Skip to main content

Social Cognition and Cortical Function

An Evolutionary Perspective

  • Chapter
Action, Perception and the Brain

Part of the book series: New Directions in Philosophy and Cognitive Science ((NDPCS))

  • 226 Accesses

Abstract

The human brain sets us apart from the rest of our primate relatives. Humans have large brains compared with other primate species. Specific areas of brain, especially within the neocortex, have recently undergone rapid expansion, with most of this increase occurring within the last 500,000 years. Although understanding the causes and consequences of this brain expansion has long been a preoccupation, we still have limited evidence that points to the exact forces that drove the increase in the human brain. Across primates, however, there is an increasing body of evidence which links brain architecture to social cognition. In this chapter, we will review the patterns of gross brain evolution in vertebrates as a whole, and in primates in particular. We follow this discussion with a critical evaluation of what total brain size means in terms of cognitive function. Finally, we will focus on the substructures in the brain associated with social tasks, and whether there is evidence for exceptional increases in these areas in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, H. and Riecker, A. (2004). The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang, 89, 320–8.

    Article  Google Scholar 

  • Adolphs, R. (1999). Social cognition and the human brain. Trends in Cognitive Science, 3, 469–79.

    Article  Google Scholar 

  • Aiello, L. and Dunbar, R. (1993). Neocortex size, group size and the evolution of language. CurrAnthropol, 34, 184–93.

    Google Scholar 

  • Alexander, M.P., Benson, D.F., and Stuss, D.T. (1989). Frontal lobes and language. Brain and Language, 37, 656–91.

    Article  Google Scholar 

  • Allman, J., McLaughlin, T., and Hakeem, A.(1993). Brain weight and life-span in primate species. PNAS, 90, 118–22.

    Article  Google Scholar 

  • Bartels, A. and Zeki, S. (2004). The neural correlates of maternal and romantic love. Neuroimage, 21, 1,155–66.

    Article  Google Scholar 

  • Barton, R. A. (1996). Neocortex size and behavioural ecology in primates. Proceedings of the Royal Society of London Series B-Biological Sciences, 263, 173–7.

    Article  Google Scholar 

  • Baylis, G.C., Rolls, E.T. and Leonard, C.M. (1987). Functional subdivisions of the temporal lobe neocortex. Journal of Neuroscience, 7, 330–42.

    Google Scholar 

  • Beauchamp, G. and Fernández-Juricic, E. (2004). Is there a relationship between forebrain size and group size in birds? Evolutionary Ecology Research, 6, 833–42.

    Google Scholar 

  • Behrens, T., Hunt, L., and Rushworth, M. (2009). The Computation of Social Behavior. Science, 324,1, 160–4.

    Article  Google Scholar 

  • Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M., and Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353–62.

    Google Scholar 

  • Broca, P.P. (1861). Loss of speech, chronic softening and partial destruction of the anterior left lobe of the brain. Bulletin de la Société Anthropologique, 2, 235–8.

    Google Scholar 

  • Brothers, L. (1990). The social brain. Concepts Neurosci, 1, 27–51.

    Google Scholar 

  • Brothers, L. (1992). Perception of social acts in primates: cognition and neurobiology. Seminars in Neuroscience, 4, 409–14.

    Article  Google Scholar 

  • Brothers, L., Ringa, B., and Klinga, A. (1990). Response of neurons in the macaque amygdala to complex social stimuli. Behavioral Brain Research, 41, 199–213.

    Article  Google Scholar 

  • Brown, W. M. (2001). Natural selection of mammalian brain components. Trends in Ecology and Evolution, 16, 471–3.

    Article  Google Scholar 

  • Bshary, R., Winkler, W., and Fricke, H. (2002). Fish cognition: a primate’s eye view. Animal Cognition, 5, 1–13.

    Article  Google Scholar 

  • Bush, G., Luu, P., and Posner, M.I.(2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–22.

    Article  Google Scholar 

  • Byrne, R. W., and Whiten, A. (Eds) (1988). Machiavellian Intelligence. Oxford: Oxford University Press.

    Google Scholar 

  • Carrington, S. J., and Bailey, A. J. (2009). Are there Theory of Mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30, no. 2, 2, 313–35.

    Google Scholar 

  • Cavanna, A.E. and Trimble, M.R. (2006). The precuneus: a review of its functional anatomy and behavioral correlates. Brain, 129, 564–83.

    Article  Google Scholar 

  • Chance, S. A., Casanova, M. F., Switala, A. E., and Crow, T. J. (2006). Minicolumnar structure. Neuroscience, 143, no. 4,1041–1050.

    Article  Google Scholar 

  • Chittka, L., and Niven, J. (2009). Are Bigger Brains Better? Current Biology, 19,R995–R1,008.

    Article  Google Scholar 

  • Clark, D.A., Mitra, P.P., and Wang, S.S.H. (2001). Scalable architecture in mammalian brains. Nature, 411, 189–93.

    Article  Google Scholar 

  • Clutton-Brock, T. H. and Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology, 190, 309–323.

    Article  Google Scholar 

  • Craig, A.D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.

    Article  Google Scholar 

  • Critchley, H.D., Melmed, R. N., Featherstone, E., Mathias, C. J., and Dolan, R. J.(2001). Brain activity during biofeedback relaxation: A functional neuroimaging investigation. Brain 124,1,003–12.

    Article  Google Scholar 

  • Damasio, H., Grabowski, T., Frank, R., Galaburda, A.M., and Damasio, A.R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science, 264, 1,102–5.

    Article  Google Scholar 

  • Deacon, T. W. (1990). Fallacies of progression in theories of brain-size evolution. International Journal of Primatology, 11,193–236.

    Article  Google Scholar 

  • Desimone, R., Albright, T.D., Gross, C.G., and Bruce, C.J. (1984). Stimulusselective properties of inferior temporal neurons in the macaque. Journal of Neurosciences, 4, 2,051–62.

    Google Scholar 

  • Devue, C., Collettea, F., Balteau, E., Degueldre, C., Luxen, A., Maquet, P., Brédarta, S. (2007). Here I am: the cortical correlates of visual self-recognition. Brain Res, 1,143, 169–82.

    Article  Google Scholar 

  • de Waal, F. B. (2008). The thief in the mirror. PLoSBiol, 6, e201.

    Article  Google Scholar 

  • de Winter, W. and Oxnard, C.E. (2001). Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature, 409, 710–14.

    Article  Google Scholar 

  • Dunbar, R. I. M. (1992). Neocortex Size as a constraint on group-size in primates. Journal of Human Evolution, 22, 469–93.

    Article  Google Scholar 

  • Dunbar, R. I. M. (1998). The social brain hypothesis. EvolAnthrop, 6, 178–90.

    Google Scholar 

  • Dunbar, R.I.M. and Shultz, S. (2007a). Understanding primate brain evolution. Philosophical Transactions of the Royal Society B, 29, 649–58.

    Article  Google Scholar 

  • Dunbar, R. I. M., and Shultz, S. (2007b). Evolution in the social brain. Science, 317,1,344–7.

    Article  Google Scholar 

  • Elliott, R., Friston, K. J., and Dolan, R. J. (2000). Dissociable neural responses in human reward systems. J Neurosci, 20, 6,159–65.

    Google Scholar 

  • Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., Cadet, J. L., Kimes, A. S., and London, E. D. (2002). Decision-making in a risktaking task: a PET study. Neuropsychopharmacology, 26, 682–91.

    Article  Google Scholar 

  • Fink, G. R., Frackowiak, R. S., Pietrzyk, U., and Passingham, R. E. (1997). Multiple nonprimary motor areas in the human cortex. JNeurophysiol 77,2,164–74.

    Google Scholar 

  • Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., and Rizzolatti, G. (2005). Parietal Lobe: From Action Organization to Intention Understanding. Science, 308, 662–7.

    Article  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.

    Article  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (2002). Action representation and the inferior parietal lobule. In W. Prinz, and B. Hommel (Eds),Common Mechanisms in Perception and Action: Attention and Performance, Vol. XIX. Oxford: Oxford University Press, pp. 247–66.

    Google Scholar 

  • Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences 15, 20–25.

    Article  Google Scholar 

  • Grinband, J., Hirsch, J., and Ferrerra, V. P. (2006). A neural representation of categorization uncertainty in the human brain. Neuron, 49,757–63.

    Article  Google Scholar 

  • Harcourt, A.H. and de Waal, F.B.M. (1992). Coalitions and alliances in humans and other animals. Oxford: Oxford University Press.

    Google Scholar 

  • Harvey, P.H., Clutton-Brock, T.H. and Mace, G.M. (1980). Brain size and ecology in small mammals and primates. PNAS, 77,4,387–9.

    Article  Google Scholar 

  • Healy, S.D., and Rowe, C. (2007).A critique of comparative studies of brain size. Proceedings of the Royal Society of London Series B-Biological Sciences, 274, 453–64.

    Article  Google Scholar 

  • Hecaen, H. and Albert, M. L. (1978). Human Neuropsychology. New York: J. Wiley.

    Google Scholar 

  • Heyes, C.M. (1993) Imitation, culture and cognition. Animal Behaviour 46, 999–1010.

    Article  Google Scholar 

  • Hickok, G. (2008). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21, 1,229–43.

    Article  Google Scholar 

  • Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., and Camerer, C.F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310, 1,680–3.

    Article  Google Scholar 

  • Huettel, S. A., Song, A. W., and McCarthy, G. (2005). Decisions under uncertainty: probabilistic context influences activation of prefrontal and parietal cortices. J Neurosci, 25, 3,304 –11.

    Article  Google Scholar 

  • Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner, B. T., and Platt, M. L. (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron, 49, 765–75.

    Article  Google Scholar 

  • Humphrey, N.K. (1976). The social function of intellect. In P.P.G. Bateson and R.A. Hinde(Eds),Growing points in ethology. Cambridge, UK: Cambridge University Press, pp. 303–17.

    Google Scholar 

  • Jerison, H. J. (1973). Evolution of the Brain and Intelligence. Academic Press, New York. Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 29, 501–6.

    Google Scholar 

  • Kanwisher, N., McDermott, J., and Chun, M.M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. JNeurosci, 17, 4,302–11.

    Google Scholar 

  • Kendrick, K.M., da Costa, A.P., Leigh, A.E., Hinton, M.R., and Peirce, J.W. (2001). Sheep don’t forget a face. Nature, 414, 165–6.

    Article  Google Scholar 

  • Keysers, C., and Gazzola, V. (2006). Towards a unifying neural theory of social cognition. Prog Brain Res, 156,379–401.

    Article  Google Scholar 

  • Koelsch, S., Fritz, T., v. Cramon, D. Y., Muller, K., and Friederici, A. D. (2006). Investigating emotion with music: an fMRI study. Hum Brain Mapp, 27, 239–50.

    Article  Google Scholar 

  • Kudo, H., and Dunbar, R. I. M. (2001). Neocortex size and social network size. AnimBehav, 62, 711.

    Google Scholar 

  • Luu, P. Flaisch, T., and Tucker, D.M. (2000). Medial frontal cortex in action monitoring. JNeurosci, 20, 464–9.

    Google Scholar 

  • Mahon, B. Z., and Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology (Paris), 102, 59–70.

    Article  Google Scholar 

  • Martin, R. D. (1981). Relative brain size and basal metabolic-rate in terrestrial vertebrates. Nature, 293, 57–60.

    Article  Google Scholar 

  • Miller, E.K. and Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24,167–202.

    Article  Google Scholar 

  • Mitchell, J.P. (2008) Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex 18, 262–271.

    Article  Google Scholar 

  • O’Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J., and Andrews, C.(2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.

    Article  Google Scholar 

  • Parr, L.A. and De Waal, F.B.M. (1999). Visual kin recognition in chimpanzees. Nature, 399, 647–8.

    Article  Google Scholar 

  • Paulus, M. P., Rogalsky, C., and Simmons, A. (2003). Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. NeuroImage, 19, 1,439 –48.

    Article  Google Scholar 

  • Pawlowski, B., Lowen, C. B., and Dunbar, R. I. M. (1998). Neocortex size, social skills and mating success in primates. Behaviour 135, 357–68.

    Article  Google Scholar 

  • Penfield, W., and Faulk, M. E. (1955). The insula; further observations on its function. Brain, 78, no. 4,445–70.

    Article  Google Scholar 

  • Perrett, D. I., Smith, P. A., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., and Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R SocLond B BiolSci,223, no. 1,232, 293–317.

    Article  Google Scholar 

  • Perrett, D.I., Mistlin, A.J., Harries, M.H., and Chitty, A.J. (1990). Understanding the visual appearance and consequence of hand action. Vision and action: the control of grasping. Ablex: Norwood, New Jersey.

    Google Scholar 

  • Platel, H., Price, C., Baron, J.C., Wise, R., Lambert, J., Frackowiak, R.S., Lechevalier, B., and Eustache, F. (1997). The structural components of music perception. A functional anatomical study. Brain, 120, 229–43.

    Article  Google Scholar 

  • Puce, A., Allison, T., Bentin, S., Gore, J.C., and McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. JNeurosci, 18, 2,188–99.

    Google Scholar 

  • Quiroga, R.Q. and Kreiman, G.(2010). Postscript: about grandmother cells and Jennifer Aniston neurons. Psychological Review, 117, 297–9.

    Article  Google Scholar 

  • Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1,102–7.

    Article  Google Scholar 

  • Rilling, J. K. and Insel, T. R. (1998). Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain, Behavior & Evolution, 52, 308–14.

    Article  Google Scholar 

  • Rizzolatti, G., and Craighero, L. (2004). The Mirror-Neuron System. Annual Rev Neurosci, 27, 169–92.

    Article  Google Scholar 

  • Rizzolatti, G., Fogassi, L., and Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nat RevNeurosci, 2, 661–70.

    Article  Google Scholar 

  • Rolls, E. T., Hornak, J., Wade, D., and McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J NeurolNeurosurgPsychiat, 57, 1, 518–24.

    Google Scholar 

  • Saxe, R. and Kanwisher, N. (2003). People thinking about thinking people. The role of the temporoparietal junction in “theory of mind”. NeuroImage 19, 1835–1842.

    Article  Google Scholar 

  • Saxe R. and Powell L.J. (2006) It’s the thought that counts: specific brain regions for one component of theory of mind. Psychological Science 17, 692–699.

    Article  Google Scholar 

  • Saxe R. and Wexler A. (2005) Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia 43, 1391–1399.

    Article  Google Scholar 

  • Schoenemann, P.T., Sheehan, M.J., and Glotzer, L. D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neuroscience, 8, 242–52.

    Article  Google Scholar 

  • Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., and Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. JNeurosci, 27, 2,349–56.

    Article  Google Scholar 

  • Semendeferi, K., Damasio, H., and Frank, R. (1997). The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. Journal of Human Evolution, 32, 375–88.

    Article  Google Scholar 

  • Shimeld, S.M. and Holland, P.W.H. (2000). Vertebrate innovations. PNAS, 97, 4,449–52.

    Article  Google Scholar 

  • Shultz, S. (in press). Primate social evolution: bonding and dispersal patterns revisited. International Journal of Primatology.

    Google Scholar 

  • Shultz, S., and Dunbar, R. I. M. (2007). The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proceedings of the Royal Society, London B, 274,2,429–36.

    Google Scholar 

  • Shultz, S. and Dunbar, R. I. M. (2010). Species differences in executive function correlate with brain size across non-human primates. Journal of Comparative Psychology, 124, 252–60.

    Article  Google Scholar 

  • Stephan, H., Frahm, H., and Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologica, 35, 1–29.

    Article  Google Scholar 

  • Stuss, D.T., and Benson, D.F. (1986). The frontal lobes. New York: Raven Press.

    Google Scholar 

  • Swanson, L.W. and Petrovich, G.D. (1998). What is the amygdala? Trends in Neurosciences, 21, 323–31.

    Article  Google Scholar 

  • Vogt, B.A., Finch, D.M., and Olson, C.R. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex, 2, 435–43.

    Google Scholar 

  • Wernicke, C. (1874). Der Aphasische Symptomencomplex. Breslau: Cohn and Weigert.

    Google Scholar 

  • Wyles, J.S., Kunkelt, J.G., and Wilson, A.C. (1983). Birds, behavior, and anatomical evolution: rates of evolution/nongenetic propagation of new habits/brain size. PNAS, 80, 4, 394–7.

    Google Scholar 

  • Zhang, K., and Sejnowski, T.J. (2000).A universal scaling law between gray matter and white matter of cerebral cortex. PNAS, 97, 5,621–6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2012 Susanne Shultz and Robin I.M. Dunbar

About this chapter

Cite this chapter

Shultz, S., Dunbar, R.I. (2012). Social Cognition and Cortical Function. In: Schulkin, J. (eds) Action, Perception and the Brain. New Directions in Philosophy and Cognitive Science. Palgrave Macmillan, London. https://doi.org/10.1057/9780230360792_3

Download citation

Publish with us

Policies and ethics