela, E. (1989), ‘Industrial structures and economic growth: an input-output perspective’, Economic Systems Research, 1(1), pp. 45–68.

    Article  Google Scholar 

  • Forsund, F. and Strom, S. (1976), ‘The generation of residual flows in Norway: an input-output approach’, Journal of Environmental Economics and Management, 3(2), pp. 129–141.

    Article  Google Scholar 

  • Gay, P. and Proops, J. (1993), ‘Carbon dioxide production by the UK economy: an input-output assessment’, Applied Energy, 44(2), pp. 113–130.

    Article  Google Scholar 

  • Giljum, S. (2004), ‘Trade, materials flows, and economic development in the South: the example of Chile’, Journal of Industrial Ecology, 8(1–2), pp. 241–261.

    Google Scholar 

  • Giljum, S. and Hubacek, K. (2004), ‘Alternative approaches of physical input-output analysis to estimate primary material inputs of production and consumption activities’, Economic Systems Research, 16(3), pp. 301–310.

    Article  Google Scholar 

  • Graedel, T. and Allenby, B. (2002), Industrial Ecology, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Gutmanis, I. (1975), ‘Input-output models in economic and environmental policy analyses’, Proceedings of the IEEE, 63(3), pp. 431–437.

    Article  Google Scholar 

  • Herendeen, R. and Tanaka, J. (1976), ‘Energy cost of living’, Energy, 1(2), pp. 165–178.

    Article  Google Scholar 

  • Hewings, G., Fonseca M., Guilhoto J., Sonis M. (1989), ‘Key sectors and structural change in the Brazilian economy: a comparison of alternative approaches and their policy implications’, Journal of Policy Modeling, 11(1), pp. 67–90.

    Article  Google Scholar 

  • Hirschman, A. (1958), The Strategy of Economic Development, Yale University Press, New Haven, CT.

    Google Scholar 

  • Hoekstra, R. (2005), Economic Growth, Material Flows and the Environment: New Applications of Structural Decomposition Analysis and Physical Input-Output Tables, Edward Elgar, Cheltenham, UK.

    Google Scholar 

  • Hoekstra, R. and van den Bergh, J. (2002), ‘Structural decomposition analysis of physical flows in the economy’, Environmental and Resource Economics, 23(3), pp. 357–378.

    Article  Google Scholar 

  • Janssen, R. (1993), Multiobjective Decision Support for Environmental Management, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Jasny, N. (1962), ‘The Russian economic balance and input-output analysis: a historical comment’, Soviet Studies, 14(1), pp. 75–80.

    Article  Google Scholar 

  • Kananen, I. et al. (1990), ‘Multiple objective analysis of input-output models for emergency management’, Operations Research, 38(2), pp. 193–201.

    Article  Google Scholar 

  • Kondo, Y. and Nakamura, S. (2005), ‘Waste input-output linear programming model with its application to eco-efficiency analysis’, Economic Systems Research, 17(4), pp. 393–408.

    Article  Google Scholar 

  • Kossov, V. (1964), ‘Regional input-output analysis in the USSR’, Papers in Regional Science, 14(1), pp. 175–181.

    Google Scholar 

  • Lantner, R. and Carluer, F. (2004), ‘Spatial dominance: a new approach to the estimation of interconnectedness in regional input-output tables’, The Annals of Regional Science, 38(3), pp. 451–467.

    Article  Google Scholar 

  • Lenzen, M. (2003), ‘Environmentally important paths, linkages and key sectors in the Australian economy’, Structural Change and Economic Dynamics, 14(1), pp. 1–34.

    Article  Google Scholar 

  • Lenzen, M. (2009), ‘Understanding virtual water flows: a multiregion input-output case study of Victoria’, Water Resources Research, 45(9), W09416.

    Article  Google Scholar 

  • Lenzen M. and Foran B. (2001), An input-output analysis of Australian water usage’, Water Policy, 3, pp. 321–340.

    Article  Google Scholar 

  • Leontief, W. (1936), ‘Quantitative input and output relations in the economic systems of the United States’, Review of Economics and Statistics, 18(3), pp. 105–125.

    Article  Google Scholar 

  • Leontief, W. (1949), ‘Recent developments in the study of interindustrial relationships’, American Economic Review, 39(3), pp. 211–225.

    Google Scholar 

  • Leontief, W. (1952), ‘Some basic problems of structural analysis’, Review of Economics and Statistics, 34(1), pp. 1–9.

    Article  Google Scholar 

  • Leontief, W. (1970), ‘Environmental repercussions and the economic structure: an input-output approach’, Review of Economics and Statistics, 52(3), pp. 262–271.

    Article  Google Scholar 

  • Leontief, W. (1974), ‘Structure of the world economy: outline of a simple input-output formulation’, Swedish Journal of Economics, 76(4), pp. 387–401.

    Article  Google Scholar 

  • Leontief, W. (1977a), ‘Natural resources, environmental disruption, and growth prospects of the developed and less developed countries’, Bulletin of the American Academy of Arts and Sciences, 30(8), pp. 20–30.

    Article  Google Scholar 

  • Leontief, W. (1977b), ‘Natural resources, environmental disruption, and the future world economy’, Journal of International Affairs, 31(2), p. 267.

    Google Scholar 

  • Leontief, W. (1977c), The Future of the World Economy: A United Nations Study, Oxford University Press, Oxford.

    Google Scholar 

  • Leontief, W. and Duchin, F. (1986), The Future Impact of Automation on Workers, Oxford University Press, New York.

    Google Scholar 

  • Leontief, W. and Ford, D. (1972), ‘Air pollution and the economic structure: empirical results of input-output computations’, in A. Brody and A. Carter (eds), Input-Output Techniques, North-Holland, Amsterdam.

    Google Scholar 

  • Luptáčik, M. and Böhm, B. (1994), ‘An environmental input-output model with multiple criteria’, Annals of Operations Research, 54(1), pp. 119–127.

    Article  Google Scholar 

  • Madlener, R. and Stagl, S. (2005), ‘Sustainability-guided promotion of renewable electricity generation’, Ecological Economics, 53(2), pp. 147–167.

    Article  Google Scholar 

  • Moffatt, I. and Hanley N. (2001), ‘Modelling sustainable development: systems dynamic and input-output approaches’, Environmental Modelling and Software with Environment Data News, 16, pp. 545–557.

    Article  Google Scholar 

  • Munda, G. (1995), Multicriteria Evaluation in a Fuzzy Environment, Physica-Verlag, Heidelberg.

    Book  Google Scholar 

  • Munda, G. (2005), ‘Multiple criteria decision analysis and sustainable development’, in Multiple-Criteria Decision Analysis: State of the Art Surveys, Springer, New York, pp. 953–986.

    Google Scholar 

  • Nakamura, S. (1999), ‘An interindustry approach to analyzing economic and environmental effects of the recycling of waste’, Ecological Economics, 28(1), pp. 133–145.

    Article  Google Scholar 

  • Nakamura, S. and Kondo, Y. (2002), ‘Recycling, landfill consumption, and CO2 emission: analysis by waste input-output model’, Journal of Material Cycles and Waste Management, 4(1), pp. 2–11.

    Google Scholar 

  • Nakamura, S. and Kondo, Y. (2006), ‘A waste input-output life-cycle cost analysis of the recycling of end-of-life electrical home appliances’, Ecological Economics, 57(3), pp. 494–506.

    Article  Google Scholar 

  • Park, S. (1982), ‘An input-output framework for analysing energy consumption’, Energy Economics, 4(2), pp. 105–110.

    Article  Google Scholar 

  • Peters, G. and Hertwich, E. (2006), ‘Pollution embodied in trade: the Norwegian case’, Global Environmental Change, 16(4), pp. 379–387.

    Article  Google Scholar 

  • Petri, P. (1977), ‘An introduction to the structure and application of The United Nations world model’, Applied Mathematical Modelling, 1(5), pp. 261–267.

    Article  Google Scholar 

  • Polenske, K. and Lin, X. (1993), ‘Conserving energy to reduce carbon dioxide emissions in China’, Structural Change and Economic Dynamics, 4(2), pp. 249–265.

    Article  Google Scholar 

  • Proops, J. (1977), ‘Input-output analysis and energy intensities: a comparison of some methodologies’, Applied Mathematical Modelling, 1(4), pp, 181–186.

    Article  Google Scholar 

  • Proops, J. (1984), ‘Modelling the energy-output ratio’, Energy Economics, 6(1), pp. 47–51.

    Article  Google Scholar 

  • Raa, T. (1986), ‘Applied dynamic input-output with distributed activities’, European Economic Review, 30(4), pp. 805–831.

    Article  Google Scholar 

  • Rasmussen, P. (1956), Studies in Intersectoral Relations, North-Holland, Amsterdam.

    Google Scholar 

  • Rey, G. and Tilanus, C. (1963), ‘Input-output forecasts for the Netherlands, 1949–1958’, Econometrica, 31(3), pp. 454–463.

    Article  Google Scholar 

  • Roy, B. (1985), Methodologie multicritere d’’aide a la decision, Economica, Paris.

    Google Scholar 

  • Schäfer, D. and Stahmer, C. (1989), ‘Input-output model for the analysis of environmental protection activities’, Economic Systems Research, 1(2), pp. 203–228.

    Article  Google Scholar 

  • Shmelev, S. and Giljum S. (2004), ‘Global extraction of renewable resources: a material flows analysis perspective’, Proceedings of the 8th Biennial Scientific Conference, Challenging Boundaries: Economics, Ecology and Governance, International Society for Ecological Economics, 11–14 July 2004, Montréal, Canada.

    Google Scholar 

  • Shmelev, S. and Powell, J. (2006), ‘Ecological-economic modelling for strategic regional waste management systems’, Ecological Economics, 59(1), pp. 115–130.

    Article  Google Scholar 

  • Shmelev, S. and Rodríguez-Labajos, B. (2009), ‘Dynamic multidimensional assessment of sustainability at the macro level: the case of Austria’, Ecological Economics, 68(10), pp. 2560–2573.

    Article  Google Scholar 

  • Simpson, D. and Tsukui, J. (1965), ‘The fundamental structure of input-output tables: an international comparison’, Review of Economics and Statistics, 47(4), pp. 434–446.

    Article  Google Scholar 

  • Söderbaum, P. (2000), Ecological Economics: A Political Economics Approach to Environment and Development, Earthscan, London.

    Google Scholar 

  • Sonis, M. and Hewings, G. (1999), ‘Economic landscapes: multiplier product matrix analysis for multiregional IO systems’, Hitotsubashi Journal of Economics, 40, pp. 59–74.

    Google Scholar 

  • Sonis, M. Guilhoto J., Hewings G., Martins. E. (1995), ‘Linkages, Key Sectors, And Structural Change: Some New Perspectives’, The Developing Economies, 33(3), pp. 243–246.

    Article  Google Scholar 

  • Sonis, M. and Hewings, G. (1998), ‘Economic complexity as network complication: multiregional input-output structural path analysis’, The Annals of Regional Science, 32(3), pp. 407–436.

    Article  Google Scholar 

  • Stone, R. (1984), ‘Model design and simulation’, Economic Modelling, 1(1), pp. 3–23.

    Article  Google Scholar 

  • Suh S. (ed.) (2009), Handbook of Input-Output Economics in Industrial Ecology, Springer, New York.

    Google Scholar 

  • Suh, S. (2005a), ‘Developing a sectoral environmental database for input-output analysis: the comprehensive environmental data archive of the US’, Economic Systems Research, 17(4), pp. 449–469.

    Article  Google Scholar 

  • Suh, S. (2005b), ‘Theory of materials and energy flow analysis in ecology and economics’, Ecological Modelling, 189(3–4), pp. 251–269.

    Article  Google Scholar 

  • Tarancon Moran, M. and del Rio Gonzalez, P. (2007), ‘A combined input-output and sensitivity analysis approach to analyse sector linkages and CO2 emissions’, Energy Economics, 29(3), pp. 578–597.

    Article  Google Scholar 

  • Tukker, A., Poliakov, E., Heijungs, R. et al. (2009), ‘Towards a Global Multi-Regional Environmentally Extended input-output Database’, Ecological Economics, 68(7), pp. 1928–1937.

    Article  Google Scholar 

  • Vogt, W., Mickle, M. and Aldermeshian, H. (1975), ‘A dynamic Leontief model for a productive system’. Proceedings of the IEEE, 63(3), pp. 438–443.

    Article  Google Scholar 

  • Wang, H. and Wang, Y. (2009), ‘An input-output analysis of virtual water uses of the three economic sectors in Beijing’, Water International, 34(4), pp. 451–467.

    Article  Google Scholar 

  • Wang, L., MacLean, H. and Adams, B. (2005), ‘Water resources management in Beijing using economic input-output modeling’, Canadian Journal of Civil Engineering, 32, pp. 753–764.

    Article  Google Scholar 

Download references

Authors

Copyright information

© 2012 Stanislav E. Shmelev

About this chapter

Cite this chapter

Shmelev, S.E. (2012). A Key Sector Approach to the Environmentally Extended Input-Output Analysis of the UK Economy. In: Sustainability Analysis. Palgrave Macmillan, London. https://doi.org/10.1057/9780230362437_5

Download citation

Publish with us

Policies and ethics