Skip to main content

Evolution of Development

  • Chapter
  • 136 Accesses

Abstract

The apparent mystery of evolution, in which original ensembles of molecules come to have the structure and complexity of fully living, intelligent forms, seems to be repeated in compressed form in the development of individuals. The changes that take place in living systems from their moment of conception — and, even more, the intricate patterns that they form — have intrigued observers since Ancient Greece. How can complex structures arise from simpler ones, along an orderly trajectory, in such a short period of time? This is the apparent mystery of development. In this chapter, I want to show that development is being slowly demystified: but, more importantly that it is not merely a passive process of growth to maturity from smaller origins. Rather development has itself evolved as another crucial bridge to the evolution of complex intelligent systems: in fact, in each organism, development is an active, intelligent system in its own right.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Spitzer, N.C. (2009) ‘Neuroscience: A bar code for differentiation’, Nature, 458, 843–4.

    Article  Google Scholar 

  2. Pigliucci, M. (2003) ‘The new evolutionary synthesis: Around the corner or impossible chimaera?’ The Quarterly Review of Biology, 78, 449–53.

    Article  Google Scholar 

  3. Lickliter, R. (2008) ‘Developmental dynamics: The new view from the life sciences’, in Fogel, A., King, B.J. and Shanker, S. (eds) Human Development in the Twenty-First Century: Visionary Ideas from Systems Scientists, Cambridge: Cambridge University Press.

    Google Scholar 

  4. Müller, G.B. (2008) ‘Evo-devo: Extending the evolutionary synthesis’, Nature Reviews: Genetics, 8, 943–8.

    Article  Google Scholar 

  5. Kaiser, D. (2001) ‘Building a multicellular organism’, Annual Review of Genetics, 35, 103–23.

    Article  Google Scholar 

  6. Turing, A.M. (1952) ‘The chemical basis of morphogenesis’, Philosophical Transactions of the Royal Society, Series B, 237, 37–72.

    Article  Google Scholar 

  7. Wolpert, L. (1969) ‘Positional information and the spatial pattern of cellular differentiation’, Journal of Theoretical Biology, 25, 1–47.

    Article  Google Scholar 

  8. Holloway, D.M., Reinitz, J., Spirov, A. and Vanario-Alonso, C.E. (2002) ‘Sharp borders from fuzzy gradients’, Trends in Genetics, 18, 385–7.

    Article  Google Scholar 

  9. Schier, A.F. and Needleman, D. (2009) ‘Developmental biology: Rise of the source-sink model’, Nature, 461, 480–1.

    Article  Google Scholar 

  10. Lewis, J., Hanisch, A. and Holder, M. (2009) ‘Notch signaling, the segmentation clock, and the patterning of vertebrate somites’, Journal of Biology, 8, 44–5.

    Article  Google Scholar 

  11. Vogel, G. (2008) ‘Breakthrough of the year: Reprogramming cells’, Science, 322, 1766–7.

    Article  Google Scholar 

  12. Weinstein, D.C., and Hemmati-Brivanlou, A. (1999) ‘Neural induction’, Annual Review of Cell and Developmental Biology, 15, 411–33.

    Article  Google Scholar 

  13. Lupo, G., Harris, W.A., Barsacchi, G. and Vignali, R. (2002) ‘Induction and patterning of the telencephalon in Xenopus laevis’, Development, 129, 5421–36.

    Article  Google Scholar 

  14. Chong, L. and Ray, L.B. (2002) ‘Whole-istic biology’, Science, 259, 1661.

    Article  Google Scholar 

  15. Schneider, R.A. and Helms, J.A. (2003) ‘The cellular and molecular origins of beak morphology’, Science, 299, 565–8.

    Article  Google Scholar 

  16. Nijhout, F. and Emlen, D.J. (1998) ‘Competition among body parts in the development and evolution of insect morphology’, Proceedings of the National Academy of Sciences, 95, 3685–9.

    Article  Google Scholar 

  17. Stevens, C.F. (2009) ‘Darwin and Huxley revisited: The origin of allometry’, Journal of Biology, 8(2), 14.

    Article  Google Scholar 

  18. Arnold, S.J. and Robertson, E.J. (2009) ‘Making a commitment: Cell lineage allocation and axis patterning in the early mouse embryo’, Nature Reviews: Molecular Cell Biology, 10, 91–103.

    Article  Google Scholar 

  19. Coen, E. (1999) The Art of Genes. How Organisms Make Themselves, Oxford: Oxford University Press.

    Google Scholar 

  20. Patel, N.H. (2004) ‘Time, space and genomes’, Nature, 431, 28–9.

    Article  Google Scholar 

  21. Pearson, J.C., Lemons, D. and McGinnis, W. (2005) ‘Modulating Hox gene functions during animal body patterning’, Nature Reviews: Genetics, 6, 893–904.

    Article  Google Scholar 

  22. Lall, S. and Patel, N.H. (2001) ‘Conservation and divergence in molecular mechanisms of axis formation’, Annual Review of Genetics, 35, 407–37.

    Article  Google Scholar 

  23. Kmita, M. and Duboule, D. (2003) ‘Organizing axes in time and space; 25 years of colinear tinkering’, Science, 301, 333–5.

    Article  Google Scholar 

  24. Riechmann, V. and Ephrussi, A. (2001) ‘Axes formation during Drosophila oogenesis’, Current Opinion in Genetics and Development, 11, 374–83.

    Article  Google Scholar 

  25. Morisato, D. and Anderson, K.V. (1995) ‘Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo’, Annual Review of Genetics, 29, 371–99.

    Article  Google Scholar 

  26. Lander, A. (2007) ‘Morpheus Unbound: Reimagining the morphogen gradient’, Cell, 128, 245–56.

    Article  Google Scholar 

  27. Ochoa-Espinosa, A., Yu, D., Tsirigos, A., Struffi, P. and Small, S. (2009) ‘Anterior-posterior positional information in the absence of a strong Bicoid gradient’, Proceedings of the National Academy of Sciences, 106, 3823–8.

    Article  Google Scholar 

  28. Soshnikova, N. and Duboule, D. (2009) ‘Epigenetic temporal control of mouse Hox genes in vivo’, Science, 324, 1320–23.

    Google Scholar 

  29. Sieweke, M.H. and Graf, T. (1998) ‘A transcription factor party in blood cell differentiation’, Current Opinion in Genetics and Development, 8, p. 549.

    Article  Google Scholar 

  30. Huang S., Eichler G., Bar-Yam Y. and Ingber D.E. (2005) ‘Cell fates as highdimensional attractor states of a complex gene regulatory network’, Physical Review Letters, 94.

    Google Scholar 

  31. Flatt, T. (2005) ‘The evolutionary genetics of canalization’, The Quarterly Review of Biology, 80, 287–317.

    Article  Google Scholar 

  32. Wilkins, A.S. (2008) ‘Canalisation: A molecular genetic perspective’, BioEssays, 19, 257–62.

    Article  Google Scholar 

  33. Schlichting, T.D. and Pigliucci, M. (1998) Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer.

    Google Scholar 

  34. Polaczyk, P.J., Gasperinin, R. and Gibson, G. (1998) ‘Naturally occurring genetic variation affects Drosophila photoreceptor determination’, Developmental Genetics and Evolution, 207, 462–70.

    Article  Google Scholar 

  35. Gibson, G. and Wagner, G. (2000) ‘Canalization in evolutionary genetics: A stabilizing theory?’ BioEssays, 22, 372–80.

    Article  Google Scholar 

  36. Rutherford, S.L. and Lindquist (1998) ‘Hsp90 as a capacitor for morphological evolution’, Nature, 396, 336–42.

    Article  Google Scholar 

  37. Manu and Surkova, S. et al. (2009) ‘Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors’, PLoS Computational Biollogy, 5, e1000303.

    Article  Google Scholar 

  38. Rose, C.R. (2005) ‘Integrating ecology and developmental biology to explain the timing of frog metamorphosis’, Trends in Ecology and Evolution, 20, 129–35.

    Article  Google Scholar 

  39. Dent-Read, C. and Zukow-Goldring, P. (1997) ‘Epigenetic systems’, in C. Dent-Read and P. Zukow-Goldring (eds) Evolving Explanations of Development, Washington, D.C.: American Psychological Association. p. 454.

    Google Scholar 

  40. Gardner, H. (1984) Frames of Mind: The Theory of Multiple Intelligences, London: Heinemann. pp. 56–7.

    Google Scholar 

  41. Stearns, S.C. (1989) ‘The evolutionary significance of phenotypic plasticity’, BioScience, 39, p. 442.

    Article  Google Scholar 

  42. Agrawal A.A., Laforsch, C. and Tollrian, R. (1999) ‘Transgenerational induction of defenses in animals and plants’, Nature, 401, 60–63.

    Article  Google Scholar 

  43. Van Buskirk, J. and Relyea, R.A. (1998) ‘Selection for phenotypic plasticity in Rana sylvatica tadpoles’, Biological Journal of the Linnaean Society, 65, 301–28.

    Article  Google Scholar 

  44. Dodson, S. (1989) ‘Predator-induced reaction norms’, BioScience, 39, 447–52.

    Article  Google Scholar 

  45. Piaget, J. (1980) Adaptation and Intelligence, Chicago: University of Chicago Press.

    Google Scholar 

  46. Nijhout, H.F. (2003) ‘Gradients, diffusion and genes in pattern formation’, in Müller, G. and Newman, S. (eds) Origination of Organismal Form, Cambridge, MA: MIT Press.

    Google Scholar 

  47. Gilbert, S.F. (1997) Developmental Biology. Fifth edition, Sunderland, MA: Sinauer Associates.

    Google Scholar 

  48. Gilbert, S.F. (2001) ‘Ecological developmental biology: Developmental biology meets the real world’, Developmental Biology, 233, 1–12.

    Article  Google Scholar 

  49. Crespi, E.J. and Denver, R.J. (2005) ‘Ancient origins of human developmental plasticity’, American Journal of Human Biology, 17, p. 51.

    Article  Google Scholar 

  50. Horton, T.H. (2005) ‘Fetal origins of developmental plasticity: Animal models of induced life history variation’, American Journal of Human Biology, 17, 34–43.

    Article  Google Scholar 

  51. Harper, L.V. (2005) ‘Epigenetic inheritance and the intergenerational transfer of experience’, Psychological Bulletin, 131, 340–60.

    Article  Google Scholar 

  52. Richardson, K. and Norgate, S. (2008) ‘Behaviour genetic models and realities’, Human Development, 49, 354–58.

    Google Scholar 

  53. Blakemore, C. and Van Sluyters, R.C. (1975) ‘Innate and environmental factors in the development of the kitten’s visual cortex’, Journal of Physiology, 248, 663–716.

    Article  Google Scholar 

  54. Sur, M. (1993) ‘Cortical specification: Microcircuits, perceptual identity, and an overall perspective’, Perspectives on Developmental Neurology, 1, 109–13.

    Google Scholar 

  55. Tropea, D., Van Wart, A. and Sur, M. (2009) ‘Molecular mechanisms of experience-dependent plasticity in visual cortex’, Philosophical Transactions of the Royal Society, Series B, 364, 341–55.

    Article  Google Scholar 

  56. Casal, J.J., Fankhauser, C., Coupland, G. and Blazquez, M.A. (2004) ‘Signalling for developmental plasticity’, Trends in Plant Science, 9, 309–15.

    Article  Google Scholar 

  57. Rose, C.R. (2005) ‘Integrating ecology and developmental biology to explain the timing of frog metamorphosis’, Trends in Ecology and Evolution, 20, 129–35.

    Article  Google Scholar 

  58. Mondor, E.B., Tremblay, M.N. and Lindroth, R.L. (2004) ‘Transgenerational phenotypic plasticity under future atmospheric conditions’, Ecology Letters, 7, 941–946.

    Article  Google Scholar 

  59. Mondor, E.B., Tremblay, M.N., Awmack, C.S. and Lindroth, R.L. (2005) ‘Altered genotypic and phenotypic frequencies under enriched CO2 and O3 atmospheres’, Global Change Biology, 11, 1990–6.

    Google Scholar 

  60. Denver, R.J. (1997) ‘Proximater mechanisms of phenotypic plasticity in amphibian metamorphosis’, American Zoologist, 37, p. 174.

    Article  Google Scholar 

  61. Boorse, G.C. and Denver, R.J. (2004) ‘Endocrine mechanisms underlying plasticity in metamorphic timing in spadefoot toads’, Integrative and Comparative Biology, 43, 646–57.

    Article  Google Scholar 

  62. Li, X-Q. (2008) ‘Developmental and environmental variation in genomes’, Heredity, 102, 323–9.

    Article  Google Scholar 

  63. Shachar-Dadon, A., Schulkin, J. and Leshem, M. (2009) ‘Adversity before conception will affect adult progeny in rats’, Developmental Psychology, 45, 9–16.

    Article  Google Scholar 

  64. Shanks, N., Windle, R.J., Perks, P.A., Harbuz, M.S., Jessop, D.S., Ingram, C.D. and Lightman, S.L. (2000) ‘Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation’, Proceedings of the National Academy of Sciences, 97, 5645–50.

    Article  Google Scholar 

  65. Minugh-Purvis, N. and McNamara, K.J. (2002) Human Evolution through Developmental Change, New York: Johns Hopkins University Press.

    Google Scholar 

  66. Yeh, P.J. and Price, T.D. (2004) ‘Adaptive phenotypic plasticity and the successfull colonization of a novel environment’, The American Naturalist, 164, 531–42.

    Article  Google Scholar 

  67. Agrawal, A.A. (2001) ‘Phenotypic plasticity in the interactions and evolution of species’, Science, 294, 321–26.

    Article  Google Scholar 

  68. Moczek, A.P. and Nijhout, H.F. (2003) ‘Rapid evolution of a polyphenic threshold’, Evolution and Development, 5, 259–68.

    Article  Google Scholar 

  69. Dushek, J. (2002) ‘It’s the ecology stupid!’, Nature, 418, 578–9.

    Article  Google Scholar 

  70. Baldwin, J.M. (1896) ‘A new factor in evolution’, American Naturalist, 30, 441–451.

    Article  Google Scholar 

  71. Turney, P. (1996) ‘How to shift bias: Lessons from the Baldwin effect’, Evolutionary Computation, 4, 271–95.

    Article  Google Scholar 

  72. Tollrian, R. and Heibl, C. (2004) ‘Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones’, Functional Ecology, 18, 497–502.

    Article  Google Scholar 

  73. Tramontin, A.D. and Brenowitz, E.A. (2000) ‘Seasonal plasticity in the adult brain’, Trends in Neuroscience, 23, 251–8.

    Article  Google Scholar 

  74. Gottlieb, G. (1991) ‘Experiential development of behavioral development: theory’, Developmental Psychology, 27, p. 9.

    Google Scholar 

  75. Rollo, D.C. (1994) Phenotypes: Their Epigenetics, Ecology and Evolution, London: Chapman and Hall.

    Google Scholar 

  76. Mayr, E. (1970) Population, Species and Evolution, Cambridge, MA: Belknap Press.

    Google Scholar 

  77. Bateson, P. (1988) ‘The active role of behavior in evolution’, in Ho, M-W. and Fox, S.W. (eds) Evolutionary Processes and Metaphors, Chichester: Wiley.

    Google Scholar 

  78. Mayr, E. (1974) ‘Behavior programs and evolutionary strategies’, American Scientist, 62, 650–9.

    Google Scholar 

  79. Purves, D. and Lichtman, W. (1985) Principles of Neural Development, Sunderland, MA: Sinauer, p. 141.

    Google Scholar 

  80. Goldberg, J.L. (2003) ‘How does an axon grow?’, Genes and Development, 17, 941–58.

    Article  Google Scholar 

  81. Levit, P. (2004) ‘Sealing cortical cell fate’, Science, 303, 48–49.

    Article  Google Scholar 

  82. Mueller, B.K. (1999) ‘Growth cone guidance: First steps towards a deeper understanding’, Annual Review of Neuroscience, 22, 351–88.

    Article  Google Scholar 

  83. Brinks, H., Conrad, S. et al. (2004) ‘The repulsive guidance molecule RGMa is involved in the formation of afferent connections in the dentate gyrus’, Journal of Neuroscience, 24, 3862–9.

    Article  Google Scholar 

  84. Huganir, R.L. and Zipursky, S.L. (2004) ‘Signaling mechanisms: Editorial overview’, Current Opinion in Neurobiology, 14, 267–71.

    Article  Google Scholar 

  85. Petrovic, M. and Hummel, T. (2008) ‘Temporal identity in axonal target layer recognition’, Nature, 456, 800–3.

    Article  Google Scholar 

  86. Grubb, M.S. and Thompson, I.D. (2004) ‘The influence of early experience on the development of sensory systems’, Current Opinion in Neurobiology, 14, 503–512.

    Article  Google Scholar 

  87. Weliky, M. and Katz, L.C. (1999) ‘Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo’, Science, 285, 599–604.

    Article  Google Scholar 

  88. Fu, Y-F., Djupsund, K., Gao, H., Hayden, B., Shen, K. and Dan, Y. (2002) ‘Temporal specificity in the cortical plasticity of visual space representation’, Science, 296, 1999–2004.

    Article  Google Scholar 

  89. McCormick, D.A. (1999) ‘Spontaneous activity: signal or noise?’, Science, 285, 541–2.

    Article  Google Scholar 

  90. Roberts, J.S. (2004) Embryology, Epigenesis, and Evolution: Taking Development Seriously, Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Authors

Copyright information

© 2010 Ken Richardson

About this chapter

Cite this chapter

Richardson, K. (2010). Evolution of Development. In: The Evolution of Intelligent Systems. Palgrave Macmillan, London. https://doi.org/10.1057/9780230299245_5

Download citation

Publish with us

Policies and ethics