Skip to main content

Quantum Models of Human Causal Reasoning

  • Chapter
  • First Online:
The Palgrave Handbook of Quantum Models in Social Science

Abstract

Throughout our lives, we are constantly faced with a variety of causal reasoning problems. A challenge for cognitive modelers is developing a comprehensive framework for modeling causal reasoning across different types of tasks and levels of causal complexity. Causal graphical models, based on Bayes’ calculus, have perhaps been the most successful at explaining and predicting judgments of causal attribution. However, some recent empirical studies have reported violations of the predictions of these models, such as the local Markov condition. In this chapter, the authors suggest an alternative approach to modeling human causal reasoning using quantum Bayes nets. They show that their approach can account for a variety of behavioral phenomena including order effects, violations of the local Markov condition, anti-discounting behavior, and reciprocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Busemeyer, J. R., & Bruza, P. D. (2012) Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Busemeyer, J. R., Pothos, E., Franco, R., & Trueblood, J. S. (2011) A quantum theoretical explanation for probability judgment errors. Psychological Review, 118, 193–218.

    Article  Google Scholar 

  • Busemeyer, J. R., Wang, Z., & Lambert-Mogiliansky, A. (2009) Comparison of markov and quantum models of decision making. Journal of Mathematical Psychology, 53, 423–433.

    Article  Google Scholar 

  • Busemeyer, J. R., Wang, Z., & Trueblood, J. S. (2012) Hierarchical bayesian estimation of quantum decision model parameters. In J. R. Busemeyer (ed.), QI 2012, LNCS 7620. Berlin: Springer.

    Google Scholar 

  • Cheng, P. W. (1997) From covariation to causation: A causal power theory. Psychological Review, 104, 367–405.

    Article  Google Scholar 

  • Conte, E., Khrennikov, Y. A., Todarello, O., Federici, A., Zbilut, J. P. (2009) Mental states follow quantum mechanics during perception and cognition of ambiguous figures. Open Systems and Information Dynamics, 16, 1–17.

    Article  Google Scholar 

  • Eddy, D. M. (1982) Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman et al. (eds.), Judgment under uncertainty: Heuristics and biases (pp. 249–267). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Fernbach, P. M., Darlow, A., Sloman, S. A. (2010) Neglect of alternative causes in predictive but not diagnostic reasoning. Psychological Science, 21(3), 329–336.

    Article  Google Scholar 

  • Fernbach, P. M., & Sloman, S. A. (2009) Causal learning with local computations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 678–693.

    Google Scholar 

  • Furnham, A. (1986) The robustness of the recency effect: Studies using legal evidence. Journal of General Psychology, 113, 351–357.

    Article  Google Scholar 

  • Griffiths, T. L., & Tenenbaum, J. B. (2005) Structure and strength in causal induction. Cognitive Psychology, 51, 334–384.

    Article  Google Scholar 

  • Griffiths, T. L., & Tenenbaum, J. B. (2009) Theory-based causal induction. Psychological Review, 116(4), 661–716.

    Article  Google Scholar 

  • Hagmayer, Y., & Sloman, S. A. (2009) Decision makers conceive of themselves as interveners. Journal of Experimental Psychology: General, 128, 22–38.

    Article  Google Scholar 

  • Hagmayer, Y., Sloman, S. A., Lagnado, D. A., & Waldmann, M. R. (2007) Causal reasoning through intervention. In A. Gopnik & L. Schulz (eds.), Causal learning: Psychology, philosophy, and computation (pp. 86–100). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Hagmayer, Y., & Waldmann, M. R. (2002) A constraint satisfaction model of causal learning and reasoning. In W. D. Gray & C. D. Schunn (eds.), Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society (pp. 405–410). Mahwah: Erlbaum.

    Google Scholar 

  • Hammerton, M. (1973) A case of radical probability estimation. Journal of Experimental Psychology, 101, 252–254.

    Article  Google Scholar 

  • Hogarth, R. M., & Einhorn, H. J. (1992) Order effects in belief updating: The belief-adjustment model. Cognitive Psychology, 24, 1–55.

    Article  Google Scholar 

  • Hume, D. (1987) A treatise of human nature (2nd ed.). Oxford: Clarendon Press (Original work published 1739).

    Google Scholar 

  • Jenkins, H. M., & Ward, W. C. (1965) Judgment of contingency between responses and outcomes. Psychological Monographs: General and Applied, 79, 1–17.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1972). On prediction and judgment [Whole issue]. Oregon Research Institute Research Bulletin, 12(4).

    Google Scholar 

  • Kelley, H. H. (1973) The processes of causal attribution. American Psychologist, 28, 107–128.

    Article  Google Scholar 

  • Kemp, C., & Tenenbaum, J. B. (2009) Structured statistical models of inductive reasoning. Psychological Review, 116, 20–58.

    Article  Google Scholar 

  • Kim, J. H., & Pearl, J. ( 1983) A computational model for causal and diagnostic reasoning in inference systems. In Proceedings of the 8th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 190–193).

    Google Scholar 

  • Koehler, J. J. (1996) The base rate fallacy reconsidered: Descriptive, normative, and methodological challenges. Behavioral and Brain Sciences, 19(1), 1–17.

    Article  Google Scholar 

  • Liu, A. Y. (1975) Specific information effect in probability estimation. Perceptual and Motor Skills, 41, 475–478.

    Article  Google Scholar 

  • Lober, K., & Shanks, D. R. (2000) Is causal induction based on causal power? critique of cheng (1997). Psychological Review, 107(1), 195–212.

    Article  Google Scholar 

  • Lu, H., Yuille, A. L., Liljeholm, M., Cheng, P. W., & Holyoak, K. J. (2008) Bayesian generic priors for causal learning. Psychological Review, 115(4), 955.

    Article  Google Scholar 

  • Meehl, P., & Rosen, A. (1955) Antecedent probability and the efficiency of psychometric signs of patterns, or cutting scores. Psychological Bulletin, 52, 194–215.

    Article  Google Scholar 

  • Moreira, C., & Wichert, A. (2014) Interference effects in quantum belief networks. Applied Soft Computing, 25, 64–85.

    Article  Google Scholar 

  • Morris, M. W., & Larrick, R. P. (1995) When one cause casts doubt on another: A normative analysis of discounting in causal attribution. Psychological Review, 102(2), 331–355.

    Article  Google Scholar 

  • Novick, L. R., & Cheng, P. W. (2004) Assessing interactive causal influence. Psychological Review, 111(2), 455–485.

    Article  Google Scholar 

  • Park, J., & Sloman, S. A. (2013) Mechanistic beliefs determine adherence to the markov property in causal reasoning. Cognitive Psychology, 67(4), 186–216.

    Article  Google Scholar 

  • Pearl, J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Peres, A. (1998) Quantum theory: Concepts and methods. New York: Kluwer Academic.

    Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2009) A quantum probability explanation for violations of ‘rational’ decision theory. Proceedings of the Royal Society B, 276(1165), 2171–2178.

    Article  Google Scholar 

  • Rehder, B. (2003) Categorization as causal reasoning. Cognitive Science, 27, 709–748.

    Article  Google Scholar 

  • Rehder, B. (2014) Independence and dependence in human causal reasoning. Cognitive Psychology, 72, 54–107.

    Article  Google Scholar 

  • Rehder, B., & Kim, S. (2009) Classification as diagnostic reasoning. Memory and Cognition, 37, 715–729.

    Article  Google Scholar 

  • Rehder, B., & Kim, S. (2010) Causal status and coherence in causal-based categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1171–1206.

    Google Scholar 

  • Rottman, B. M., & Hastie, R. (2014) Reasoning about causal relationships: Inferences on causal networks. Psychological Bulletin, 140(1), 109–139.

    Article  Google Scholar 

  • Shanteau, J. C. (1970) An additive model for sequential decision making. Journal of Experimental Psychology, 85, 181–191.

    Article  Google Scholar 

  • Trueblood, J. S., & Busemeyer, J. R. (2011) A quantum probability account of order effects in inference. Cognitive Science, 35, 1518–1552.

    Article  Google Scholar 

  • Trueblood, J. S., & Pothos, E. M. (2014) A quantum probability approach to human causal reasoning. In P. Bello et al. (eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 1616–1621). Austin: Cognitive Science Society.

    Google Scholar 

  • Tucci, R. R. (1995) Quantum bayesian nets. International Journal of Modern Physics, B, 9, 295–337.

    Article  Google Scholar 

  • Tucci, R. R. (2012) An introduction to quantum bayesian networks for mixed states. arXiv preprint arXiv:1204.1550.

    Google Scholar 

  • Villejoubert, G., & Mandel, D. R. (2002) The inverse fallacy: An account of deviations from bayes’s theorem and the additivity principle. Memory and Cognition, 30(2), 171–178.

    Article  Google Scholar 

  • Waldmann, M. R., Cheng, P. W., Hagmayer, Y., & Blaisdell, A. P. (2008). Causal learning in rats and humans: A minimal rational model. In N. Chater & M. Oaksford (Eds.), The probabilistic mind. Prospects for Bayesian cognitive science (pp. 453–484). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Walker, L., Thibaut, J., & Andreoli, V. (1972) Order of presentation at trial. Yale Law Journal, 82, 216–226.

    Article  Google Scholar 

  • Wang, Z., & Busemeyer, J. R. (2013) A quantum question order model supported by empirical tests of an a priori and precise prediction. Topics in Cognitive Science, 5, 689–710.

    Google Scholar 

  • White, P. A. (2005) The power pc theory and causal powers: Comment on cheng (1997) and novick and cheng (2004). Psychological Review, 112(3), 675–682.

    Article  Google Scholar 

Download references

Acknowledgements

Jennifer S. Trueblood and Percy K. Mistry were supported by NSF grant SES-1556415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Trueblood .

Editor information

Editors and Affiliations

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Trueblood, J.S., Mistry, P.K. (2017). Quantum Models of Human Causal Reasoning. In: Haven, E., Khrennikov, A. (eds) The Palgrave Handbook of Quantum Models in Social Science. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-49276-0_12

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-49276-0_12

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-49275-3

  • Online ISBN: 978-1-137-49276-0

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics