Skip to main content

The Intrinsic Quantum Nature of Classical Game Theory

  • Chapter
  • First Online:
The Palgrave Handbook of Quantum Models in Social Science
  • 1234 Accesses

Abstract

The notion of mixed strategy, as originally introduced by Von Neumann and Morgenstern (1944) is a basic ingredient of classical game theory. Yet, as pointed out by von Neumann and Morgenstern themselves, the idea that a rational player may have to use a randomizing device, such as a coin flip, to decide on their actions poses some insuperable conceptual difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aumann, R. J. (1987). Correlated equilibrium as an expression of Bayesian rationality. Econometrica, 55, 1–18.

    Article  Google Scholar 

  • Brandenburger, A. (2008). Epistemic game theory: An overview. In The new Palgrave dictionary of economics (2nd ed.). London: Palgrave Macmillan.

    Google Scholar 

  • Brandenburger, A. (2010). The relationship between quantum and classical correlation in games. Games and Economic Behavior, 69, 175–183.

    Article  Google Scholar 

  • Conway, J., & Kochen. S. (2006). The free will theorem. Foundations of Physics, 36, 1441–1473.

    Article  Google Scholar 

  • Conway, J., & Kochen, S. (2009). The strong free will theorem. Notices of the American Mathematical Society, 56, 226–232.

    Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman lectures on physics. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Harsanyi, J. (1973). Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points. International Journal of Game Theory, 2, 1–23.

    Article  Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Kohlberg, E., & Mertens, J.F. (1986). On the strategic stability of equilibria. Econometrica, 54, 1003–1037.

    Article  Google Scholar 

  • Lukasiewicz, J. (1970). Philosophical remarks on many-valued systems of propositional logic (1930). Reprinted in Selected Works (Borkowski, ed.), Studies in Logic and the Foundations of Mathematics (pp. 153–179). Amsterdam: North-Holland.

    Google Scholar 

  • Mermin, N. D. (1985). Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38(4), 38–47.

    Article  Google Scholar 

  • Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36, 48–49.

    Google Scholar 

  • Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.

    Article  Google Scholar 

  • Pelosse, Y. (2011). Ontological foundation of Nash equilibrium. Online at https://mpra.ub.uni-muenchen.de/39934/

    Google Scholar 

  • Pelosse, Y. (2016). The intrinsic quantum nature of Nash equilibrium mixtures. Journal of Philosophical Logic, 45(1), 25–64.

    Article  Google Scholar 

  • Pietarinen, A. (2002). Quantum logic and quantum theory in a game-theoretic perspective. Open Systems & Information Dynamics, 9, 273–90. Zbl 01812492. MR 1923231. 208.

    Google Scholar 

  • Sakurai, J. (1994). Modern quantum mechanics (2nd edition). Reading: Addison-Wesley.

    Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behaviour. Princeton: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

This chapter relies on a published article “The intrinsic quantum nature of Nash equilibrium mixtures,” Journal of Philosophical Logic. DOI 10.1007/s10992-015-9349-7. Springer Science+Business Media Dordrecht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Pelosse .

Editor information

Editors and Affiliations

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Pelosse, Y. (2017). The Intrinsic Quantum Nature of Classical Game Theory. In: Haven, E., Khrennikov, A. (eds) The Palgrave Handbook of Quantum Models in Social Science. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-49276-0_4

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-49276-0_4

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-49275-3

  • Online ISBN: 978-1-137-49276-0

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics