Advertisement

Quadruple Helix R&D Growth Models: A Panel Cointegration Analysis Applied to a Sample of OECD Countries

  • Sara Paulina De Oliveira Monteiro
  • Maria Adelaide Pedrosa da Silva Duarte
Chapter
  • 514 Downloads
Part of the Palgrave Studies in Democracy, Innovation, and Entrepreneurship for Growth book series (DIG)

Abstract

The Quadruple Helix theory (QH), [Carayannis and Campbell (Knowledge creation, diffusion and use in innovation networks and knowledge clusters. A comparative system approach across the USA, Europe and Asia (pp. ix–xxvi). 2006, knowledge creation, diffusion and use in innovation networks and knowledge clusters: A comparative System Approach across the USA, Europe and Asia 2009a, International Journal of Technology Management 46(3):201–234, 2009b), Arnkil et al. (Work Research Center, 2010), MacGregor et al. (Journal of the Knowledge Economy, 1(3):173–190, 2010)] seeks to explain the new reality of the so-called innovation economies and the interplay between innovation and economic growth. Following this approach, the economic structure of a country relies on four helices: on one hand the university and technology infrastructures, on the other hand on firms, government and the civil society where differentiated productive units that are complementary and interact with each other are responsible for growth by generating a permanent stream of innovation. This theory was only subject to theoretic modelling quite recently with Afonso et al. (Journal of Business Economics and Management 13(5):849–865, 2012), Monteiro (Economie de l’innovation, dépenses publiques productives et croissance économique: une étude empirique pour l’évaluation du rôle des infrastructures technologiques dans les pays de l’OECD. Economies et finances, 2013) and Afonso et al. (Metroeconomica 65(4):671–689, 2014) who contributed to fill the gap by modelling the QH concept on the basis of (two) research and development (R&D) growth models. Additionally, Monteiro (Economie de l’innovation, dépenses publiques productives et croissance économique: une étude empirique pour l’évaluation du rôle des infrastructures technologiques dans les pays de l’OECD. Economies et finances, 2013) presents the first attempt to empirically test the main predictions of the first QH-R&D growth model by Afonso et al. (Journal of Business Economics and Management 13(5):849–865, 2012) with the help of non-stationary panel techniques, applied to a sample of 24 Organisation for Economic Co-operation and Development countries, over the period 1980–2008.

We extend the scope of the empirical study by Monteiro (Economie de l’innovation, dépenses publiques productives et croissance économique: une étude empirique pour l’évaluation du rôle des infrastructures technologiques dans les pays de l’OECD. Economies et finances, 2013) in several ways: (a) we address the issue of heterogeneity of the regressors; (b) we regress long-run as well as short-run equations, the latter accounting for transitional dynamics, seeking to (c) confirm cointegration relationships, (d) test for weak-endogeneity and (e) test for causality in the short run; finally, (f) special emphasis is given to the role played by political-institutional and social capital variables. As in Monteiro (Economie de l’innovation, dépenses publiques productives et croissance économique: une étude empirique pour l’évaluation du rôle des infrastructures technologiques dans les pays de l’OECD. Economies et finances, 2013), our results also confirm the main theoretical model predictions, namely the role played by governments and by public expenditures in a growing innovation economy.

Keywords

Quadruple Helix IPUs Endogenous Growth DOLS Mean Pooled Group 

References

  1. Acemoglu, D. (2009). Introduction to modern economic growth. Princeton: Princeton University Press.Google Scholar
  2. Afonso, O., Monteiro, S., & Thompson, M. (2012). A growth model for the Quadruple Helix. Journal of Business Economics and Management, 13(5), 849–865.CrossRefGoogle Scholar
  3. Afonso, O., Monteiro, S., & Thompson, M. (2014). Innovation economy, productive public expenditure and economic growth. Metroeconomica, 65(4), 671–689.CrossRefGoogle Scholar
  4. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employement equations. Review of Economic Studies, 58(2), 277–297 Avril.CrossRefGoogle Scholar
  5. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68, 29–52.CrossRefGoogle Scholar
  6. Arnkil, R., Jarvensivu, A., Koski, P., & Piirainen, T. (2010). Exploring the Quadruple Helix. Work Research Center, University of Tampere .Available at: www.cliqproject.eu/en/activities/research/quadruple_helix_research/?id=127
  7. Azariadis, C. (1996). The economics of poverty traps part one: Complete markets. Journal of Economic Growth, 449–486.Google Scholar
  8. Baltagi, B. H. (2001). Econometric analysis of panel data. New York: John Wiley and Sons.Google Scholar
  9. Baltagi, B. H., & Kao, C. (2000). Nonstationary panels, cointegration in panels and dynamic panels: a survey. Center for Policy Research Working Papers 16, Maxwell School, Syracuse University.Google Scholar
  10. Barro, R. J. (1990). Government spending in a simple model of endogenous growth. Journal of Political Economy, 98(5), S103–S126.CrossRefGoogle Scholar
  11. Barro, R. J. (1991). Economic growth in a cross section of countries. Quarterly Journal of Economics, 106(2), 407–443.CrossRefGoogle Scholar
  12. Barro, R. J., & Sala-i-Martin, X. (1991). Convergence across states and regions. Brookings Papers on Economic Activity, 1, 107–182.CrossRefGoogle Scholar
  13. Barro, R., & Lee, J. W. (2010). A new data set of educational attainment in the world, 1950–2010. NBER Working Paper 15902. Cambridge, MA: NBER. Working Papers.Google Scholar
  14. Baumol, W. (1986). Productivity growth, convergence and welfare: what the long-run data show. American Economic Review, 76, 1072–1085.Google Scholar
  15. Breitung, J., & Pesaran, M. (2005). Unit roots and cointegration in panels, CESifo Working Paper Series 1565. Munich: CESifo. Working Papers.Google Scholar
  16. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143.CrossRefGoogle Scholar
  17. Bond, S., Anke, H., & Temple, J. (2001). GMM estimation of empirical growth models. CEPR Discussion Paper 3048.Google Scholar
  18. Carayannis, E. G., & Campbell, D. F. (2006). Introduction and chapters summaries. In E. C. Carayannis & J. Campbell D. F. (Eds.), Knowledge creation, diffusion and use in innovation networks and knowledge clusters. A comparative system approach across the United States, Europe and Asia (pp. ix–xxvi). Westport: Praeger.Google Scholar
  19. Carayannis, E. G., & Campbell, D. F. (2009a). Knowledge creation, diffusion and use in innovation networks and knowledge clusters: A comparative system approach accross the United States, Europe and Asia. Westport: Praeger.Google Scholar
  20. Carayannis, E. G., & Campbell, D. F. (2009b). Mode 3 and Quadruple Helix Toward a 21st century fractal innovation ecosystem. International Journal of Technology Management, 46(3), 201–234.CrossRefGoogle Scholar
  21. Castellacci, F., & Natera, J. M. (2011). A new panel dataset for cross-country analyses of national systems, growth and development (CANA), MPRA Paper 28376. Available at http://mpra.ub.uni-muenchen.de/28376/
  22. Cingranelli, D., & Richards, D. (2008). The Cingranelli-Richards (CIRI) Human Rights Data Project Coding Manual Version 2008.3.13. Google Scholar
  23. Coe, D. T., & Helpman, E. (1995). International R&D spillovers. European economic Review, 39(5), 859–887.CrossRefGoogle Scholar
  24. Costantini, M., & Lupi, C. (2013). A Simple Panel-CADF Test for Unit Roots. Oxford Bulletin of Economics and Statistics, 75, 276–296.CrossRefGoogle Scholar
  25. Demetrescu, M., Hassler, U., & Tarcolea, A. (2006). Combining significance of correlated statistics with application to panel data. Oxford Bulletin of Economics and Statistics, 68(5), 647–663.CrossRefGoogle Scholar
  26. Durlauf, S., & Quah, D. T. (1999). Chapter 4: “The new empirics of economic growth,” handbook of macroeconomics. In: J. B. Taylor, & M. Woodford (Eds.), Handbook of macroeconomics (1st ed., Vol. 1, pp. 235–308) Elsevier.Google Scholar
  27. Durlauf, S., Johnson, P. A., & Temple, J. (2004). Growth econometrics. In P. Aghion & S. Durlauf (Eds.), Handbook of economic growth (Forthcoming). Amsterdam/North Holland: Madison SSRI.Google Scholar
  28. Durlauf, S. N., West, K. D., & Brock, W. A. (2007). Model uncertainty and policy evaluation: Some theory and empirics, Journal of Econometrics, Elsevier, 136 (2), 629–664.Google Scholar
  29. Engle, R., & Yoo, S. (1987). Forecasting and testing in cointegrated systems. Journal of Econometrics, 35, 143–159.CrossRefGoogle Scholar
  30. Etzkowitz, H., & Klofsten, M. (2005). The innovating region: toward a theory of knowledge-based regional development. R&D Management, 35(3), 243–255.CrossRefGoogle Scholar
  31. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and “Mode 2” to a Triple Helix of university-industry-government relations. Research Policy, 29(22), 109–123.CrossRefGoogle Scholar
  32. Evans, G., Honkapohja, S., & Romer, P. (1998). Growth cycles. American Economic Review, 88(3), 495–515.Google Scholar
  33. Freeman, C. (1987). Technology and economic performance: lessons from Japan. London: Pinter Publishers.Google Scholar
  34. Freeman, C. (1999). Technical change and economic growth: The case of “Catch-up”. In M. M. G. Fase, W. Kanning, & D. A. Walker (Eds.), Economics, welfare Policy and the history of economic thought : Essays in honour of Arnold Heertje. Cheltenham: Elgar.Google Scholar
  35. Hansen, B. (1995). Rethinking the univariate approach to unit root testing: Using covariates to increase power. Econometric Theory, 11(05), 1148–1171.CrossRefGoogle Scholar
  36. Hanck, C. (2013). An intersection test for panel unit roots. Econometric Reviews, 32(2), 183–203.CrossRefGoogle Scholar
  37. Hartung, J. (1999). A note on combining dependent tests of significance. Biometrical Journal, 41(7), 849–855.CrossRefGoogle Scholar
  38. Henderson, D., & Parmeter, C. (2015). Applied nonparametric econometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Knack, S., & Keefer, P. (1997). Does social capital have an economic payoff? A cross country investigation. Quarterly Journal of Economics, 112(4), 1251–1288.CrossRefGoogle Scholar
  40. Kao, C., & Chiang, M. H. (2000). On the estimation and inference of a cointegrated regression in panel data. Advances in Econometrics, 15, 179–222.CrossRefGoogle Scholar
  41. Khan, M. R., & Al-Ansari, M. (2005). Sustainable innovation as a corporate strategy. available at http://www.triz-journal.com/archives/2005/01/02.pdf
  42. Kormendi, R. C., & Meguire, P. G. (1985). Macroeconomic determinants of growth: Cross-country evidence. Journal of Monetary Economics, Elsevier, 16 (2), 141–163.Google Scholar
  43. Leydesdorff, L., & Meyer, M. (2006, December). Triple Helix indicators of knowledge-based innovation systems: Introduction to the special issue. Research Policy, Elsevier, 35(10), 1441–1449.Google Scholar
  44. Li, Q., & Racine, J. (2007). Nonparametric econometrics: Theory and practice. Princeton: Princeton University Press.Google Scholar
  45. Liljemark, T. (2001). Comparing innovation systems: A framework and application to China transitional context. Research Policy, 30, 1091–1114.CrossRefGoogle Scholar
  46. Lundvall, B.-Å. (1988). Innovation as an interactive process: From user-producer interaction to the national system of innovation. In G. Dosi et al. (Eds.), Technical change and economic theory (pp. 349–369). London: Pinter.Google Scholar
  47. Lundvall, B.-Å. (1992). National systems of innovation: towards a theory of innovation and interactive learning. London: Pinter.Google Scholar
  48. MacGregor, S. P., Marques-Gou, P., & Simon-Villar, A. (2010). Gauging readiness for the Quadruple Helix: A study of 16 European organizations. Journal of the Knowledge Economy, 1(3), 173–190.CrossRefGoogle Scholar
  49. Mankiw, N. G., Romer, D., & Weil, D. (1992). A contribution to the empirics of economic growth. Quarterly Journal of Economics, 107(2), 407–437.CrossRefGoogle Scholar
  50. Marris, R. (1984). Comparing the incomes of nations: A critique of the international comparison project. Journal of Economic Literature, 22(1), 40–57.Google Scholar
  51. Monteiro, S. (2013). Economie de l’innovation, dépenses publiques productives et croissance économique: une étude empirique pour l’évaluation du rôle des infrastructures technologiques dans les pays de l’OECD. Economies et finances. Université Nice Sophia Antipolis, 2013. Français.Google Scholar
  52. Moral-Benito, E. (2012, May). Determinants of economic growth: A Bayesian panel data approach. The Review of Economics and Statistics, 94(2), 566–579.CrossRefGoogle Scholar
  53. Nelson, R., & Winter, S. (1982). An evolutionary theory of economic change. Cambridge: Belknap.Google Scholar
  54. Nelson, R., & Rosenberg, N. (1993). Technical innovation and national systems. In R. R. Nelson (Ed.), National innovation Systems: A comparative study. New York: Oxford University Press.Google Scholar
  55. Nelson, R., & Romer, P. (1996). Science, economic growth and public policy. In B. Smith & Bartfield (Eds.), Technology, R&D and the economy (pp. 49–74). Washington, DC: Brookings Institution Press.Google Scholar
  56. OECD. (2014). OECD science, technology and industry outlook 2014, OECD Publishing Paris.  http://dx.doi.org/10.1787/sti_outlook-2014-en
  57. Pelikan, P. (1988). Can the imperfect innovation systems of capitalism be outperformed? In G. Dosi, C. Freeman, R. Nelson, G. Silverberg, & L. Soete (Eds.), Technical change and economic theory (pp. 370–398). London/New York: Pinter Publisher.Google Scholar
  58. Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61, 653–670.CrossRefGoogle Scholar
  59. Pedroni, P. (2000). Fully Modified OLS for heterogenous cointegrated panels. Advances in Econometrics, 15, 93–132.CrossRefGoogle Scholar
  60. Pedroni, P. (2001). Purchasing power parity tests in cointegrated panels. Review of Economics and Statistics, 83, 727–731.CrossRefGoogle Scholar
  61. Pedroni, P. (2004). Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory, 20, 597–625.CrossRefGoogle Scholar
  62. Perotti, R. (1996). Growth, income distribution, and democracy: What the data say. Journal of Economic Growth, 1(2), 149–187.CrossRefGoogle Scholar
  63. Pesaran, M. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers in Economics, 0435. Cambridge: CWP. Working Papers.Google Scholar
  64. Quah, D. (1993). Empirical cross-section dynamics in economic growth. European Economic Review, 37, 426–434.CrossRefGoogle Scholar
  65. Quah, D. (1996). Twin Peaks: Growth and convergence in models of distribution dynamics. Economic Journal, 106, 1045–1055.Google Scholar
  66. Quah, D. (2014, November). Convergence determines governance—within and without, In K. Dervis and H. Kharas (Eds.), Growth, convergence, and income distribution. Brookings Institution: Brookings.Google Scholar
  67. Racine, J. (2008). Nonparametric econometrics: A primer. In W. Greene (Eds.), Foundations and trends in econometrics (Vol. 3: No 1, pp. 1–88). Delft: Publishers Inc.Google Scholar
  68. Rockey, J.,& Temple, J. (2015). Growth econometrics for agnostics and true believers. CEPR Discussion Papers 10590, C.E.P.R: London. Discussion Papers.Google Scholar
  69. Rodrik, D. (2003). In search of prosperity: Analytic narratives on economic growth. Princeton: Princeton University Press.CrossRefGoogle Scholar
  70. Sachs, J., McArthur, J. W., Schmidt-Traub, G., Kruk, M., Bahadur, C., Faye, M., & McCord, G. (2004). Ending Africa’s poverty trap. Brookings Papers on Economic Activity, 1, 117–240.CrossRefGoogle Scholar
  71. Sala-i-Martin, X., Doppelhofer, G., & Miller, R. (2004). Determinants of long-term growth: A bayesian averaging of classical estimates (BACE) approach. American Economic Review, 94(4), 813–835.CrossRefGoogle Scholar
  72. Sheather, S., & Jones, M. (1998). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society: Series B: Methodological, 53(3), 683–690.Google Scholar
  73. Temple, J. (2000). Growth regressions and what the textbooks don’t tell you. Bulletin of Economic Research, 53(3), 181–205.CrossRefGoogle Scholar
  74. Thompson, M. (2008). Complementarities and costly investment in a growth model. Journal of Economics, 94(3), 231–240.CrossRefGoogle Scholar
  75. Zak, P. J., & Knack, S. (2001). Trust and Growth. Economic Journal, 111(470), 295–321.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sara Paulina De Oliveira Monteiro
    • 1
    • 2
    • 3
    • 4
  • Maria Adelaide Pedrosa da Silva Duarte
    • 5
  1. 1.P-BIO Portugal’s Biotechnology Industry Organization, Biocant ParkCantanhedePortugal
  2. 2.European Banking AuthorityLondonUK
  3. 3.Elixir-Europe.OrgCambridgeshireUK
  4. 4.Católica Porto Business SchoolPortoPortugal
  5. 5.Faculdade de Economia da Universidade de Coimbra, GEMF, CeBERCoimbraPortugal

Personalised recommendations