Skip to main content

Abstract

The aim of this chapter is to present some arguments for and against the use of the standard quantum formalism to model cognition, psychological and social behavior, decision-making, and more generally the processing of information by biosystems (from proteins and cells to brains and ecosystems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accardi, L., Khrennikov, A., & Ohya, M. (2008). The problem of quantum-like representation in economy, cognitive science, and genetics. In L. Accardi, W. Freudenberg, & M. Ohya (Eds.), Quantum bio-informatics II: From quantum information to bio-informatics (pp. 1–8). Singapore: WSP.

    Chapter  Google Scholar 

  • Accardi, L., Khrennikov, A., & Ohya, M. (2009). Quantum Markov model for data from Shafir-Tversky experiments in cognitive psychology. Open Systems and Information Dynamics, 16, 371–385.

    Article  Google Scholar 

  • Accardi, L., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2016). Quantum adaptive dynamics: From sensation to perception. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: Applications and grand challenges.

    Google Scholar 

  • Aerts, D., Broeakert, J., Czachor, M., Kuna, M., Sinervo, B., & Sozzo, S. (2014). Quantum structure in competing lizard communities. Ecological Modeling, 281, 38–51, IF 2.326.

    Google Scholar 

  • Aerts, D., Czachor, M., Kuna, M., & Sozzo, S. (2013). Systems, environments, and soliton rate equations: Non-Kolmogorovian framework for population dynamics. Ecological Modeling, 267, 80–92, IF 2.326.

    Google Scholar 

  • Aerts, D., Gabora, L., & Sozzo, S. (2013). Concepts and their dynamics: A quantum-theoretic modeling of human thought. Topics in Cognitive Science, 5, 337–372, IF 2.885.

    Google Scholar 

  • Aerts, D., Sozzo, S., & Tapia, J. (2014). Identifying quantum structures in the Ellsberg paradox. International Journal of Theoretical Physics, 53, 3666–3682, IF 1.188.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., & Ohya, M. (2012a). Quantum-like dynamics of decision-making. Physica A-Statistical Mechanics and its Applications, 391(5), 2083–2099.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., & Tanaka, Yo. (2012b). Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. Journal of Mathematical Psychology, 56, 166–175.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2012c). Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli’s metabolism of glucose/lactose. Systems and Synthetic Biology, 6, 1–7.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2013a). A model of epigenetic evolution based on theory of open quantum systems. Systems and Synthetic Biology, 7, 161–173.

    Google Scholar 

  • Asano, M., Basieva, I., Khrennikov, A., Ohya, M., & Yamato, I. (2013b). Non-Kolmogorovian approach to the context-dependent systems breaking the classical probability law. Foundations of Physics, 43, 895–911.

    Google Scholar 

  • Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2014). Violation of contextual generalization of the Leggett–Garg inequality for recognition of ambiguous figures. Physica Scripta, T163, 014006.

    Article  Google Scholar 

  • Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I. (2015) Quantum adaptivity in biology: From genetics to cognition. Heidelberg, Berlin, New York: Springer.

    Google Scholar 

  • Asano, M., Ohya, M., & Khrennikov, A. (2010a). Quantum-like model for decision making process in two players game. Foundations of Physics, 41, 538–548.

    Google Scholar 

  • Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., & Basieva, I. (2010b). On application of Gorini-Kossakowski-Sudarshan-Lindblad equation in cognitive psychology. Open Systems and Information Dynamics, 17, 1–15.

    Google Scholar 

  • Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., & Basieva, I. (2011). Dynamics of entropy in quantum-like model of decision making. Journal of Theoretical Biology, 281, 56–64.

    Article  Google Scholar 

  • Atmanspacher, H., & Filk, T. (2013). The Necker-Zeno model for bistable perception. Topics in Cognitive Science, 5(4), 800–817.

    Google Scholar 

  • Atmanspacher, H., Filk, T., & Römer, H. (2009). Complementarity in bistable perception. Heidelberg, Berlin, New York: Springer. In Recasting reality (pp.135–150).

    Google Scholar 

  • Atmanspacher, H., & Filk, Th. (2012). Temporal nonlocality in bistable perception. In A. Khrennikov, H. Atmanspacher, A. Migdall, & S. Polyakov (Eds.), Quantum theory: Reconsiderations of foundations - 6. Special Section: Quantum-Like Decision Making: From Biology to Behavioral Economics, AIP Conference Proceedings (Vol. 1508, pp. 79–88).

    Google Scholar 

  • Atmanspacher, H., Romer, H., & Walach, H. (2002). Weak quantum theory: Complementarity in physics and beyond. Foundations of Physics, 32, 379–406.

    Article  Google Scholar 

  • Basieva, I, & Khrennikov, A. (2012). Observables generalizing positive operator valued measures. AIP Conference Proceedings, 1508, 94.

    Article  Google Scholar 

  • Basieva, I., & Khrennikov, A. (2014). Complementarity of mental observables. Topics in Cognitive Science, 6, 74–78.

    Article  Google Scholar 

  • Basieva, I., & Khrennikov, A. (2016). Decision making and cognition modeling from theory of mental instruments. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: Applications and grand challenges.

    Google Scholar 

  • Basieva, I., Khrennikov, A., Ohya, M., & Yamato, I. (2011). Quantum-like interference effect in gene expression glucose-lactose destructive interference. Systems and Synthetic Biology, 5, 59–68.

    Article  Google Scholar 

  • Blutner, R., Pothos, E. M., & Bruza, P. (2013). A quantum probability perspective on borderline vagueness. Topics in Cognition Science, 5, 711–736.

    Google Scholar 

  • Bohr, N. (1987). The philosophical writings of Niels Bohr (3 Vols). Woodbridge, CT: Ox Bow Press.

    Google Scholar 

  • Brukner, C., & Zeilinger, A. (1999a). Malus’ law and quantum information. Acta Physica Slovava, 49(4), 647–652.

    Google Scholar 

  • Brukner, C., & Zeilinger, A. (1999b). Operationally invariant information in quantum mechanics. Physical Review Letters, 83(17), 3354–3357.

    Google Scholar 

  • Brukner, C., & Zeilinger, A. (2009). Information invariance and quantum probabilities. Foundations of Physics, 39, 677.

    Article  Google Scholar 

  • Bruza, P., Kitto, K., Nelson, D., & McEvoy, C. (2009). Is there something quantum-like in the human mental lexicon? Journal of Mathematical Psychology, 53, 362–377.

    Article  Google Scholar 

  • Bruza, P., Kitto, K., Ramm, B., Sitbon, L., Blomberg, S., & Song, D. (2010). Quantum-like non-separability of concept combinations, emergent associates and abduction. Logic Journal of IGPL, 20(2), 455–457.

    Google Scholar 

  • Busemeyer, J. B., & Wang, Z. (2007). Quantum information processing explanation for interactions between inferences and decisions. In P. D. Bruza, W. Lawless, K. van Rijsbergen, & D. A. Sofge (Eds.), Quantum Interaction, AAAI Spring symposium (pp. 91–97). Technical Report SS-07-08. Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Busemeyer, J. B., Wang, Z., & Townsend, J. T. (2006a). Quantum dynamics of human decision making, Journal of Mathematical Psychology, 50, 220–241.

    Google Scholar 

  • Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge Press.

    Book  Google Scholar 

  • Busemeyer, J. R., Matthews, M., & Wang, Z. (2006b). A quantum information processing explanation of disjunction effects. In R. Sun & N. Myake (Eds.), The 29th Annual Conference of the Cognitive Science Society and the 5th International Conference of Cognitive Science (pp. 131–135). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118, 193–218.

    Article  Google Scholar 

  • Busemeyer, J. R., Santuy, E., & Lambert-Mogiliansky, A. (2008). Comparison of Markov and quantum models of decision making. In P. Bruza, W. Lawless, K. van Rijsbergen, D. A. Sofge, B. Coeke, & S. Clark (Eds.), Quantum Interaction: Proceedings of the Second Quantum Interaction Symposium (pp. 68–74). London: College Publications.

    Google Scholar 

  • Busemeyer, J. R., Wang, Z., & Lambert-Mogiliansky, A. (2009). Empirical comparison of Markov and quantum models of decision making. Journal of Mathematical Psychology, 53(5), 423–433.

    Article  Google Scholar 

  • Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Quantum probabilities as Bayesian probabilities. Physical Review A, 65, 022305.

    Article  Google Scholar 

  • Cheon, T., & Takahashi, T. (2010). Interference and inequality in quantum decision theory. Physics Letters A, 375, 100–104.

    Article  Google Scholar 

  • Cheon, T., & Tsutsui, I. (2006). Classical and quantum contents of solvable game theory on Hilbert space. Physics Letters A, 348, 147–152.

    Article  Google Scholar 

  • Chiribella, G., D’Ariano, G. M., & Perinotti, P. (2010). Probabilistic theories with purification. Physical Review A, 81, 062348.

    Article  Google Scholar 

  • Chiribella, G., D’Ariano, G. M., & Perinotti, P. (2012). Informational axioms for quantum theory. In Foundations of Probability and Physics - 6, AIP Conference Proceedings (Vol. 1424, p. 270).

    Google Scholar 

  • Conte, E., Khrennikov, A., Todarello, O., Federici, A., Mendolicchio, L., & Zbilut, J. P. (2008). A preliminary experimental verification on the possibility of Bell inequality violation in mental states. Neuroquantology, 6, 214–221.

    Google Scholar 

  • Conte, E., Khrennikov, A., Todarello, O., Federici, A., Mendolicchio, L., & Zbilut, J. P. (2009). Mental state follow quantum mechanics during perception and cognition of ambiguous figures. Open Systems and Information Dynamics, 16, 1–17.

    Article  Google Scholar 

  • Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A. et al. (2006). Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos, Solitons and Fractals, 31, 1076–1088.

    Article  Google Scholar 

  • Croson, R. (1999). The disjunction effect and reasoning-based choice in games. Organizational Behavior and Human Decision Processes, 80, 118–133.

    Article  Google Scholar 

  • D’Ariano, G. M. (2007). Operational axioms for quantum mechanics. In G. Adenier et al. (Eds.), Foundations of Probability and Physics-3. AIP Conference Proceedings (Vol. 889, pp. 79–105).

    Google Scholar 

  • D’Ariano, G. M. (2011). Physics as information processing. In Advances in Quantum Theory, AIP Conference Proceedings (Vol. 1327, p. 7). Also arXiv 1012.0535

    Google Scholar 

  • D’Ariano, G. M., & Jaeger G. (2009). Entanglement, information, and the interpretation of quantum mechanics. The Frontiers collection. Berlin, Heidelberg: Springer [Book Review PDF].

    Google Scholar 

  • de Barros, J. A. (2012). Joint probabilities and quantum cognition. In A. Khrennikov, H. Atmanspacher, A. Migdall, & S. Polyakov (Eds.), Quantum theory: Reconsiderations of foundations 6. Special Section: Quantum-Like Decision Making: From Biology to Behavioral Economics, AIP Conference Proceedings (Vol. 1508, pp. 98–104).

    Google Scholar 

  • de Barros, J. A., & Suppes, P. (2009). Quantum mechanics, interference, and the brain. Journal of Mathematical Psychology, 53, 306–313.

    Article  Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2012a). Selectivity in probabilistic causality: Where psychology runs into quantum physics. Journal of Mathematical Psychology, 56, 54–63.

    Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2012b). Quantum entanglement and the issue of selective influences in psychology: An overview. Heidelberg, Berlin, New York: Springer. In Lecture notes in computer science (Vol. 7620, pp. 184–195).

    Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2013). All-possible-couplings approach to measuring probabilistic context. PLoS ONE, 8(5), e61712. doi:10.1371/journal.pone.0061712.

    Article  Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2014). On selective influences, marginal selectivity, and Bell/CHSH inequalities. Topics in Cognitive Science, 6, 121–128.

    Article  Google Scholar 

  • Ezhov, A. A., & Khrennikov, A. (2005). Agents with left and right dominant hemispheres and quantum statistics. Physical Review E (3), 71(1), 016138-1–016138-8.

    Google Scholar 

  • Ezhov, A. A., Khrennikov, A., & Terentyeva, S. S. (2008). Indications of a possible symmetry and its breaking in a many-agent model obeying quantum statistics. Physical Review E, 77(3). Art. no. 031126.

    Google Scholar 

  • Feynman, R., & Hibbs, A. (1965). Quantum mechanics and path integrals. New York: McGraw-Hill.

    Google Scholar 

  • Fichtner, K. H., Fichtner, L., Freudenberg, W., & Ohya, M. (2008). On a quantum model of the recognition process. QP-PQ: Quantum Probability and White Noise Analysis, 21, 64–84.

    Google Scholar 

  • Fuchs, C. (2007). Delirium quantum (or, where I will take quantum mechanics if it will let me). In Foundations of probability and physics-3 (Vol. 889, pp. 438–462). Melville, NY: AIP.

    Google Scholar 

  • Fuchs, C. A. (2002a). Quantum mechanics as quantum information (and only a little more). In A. Khrennikov (Ed.), Quantum theory: Reconsideration of foundations. Mathematical modeling (Vol. 2, pp. 463–543). Växjö: Växjö University Press.

    Google Scholar 

  • Fuchs, C. A. (2002b). The anti-Växjö interpretation of quantum mechanics. In Quantum theory: Reconsideration of foundations. Mathematical modelling (Vol. 2, pp. 99–116). Växjö: Växjö University Press.

    Google Scholar 

  • Fuchs, Ch. A., & Schack, R. (2011). A quantum-Bayesian route to quantum-state space. Foundations of Physics, 41, 345–356.

    Article  Google Scholar 

  • Hameroff, S. (1994). Quantum coherence in microtubules. A neural basis for emergent consciousness? Journal of Consciousness Studies, 1, 91–118.

    Google Scholar 

  • Hameroff, S. (1998). Quantum computing in brain microtubules? The Penrose-Hameroff Orch or model of consciousness. Philosophical Transactions of the Royal Society, London A, 356, 1869–1896

    Article  Google Scholar 

  • Haven, E., & Khrennikov, A. (2009). Quantum mechanics and violation of the sure-thing principle: The use of probability interference and other concepts. Journal of Mathematical Psychology, 53, 378–388.

    Article  Google Scholar 

  • Haven, E., & Khrennikov, A. (2012). Quantum social science. Cambridge: Cambridge Press.

    Google Scholar 

  • Haven, E., & Khrennikov, A. (2013). Quantum-like tunneling and levels of arbitrage. International Journal of Theoretical Physics, 52, 4083–4099.

    Article  Google Scholar 

  • Haven, E., & Khrennikov, A. (2016). A brief introduction to quantum formalism. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: Applications and grand challenges.

    Google Scholar 

  • Hofstader, D. R. (1983). Dilemmas for superrational thinkers, leading up to a luring lottery. Scientific American, 248(6), 24–35.

    Google Scholar 

  • Hofstader, D. R. (1985). Metamagical themes: Questing for the essence of mind and pattern. New York: Basic Books

    Google Scholar 

  • Inada, T., Kimata, K., & Aiba, H. (1996). Mechanism responsible for glucose-lactose diauxie in Escherichia coli challenge to the cAMP model. Genes and Cells, 1, 293–301.

    Article  Google Scholar 

  • Ishio, H., & Haven, E. (2009). Information in asset pricing: A wave function approach. Annalen der Physik, 18(1), 33–44.

    Article  Google Scholar 

  • Khrennikov, A. (2003). Quantum-like formalism for cognitive measurements. Biosystems, 70, 211–233.

    Article  Google Scholar 

  • Khrennikov, A. (2004). On quantum-like probabilistic structure of mental information. Open Systems and Information Dynamics, 11(3), 267–275.

    Article  Google Scholar 

  • Khrennikov, A. (2006). Quantum-like brain: Interference of minds. BioSystems, 84, 225–241.

    Article  Google Scholar 

  • Khrennikov, A. (2008). The quantum-like brain on the cognitive and subcognitive time scales. Journal of Consciousness Studies, 15, 39–77.

    Google Scholar 

  • Khrennikov, A. (2009). Quantum-like model of cognitive decision making and information processing. Biosystems, 95, 179–187.

    Article  Google Scholar 

  • Khrennikov, A. (2010). Ubiquitous quantum structure: From psychology to finance. Heidelberg, Berlin, New York: Springer.

    Book  Google Scholar 

  • Khrennikov, A. (2011). Quantum-like model of processing of information in the brain based on classical electromagnetic field. Biosystems, 105(3), 250–262.

    Article  Google Scholar 

  • Khrennikov, A., & Basieva, I. (2014a). Quantum model for psychological measurements: From the projection postulate to interference of mental observables represented as positive operator valued measures. NeuroQuantology, 12, 324–336.

    Google Scholar 

  • Khrennikov, A., & Basieva, I. (2014b). Possibility to agree on disagree from quantum information and decision making. Journal of Mathematical Psychology, 62–63, 1–15.

    Google Scholar 

  • Khrennikov, A., Basieva, I., Dzhafarov, E. N., & Busemeyer, J. R. (2014). Quantum models for psychological measurements: An unsolved problem. PLoS ONE, 9. Article ID: e110909.

    Google Scholar 

  • Khrennikov, A., & Haven, E. (2013). Our quantum society. New Scientist, 219, 26–27.

    Article  Google Scholar 

  • Khrennikova, P. (2012). Evolution of quantum-like modeling in decision making processes. AIP Conference Proceedings, 1508, 108–112.

    Google Scholar 

  • Khrennikova, P., Haven, E., & Khrennikov, A. (2014). An application of the theory of open quantum systems to model the dynamics of party governance in the US Political System. International Journal of Theoretical Physics, 53, 1346–1360.

    Article  Google Scholar 

  • Lambert-Mogiliansky, A., & Busemeyer, J. R. (2012). Quantum type indeterminacy in dynamic decision-making: Self-control through identity management. Games, 3, 97–118.

    Article  Google Scholar 

  • Ohya, M., & Volovich, I. (2011). Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems. Heidelberg, Berlin, New York: Springer.

    Book  Google Scholar 

  • Penrose, R. (1989). The Emperor’s new mind. New York: Oxford University Press.

    Google Scholar 

  • Penrose, R. (1994). Shadows of the mind. Oxford: Oxford University Press.

    Google Scholar 

  • Plotnitsky, A. (2006). Reading Bohr: Physics and philosophy. Heidelberg, Berlin, New York: Springer.

    Google Scholar 

  • Plotnitsky, A. (2009). Epistemology and probability: Bohr, Heisenberg, Schrödinger, and the nature of quantum-theoretical thinking. Heidelberg, Berlin, New York: Springer.

    Google Scholar 

  • Plotnitsky, A. (2011). On the reasonable and unreasonable effectiveness of mathematics in classical and quantum Physics. Foundations of Physics, 41, 466–491.

    Article  Google Scholar 

  • Plotnitsky, A. (2015). Quantum principles and mathematical models in physics and beyond. In E. Haven & A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: Applications and grand challenges.

    Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability explanation for violation of rational decision theory. Proceedings of the Royal Society. Series B, 276, 2171–2178.

    Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36, 255–274.

    Article  Google Scholar 

  • Pothos, E. M., Busemeyer, J. R., & Trueblood, J. S. (2013). A quantum geometric model of similarity. Psychological Review, 120(3), 679–696.

    Article  Google Scholar 

  • Shafir, E., & Tversky, A. (1992). Thinking through uncertainty: Nonconsequential reasoning and choice. Cognitive Psychology, 24, 449–474.

    Article  Google Scholar 

  • Tversky, A., & Shafir, E. (1992). The disjunction effect in choice under uncertainty. Psychological Science, 3, 305–309.

    Article  Google Scholar 

  • Wang, Zh., & Busemeyer, J. R. (2013). A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Sciences, 5, 689–710.

    Google Scholar 

  • Wang, Zh., Busemeyer, J. R., Atmanspacher, H., & Pothos, E. M. (2013). The potential of using quantum theory to build models of cognition. Topics in Cognitive Science, 5(4), 672–688.

    Google Scholar 

  • Yukalov, S., & Sornette, D. (2011). Decision theory with prospect interference and entanglement. Theory and Decision, 70, 283–328.

    Article  Google Scholar 

  • Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29(4), 631–643.

    Article  Google Scholar 

  • Zeilinger, A. (2010). Dance of the photons: From Einstein to quantum teleportation. New York: Farrar, Straus and Giroux.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov .

Editor information

Editors and Affiliations

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Khrennikov, A. (2017). Why Quantum?. In: Haven, E., Khrennikov, A. (eds) The Palgrave Handbook of Quantum Models in Social Science. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-49276-0_15

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-49276-0_15

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-49275-3

  • Online ISBN: 978-1-137-49276-0

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics