Skip to main content

Why Flexibility

  • Chapter
  • First Online:
Energy Investments
  • 531 Accesses

Abstract

This chapter sets the scene for the application of real options reasoning by first demonstrating the nature of energy market volatilities. Specifically, the chapter examines how supply costs differ for fossil fuel-based technologies and renewables, and how their uncorrelated volatilities hedge portfolio payoffs through variable prices. Managerial flexibility is observed to create portfolio value by not supplying when supply costs exceed energy prices, in order to avoid losses. Volumes are scaled up or down when demand varies. The choice of supplies mix is used to optimise hedges. Mixed portfolios embed a call option on rising payoffs under increasing prices or a put option on future fuel costs liabilities. These values are compared with NPVs, when fixed prices or volumes result from rigid obligations to supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arrow, K. J. (1964). The role of securities in the optimal allocation of risk bearing. Review of Economic Studies, 31(2), 91–96.

    Article  Google Scholar 

  • Awerbuch, S. (2006). Portfolio based electricity generation planning: Policy implications for renewable and energy security. Mitigation and Adaptation Strategies for Global Change, 11, 693–710.

    Article  Google Scholar 

  • Bar-Lev, D., & Katz, S. (1976). A portfolio approach to fossil fuel procurement in the electric utility industry. The Journal of Finance, 31(3), 933–947.

    Article  Google Scholar 

  • Barreto, L. (2003). Gaps and needs in technology diffusion models: The perspective of an energy-systems modeller. Paper presented to the Workshop on Clean Technologies Diffusion Modelling, IPTS, Seville, 14 November 2003.

    Google Scholar 

  • Botterud, A., & KorpÃ¥s, M. (2007). A stochastic dynamic model for optimal timing of investments in new generation capacity in restructured power systems. Electrical Power & Energy Systems, 29, 163–174.

    Article  Google Scholar 

  • Breschi, S., Malerba, F., & Orsenigo, L. (2000). Technological regimes and Schumpeterian patterns of innovation. The Economic Journal, 110(463), 388–410.

    Article  Google Scholar 

  • Carlsson, B., & Stankiewicz, R. (1991). On the nature, function, and composition of technological systems. Journal of Evolutionary Economics, 1, 93–118.

    Article  Google Scholar 

  • Child, P. D., Ott, S. H., & Triantis, A. J. (1998). Capital budgeting for interrelated projects: A real options approach. Journal of Financial and Quantitative Analysis, 33(3), 305–334.

    Article  Google Scholar 

  • Crew, M. A., & Kleindorfer, P. R. (2002). Regulatory economics: Twenty years of progress? Journal of Regulatory Economics, 21(1), 5–22.

    Article  Google Scholar 

  • Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Driouchi, T., & Bennett, D. J. (2012). Real options in management and organisational strategy: A review of decision-making and performance implications. International Journal of Management Reviews, 14(1), 39–62.

    Article  Google Scholar 

  • Edquist, C., & Johnson, B. (1997). Institutions and organisations in systems of innovation. In C. Edquist (Ed.), Systems of innovation: Technologies, institutions and organisations. London: Pinter.

    Google Scholar 

  • Eliasson, G., & Taymaz, E. (2002). Institutions, entrepreneurship, economic flexibility and growth—Experiments on an evolutionary micro-to-macro model. In U. Cantner (Ed.), Economic evolution, learning and complexity. Berlin: Springer.

    Chapter  Google Scholar 

  • Garud, R., Kumaraswamy, A., & Karnøe, P. (2010). Path dependence or path creation? Journal of Management Studies, 47(4), 760–774.

    Article  Google Scholar 

  • Gedra, T. W., & Varaiya, P. P. (1993). Markets and pricing for interruptible electric power. Institute of Electrical and Electronics Engineers Trans Power System, 8(1), 122–128.

    Google Scholar 

  • Graham, J. R., & Harvey, H. R. (2001). The theory and practice of corporate finance: Evidence from the field. Journal of Financial Economics, 60(2–3), 187–243.

    Article  Google Scholar 

  • Harris, M., & Raviv, A. (1996). The capital budgeting process: Incentives and information. The Journal of Finance, 51(4), 1139–1174.

    Article  Google Scholar 

  • Hicks, J. R. (1964). Liquidity. Economic Journal, 72(288), 787–802.

    Article  Google Scholar 

  • Huh, W. T., Roundy, R., & Cakaniyilidirim, M. (2006). A general strategic capacity planning model under demand uncertainty. Naval Research Logistics, 53, 137–150.

    Article  Google Scholar 

  • Jacobsson, S., & Bergek, A. (2004). Transforming the energy sector: The evolution of technological systems in renewable energy technology. Industrial and Corporate Change, 13(5), 815–849.

    Article  Google Scholar 

  • Jaffe, A. B., Newell, R. G., & Stavins, R. N. (2005). A tale of two market failures: Technology and environmental policy. Ecological Economics, 54(2–3), 164–174.

    Article  Google Scholar 

  • Jaffe, A. B., & Stavins, R.N. (1995). Dynamic incentives of environmental regulations: The effects of alternative policy instruments on technology diffusion. Journal of Environmental Economics and Management, 29, S-43–S-63.

    Article  Google Scholar 

  • Jaillet, P., Ronn, E. I., & Tompaidis, S. (2004). Valuation of commodity-based swing options. Management Science, 50(7), 909–921.

    Article  Google Scholar 

  • Johnston, A., Kavali, A., & Neuhoff, K. (2008). Take-or-pay contracts for renewable deployment. Energy Policy, 36(7), 2481–2503.

    Article  Google Scholar 

  • Klein, B., Crawford, R. G., & Alchian, A. A. (1978). Vertical integration, appropriable rents and the competitive contracting process. Journal of Law and Economics, 74, 87–98.

    Google Scholar 

  • KumbaroÄŸlu, G., Madlener, R., & Demirel, M. (2008). A real options evaluation model for the diffusion prospects of new renewable power generation technologies. Energy Economics, 30, 1882–1908.

    Article  Google Scholar 

  • Luiten, E., Lente, H. V., & Blok, K. (2006). Slow technologies and government intervention: Energy efficiency in industrial process technologies. Technovation, 26, 1029–1044.

    Article  Google Scholar 

  • Marino, A. M., & Matsusaka, J. G. (2005). Decision processes, agency problems, and information: An economic analysis of capital budgeting procedures. The Review of Financial Studies, 18(1), 301–325.

    Article  Google Scholar 

  • Markowitz, H. M. (1991). Portfolio selection: Efficient diversification of investments (2nd ed.). Oxford: Blackwell.

    Google Scholar 

  • Masten, S. E., & Crocker, K. J. (1985). Efficient adaptation in long-term contracts: Take-or-pay provisions for natural gas. The American Economic Review, 75(5), 1083–1093.

    Google Scholar 

  • Newberry, D. (2010). Market design for a large share of wind power. Energy Policy, 38, 3131–3134.

    Article  Google Scholar 

  • Rivier, J. A. (2010). Electricity market participation of wind farms: The success story of the Spanish pragmatism. Energy Policy, 38, 3174–3179.

    Article  Google Scholar 

  • Roques, F., Hiroux, C., & Saguan, M. (2010). Optimal wind power deployment in Europe—A portfolio approach. Energy Policy, 38, 3245–3256.

    Article  Google Scholar 

  • Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.

    Article  Google Scholar 

  • Schenk, K. F., Misra, R. B., Vassos, S., & Wen, W. (1984). A new method for the evaluation of expected energy generation and loss of load probability. Power Apparatus and Systems, Institute of Electrical and Electronics Engineers Transactions, PAS-103(2), 294–303.

    Article  Google Scholar 

  • Sharpe, W. F. (2007). Investors and markets: Portfolio choices, asset prices, and investment advice. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Toke, D., Breukers, S., & Wolsink, M. (2008). Wind power deployment outcomes: How can we account for the differences? Renewable and Sustainable Energy Reviews, 12(4), 1129–1147.

    Article  Google Scholar 

  • Van de Ven, A., & Garud, R. (1989). A framework for understanding the emergence of new industries. Research on Technological Innovation, Management and Society, 4, 195–225.

    Google Scholar 

  • Verdolini, E., & Galeotti, M. (2011). At home and abroad: An empirical analysis of innovation and diffusion in energy technologies. Journal of Environmental Economics and Management, 61(2), 119–134.

    Article  Google Scholar 

  • Vergne, J. P., & Durand, R. (2010). The missing link between the theory and empirics of path dependence: Conceptual clarification, testability issue and methodological implications. Journal of Management Studies, 47(4), 736–759.

    Article  Google Scholar 

  • Watanabe, C., Nagamatsu, A., & Griffy-Brown, C. (2003). Behavior of technology in reducing prices of innovative goods—An analysis of the governing factors of variance of PV module prices. Technovation, 23, 423–436.

    Article  Google Scholar 

  • Wharton. (2016). Retrieved from http://publicpolicy.wharton.upenn.edu/live/news/1198-event-recap-marvin-odum-president-of-shell-oil. The briefing was done on 3 March 2016, prior to Odum’s retirement from Shell Oil.

  • Williamson, O. E. (1979). Transaction costs economics: The governance of contractual relations. Journal of Law and Economics, 22(2), 233–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo G. Barcelona .

Copyright information

© 2017 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barcelona, R.G. (2017). Why Flexibility. In: Energy Investments. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-59139-5_5

Download citation

Publish with us

Policies and ethics