Advertisement

Quantifying Social Influences Throughout the Life Course: Action, Structure and ‘Omics’

  • Michael P. Kelly
  • Rachel S. Kelly

Abstract

In this chapter, we describe the synergies between ‘omics’ and sociology, and how the human interactome can be read as a timeline of a life. Environmental influences at every stage of the life course (ancestry, prenatal and perinatal exposures, recent contemporary experiences) can be characterised in a human’s ‘omes’, that is, their epigenome, genome, transcriptome, proteome and metabolome. We propose that ‘omic’ technologies integrated with sociological accounts of the dynamic nature of social life offer the possibility of understanding both the biological and social consequences of exposures to environmental stressors (including social deprivation and disadvantage); the recursive social and biological nature of these exposures; and the consequences for the patterning of morbidity and mortality in populations within and between societies and across generations.

References

  1. Achiron, Anat, Michael Gurevich, Nir Friedman, Naftali Kaminski, and Mathilda Mandel. 2004. Blood Transcriptional Signatures of Multiple Sclerosis: Unique Gene Expression of Disease Activity. Annals of Neurology 55 (3): 410–417. doi: 10.1002/ana.20008.CrossRefGoogle Scholar
  2. Aidoo, Michael, Dianne J. Terlouw, Margarette S. Kolczak, Peter D. McElroy, Feiko O. ter Kuile, Simon Kariuki, Bernard L. Nahlen, Altaf A. Lal, and Venkatachalam Udhayakumar. 2002. Protective Effects of the Sickle Cell Gene Against Malaria Morbidity and Mortality. The Lancet 359 (9314): 1311–1312. doi: 10.1016/S0140-6736(02)08273-9.CrossRefGoogle Scholar
  3. Bailey, Kathryn A., Jessica Laine, Julia E. Rager, Elizabeth Sebastian, Andrew Olshan, Lisa Smeester, Zuzana Drobná, et al. 2014. Prenatal Arsenic Exposure and Shifts in the Newborn Proteome: Interindividual Differences in Tumor Necrosis Factor (TNF)-Responsive Signaling. Toxicological Sciences 139 (2): 328–337. doi: 10.1093/toxsci/kfu053.CrossRefGoogle Scholar
  4. Barker, David J.P. 1991. The Foetal and Infant Origins of Inequalities in Health in Britain. Journal of Public Health 13 (2): 64–68.Google Scholar
  5. Barker, David J., and Christopher N. Martyn. 1992. The Maternal and Fetal Origins of Cardiovascular Disease. Journal of Epidemiology and Community Health 46 (1): 8–11.CrossRefGoogle Scholar
  6. Barker, David J., and Clive Osmond. 1987. Inequalities in Health in Britain: Specific Explanations in Three Lancashire Towns. British Medical Journal 294 (6574): 749–752. doi: 10.1136/bmj.294.6574.749.CrossRefGoogle Scholar
  7. Barker, David J.P., and Kent L. Thornburg. 2013. Placental Programming of Chronic Diseases, Cancer and Lifespan: A Review. Placenta 34 (10): 841–845. doi: 10.1016/j.placenta.2013.07.063.CrossRefGoogle Scholar
  8. Barker, David, Mary Barker, Tom Fleming, and Michelle Lampl. 2013. Developmental Biology: Support Mothers to Secure Future Public Health. Nature 504 (7479): 209–211.CrossRefGoogle Scholar
  9. Bateson, Patrick, and Peter Gluckman. 2012. Plasticity and Robustness in Development and Evolution. International Journal of Epidemiology 41 (1): 219–223. doi: 10.1093/ije/dyr240.CrossRefGoogle Scholar
  10. Bhaskar, Roy. 2008. A Realist Theory of Science. London: Routledge.Google Scholar
  11. Blue, Stanley, Elizabeth Shove, Chris Carmona, and Michael P. Kelly. 2016. Theories of Practice and Public Health: Understanding (Un)healthy Practices. Critical Public Health 26 (1): 36–50. doi: 10.1080/09581596.2014.980396.CrossRefGoogle Scholar
  12. Blumer, Herbert. 1962. Society as Symbolic Interaction. In Human Behavior and Social Process, ed. A. Rose. London: Routledge & Kegan Paul.Google Scholar
  13. Boccaletti, Stefano, Vito Latora, Yamir Moreno, Mario Chavez, and Dong-Uk Hwang. 2006. Complex Networks: Structure and Dynamics. Physics Reports 424 (4–5): 175–308. doi: 10.1016/j.physrep.2005.10.009.CrossRefGoogle Scholar
  14. Bonassi, Stefano, Emanuela Taioli, and Roel Vermeulen. 2013. Omics in Population Studies: A Molecular Epidemiology Perspective. Environmental and Molecular Mutagenesis 54 (7): 455–460. doi: 10.1002/em.21805.CrossRefGoogle Scholar
  15. Bortner, James D., John P. Richie, Arunangshu Das, Jason Liao, Todd M. Umstead, Anne Stanley, Bruce A. Stanley, Chandra P. Belani, and Karam El-Bayoumy. 2011. Proteomic Profiling of Human Plasma by iTRAQ Reveals Down-Regulation of ITI-HC3 and VDBP by Cigarette Smoking. Journal of Proteome Research 10 (3): 1151–1159. doi: 10.1021/pr100925p.CrossRefGoogle Scholar
  16. Buck, David, and Francesca Frosini. 2012. Clustering of Unhealthy Behaviours Over Time: Implications for Policy and Practice. London: The King’s Fund.Google Scholar
  17. Chen, Kuang-Den, Po-Tsung Chang, Yueh-Hsin Ping, Hsin-Chen Lee, Chin-Wei Yeh, and Pei-Ning Wang. 2011. Gene Expression Profiling of Peripheral Blood Leukocytes Identifies and Validates ABCB1 as a Novel Biomarker for Alzheimer’s Disease. Neurobiology of Disease 43 (3): 698–705. doi: 10.1016/j.nbd.2011.05.023.CrossRefGoogle Scholar
  18. Colquhoun, David R., Lynn R. Goldman, Robert N. Cole, Marjan Gucek, Malini Mansharamani, Frank R. Witter, Benjamin J. Apelberg, and Rolf U. Halden. 2009. Global Screening of Human Cord Blood Proteomes for Biomarkers of Toxic Exposure and Effect. Environmental Health Perspectives 117 (5): 832–838. doi: 10.1289/ehp.11816.CrossRefGoogle Scholar
  19. Cox, James, Sarah Williams, Kevin Grove, Robert H. Lane, and Kjersti M. Aagaard-Tillery. 2009. A Maternal High-fat Diet is Accompanied by Alterations in the Fetal Primate Metabolome. American Journal of Obstetrics and Gynecology 201 (3): 281.e1–281.e9. doi: 10.1016/j.ajog.2009.06.041.CrossRefGoogle Scholar
  20. Commision on the Social Determinants of Health. 2008. Closing the Gap in a Generation: Health Equity Through Action on the Social Determinants of Health. Geneva: WHO.Google Scholar
  21. Damasio, Antonio. 1994. Descartes’ Error: Emotion, Reason and the Human Brain. New York: Putnam.Google Scholar
  22. Demetriou, Christiana A., Karin van Veldhoven, Caroline Relton, Silvia Stringhini, Kyriacos Kyriacou, and Paolo Vineis. 2015. Biological Embedding of Early-life Exposures and Disease Risk in Humans: A Role for DNA Methylation. European Journal of Clinical Investigation 45 (3): 303–332. doi: 10.1111/eci.12406.CrossRefGoogle Scholar
  23. Dunn, Warwick B., Roy Goodacre, Ludwig Neyses, and Mamas Mamas. 2011. Integration of Metabolomics in Heart Disease and Diabetes Research: Current Achievements and Future Outlook. Bioanalysis 3 (19): 2205–2222.CrossRefGoogle Scholar
  24. Dutta, Sisir K., Partha S. Mitra, Somiranjan Ghosh, Shizhu Zang, Dean Sonneborn, Irva Hertz-Picciotto, Tomas Trnovec, et al. 2012. Differential Gene Expression and a Functional Analysis of PCB-exposed Children: Understanding Disease and Disorder Development. Environment International 40: 143–154. doi: 10.1016/j.envint.2011.07.008.CrossRefGoogle Scholar
  25. Elizabeth, P. Ryan, L. Heuberger Adam, C. Broeckling Corey, Erica Borresen, Cadie Tillotson, and Jessica E. Prenni. 2013. Advances in Nutritional Metabolomics. Current Metabolomics 1 (2): 109–120. doi: 10.2174/2213235X11301020001.CrossRefGoogle Scholar
  26. Engel, George L. 1960. A Unified Concept of Health and Disease. Perspectives in Biology and Medicine 3: 459–485.CrossRefGoogle Scholar
  27. ———. 1981. The Clinical Application of the Biopsychosocial Model. The Journal of Medicine and Philosophy 6 (2): 101–123.CrossRefGoogle Scholar
  28. ———. 1977. The Need for a New Medical Model: A Challenge for Biomedicine. Science 196 (4286): 129–136. doi: 10.1126/science.847460.CrossRefGoogle Scholar
  29. Giddens, Anthony. 1979. Central Problems in Social Theory: Action, Structure and Contradiction in Social Analysis. Basingstoke; Berkeley: University of California Press.CrossRefGoogle Scholar
  30. ———. 1982. Profiles and Critiques in Social Theory. London: Macmillan.CrossRefGoogle Scholar
  31. ———. 1984. The Constitution of Society: Outline of the Theory of Structuration. Berkeley: University of California Press.Google Scholar
  32. Harre, Rom. 1987. The Social Construction of Selves. In Self and Identity: Psycho Social Perspectives, ed. K. Yardley and T. Honess, 23. New York: Wiley.Google Scholar
  33. Heijmans, Bastiaan T., Elmar W. Tobi, Aryeh D. Stein, Hein Putter, Gerard J. Blauw, Ezra S. Susser, P. Eline Slagboom, and L.H. Lumey. 2008. Persistent Epigenetic Differences Associated with Prenatal Exposure to Famine in Humans. Proceedings of the National Academy of Sciences 105 (44): 17046–17049. doi: 10.1073/pnas.0806560105.CrossRefGoogle Scholar
  34. Hochstenbach, Kevin, Danitsja M. van Leeuwen, Hans Gmuender, Ralph W. Gottschalk, Martinus Lovik, Berit Granum, Unni Cecillie, et al. 2012. Global Gene Expression Analysis in Cord Blood Reveals Gender-Specific Differences in Response to Carcinogenic Exposure In Utero. Cancer Epidemiology Biomarkers & Prevention 21 (10): 1756–1767. doi: 10.1158/1055-9965.epi-12-0304.CrossRefGoogle Scholar
  35. Hollands, Gareth J., Ian Shemilt, Theresa M. Marteau, Susan A. Jebb, Michael P. Kelly, Ryota Nakamura, Marc Suhrcke, and David Ogilvie. 2013. Altering Micro-environments to Change Population Health Behaviour: Towards an Evidence Base for Choice Architecture Interventions. BioMed Central Public Health 13 (1): 1–6. doi: 10.1186/1471-2458-13-1218.CrossRefGoogle Scholar
  36. Hsu, Ping-Ching, Bin Zhou, Yi Zhao, Habtom W. Ressom, Amrita K. Cheema, Wallace Pickworth, and Peter G. Shields. 2013. Feasibility of Identifying the Tobacco-related Global Metabolome in Blood by UPLC–QTOF-MS. Journal of Proteome Research 12 (2): 679–691. doi: 10.1021/pr3007705.CrossRefGoogle Scholar
  37. Kahneman, Daniel. 2011. Thinking, Fast and Slow. London: Penguin.Google Scholar
  38. Kant, Immanuel. 1781. The Critique of Pure Reason. Basingstoke: Palgrave/Macmillan.Google Scholar
  39. Kelly, Michael P., and Mary Barker. 2016. Why is Changing Health Related Behaviour So Difficult? Public Health 136: 109–116. doi: 10.1016/j.puhe.2016.03.030.CrossRefGoogle Scholar
  40. Kelly, Michael P., and Emma Doohan. 2012. The Social Determinants of Health. In Global Health: Diseases, Programs, Systems and Policies, ed. M.H. Merson, R.E. Black, and A.J. Mills, 75–113. Burlington, MA: Jones & Bartlett.Google Scholar
  41. Kelly, Michael P., Rachel S. Kelly, and Federica Russo. 2014. The Integration of Social, Behavioral, and Biological Mechanisms in Models of Pathogenesis. Perspectives in Biology and Medicine 57 (3): 308–328. doi: 10.1353/pbm.2014.0026.CrossRefGoogle Scholar
  42. Kelly, Michael P. 2016. The Politics of Behaviour Change. In Beyond Behaviour Change: Key Issues, Interdisciplinary Approaches and Future Directions, ed. Fiona Spotswood, 11–26. Bristol: Policy Press.Google Scholar
  43. Khoury, Muin J., and Sholom Wacholder. 2009. Invited Commentary: From Genome-Wide Association Studies to Gene-Environment-Wide Interaction Studies—Challenges and Opportunities. American Journal of Epidemiology 169 (2): 227–230. doi: 10.1093/aje/kwn351.CrossRefGoogle Scholar
  44. Knopik, Valerie S., Matthew A. Maccani, Sarah Francazio, and John E. McGeary. 2012. The Epigenetics of Maternal Cigarette Smoking During Pregnancy and Effects on Child Development. Development and Psychopathology 24 (4): 1377–1390. doi: 10.1017/S0954579412000776.CrossRefGoogle Scholar
  45. Kyrtopoulos, Soterios A. 2013. Making Sense of OMICS Data in Population-based Environmental Health Studies. Environmental and Molecular Mutagenesis 54 (7): 468–479. doi: 10.1002/em.21778.CrossRefGoogle Scholar
  46. Lee, Ho-Sun. 2015. Impact of Maternal Diet on the Epigenome during In Utero Life and the Developmental Programming of Diseases in Childhood and Adulthood. Nutrients 7 (11): 9492–9507. doi: 10.3390/nu7115467.CrossRefGoogle Scholar
  47. Lindholm, Maléne E., Francesco Marabita, David Gomez-Cabrero, Helene Rundqvist, Tomas J. Ekström, Jesper Tegnér, and Carl Johan Sundberg. 2014. An Integrative Analysis Reveals Coordinated Reprogramming of the Epigenome and the Transcriptome in Human Skeletal Muscle after Training. Epigenetics 9 (12): 1557–1569. doi: 10.4161/15592294.2014.982445.CrossRefGoogle Scholar
  48. Manolio, Teri A., Francis S. Collins, Nancy J. Cox, David B. Goldstein, Lucia A. Hindorff, David J. Hunter, and Mark I. McCarthy. 2009. Finding the Missing Heritability of Complex Diseases. Nature 461 (7265): 747–753. doi: 10.1038/nature08494.CrossRefGoogle Scholar
  49. Marmot, Michael. 2010. Fair Society, Healthy Lives: Strategic Review of Health Inequalities in England post 2010. London: UCL.Google Scholar
  50. Marmot, Michael, and Richard G. Wilkinson. 2006. Social Determinants of Health. 2nd ed. Oxford: Oxford University Press.Google Scholar
  51. Marteau, Theresa M., Gareth J. Hollands, and Michael P. Kelly. 2015. Changing Population Behavior and Reducing Health Disparities: Exploring the Potential of “Choice Architecture” Interventions. In Population Health: Behavioral and Social Science Insights, AHRQ Publication No. 15-0002, ed. Robert M. Kaplan, Michael L. Spittel, and Daryn H. David, 105–126. Rockville: Agency for Healthcare Research and Quality and Office of Behavioral and Social Sciences Research, National Institutes of Health.Google Scholar
  52. Marteau, Theresa M., David Ogilvie, Martin Roland, Marc Suhrcke, Michael P. Kelly, et al. 2011. Judging Nudging: Can Nudging Improve Population Health? British Medical Journal 342: d228. doi: 10.1136/bmj.d228.CrossRefGoogle Scholar
  53. Marteau, Theresa M., Gareth J. Hollands, and Paul C. Fletcher. 2012. Changing Human Behavior to Prevent Disease: The Importance of Targeting Automatic Processes. Science 337 (6101): 1492–1495. doi: 10.1126/science.1226918.CrossRefGoogle Scholar
  54. Mead, George Herbert. 1934. Mind, Self and Society: From the Standpoint of the Social Behaviorist. Chicago: Chicago University Press.Google Scholar
  55. ———. 1936. In Movements of Thought in the Nineteenth Century, ed. M.H. Moore. Chicago: Chicago University Press.Google Scholar
  56. Meloni, Maurizio. 2014. Biology without Biologism: Social Theory in a Postgenomic Age. Sociology 48: 731–746.CrossRefGoogle Scholar
  57. ———. 2015a. Epigenetics for the Social Sciences: Justice, Embodiment, and Inheritance in the Postgenomic Age. New Genetics and Society 34 (2): 125–151. doi: 10.1080/14636778.2015.1034850.CrossRefGoogle Scholar
  58. ———. 2015b. Heredity 2.0: The Epigenetics Effect. New Genetics and Society 34 (2): 117–124. doi: 10.1080/14636778.2015.1036156.CrossRefGoogle Scholar
  59. Meng, Qingying, Ville-Petteri Mäkinen, Helen Luk, and Xia Yang. 2013. Systems Biology Approaches and Applications in Obesity, Diabetes, and Cardiovascular Diseases. Current Cardiovascular Risk Reports 7 (1): 73–83. doi: 10.1007/s12170-012-0280-y.CrossRefGoogle Scholar
  60. Mitra, Partha Sarathi, Somiranjan Ghosh, Shizhu Zang, Dean Sonneborn, Irva Hertz-Picciotto, Tomas Trnovec, Lubica Palkovicova, et al. 2012. Analysis of the Toxicogenomic Effects of Exposure to Persistent Organic Pollutants (POPs) in Slovakian Girls: Correlations between Gene Expression and Disease Risk. Environment International 39 (1): 188–199. doi: 10.1016/j.envint.2011.09.003.CrossRefGoogle Scholar
  61. Monk, Catherine, Julie Spicer, and Frances A. Champagne. 2012. Linking Prenatal Maternal Adversity to Developmental Outcomes in Infants: The Role of Epigenetic Pathways. Development and psychopathology 24 (4): 1361–1376. doi: 10.1017/S0954579412000764.CrossRefGoogle Scholar
  62. Ottman, Ruth. 1996. Gene–Environment Interaction: Definitions and Study Designs. Preventive Medicine 25 (6): 764–770.CrossRefGoogle Scholar
  63. Relton, Caroline L., and George Davey Smith. 2012. Is Epidemiology Ready for Epigenetics? International Journal of Epidemiology 41 (1): 5–9. doi: 10.1093/ije/dys006.CrossRefGoogle Scholar
  64. Ritchie, Marylyn D., Emily R. Holzinger, Ruowang Li, Sarah A. Pendergrass, and Dokyoon Kim. 2015. Methods of Integrating Data to Uncover Genotype-phenotype Interactions. Nature Reviews Genetics 16 (2): 85–97. doi: 10.1038/nrg3868.CrossRefGoogle Scholar
  65. Rose, S. 2005. Lifelines: Life Beyond the Gene. London: Vintage.Google Scholar
  66. Schutz, Alfred. 1967. The Phenomenology of the Social World. Trans. G. Walsh and F. Lehnert. Evanston: North Western University Press.Google Scholar
  67. ———. 1970. On Phenomenology and Social Relations: Selected Writings. Chicago: Chicago University Press.Google Scholar
  68. Soubry, A., Susan K. Murphy, Zhiqing Huang, Amy Murtha, Joellen M. Schildkraut, Randy L. Jirtle, F. Wang, Joanne Kurtzberg, Wendy Demark-Wahnefried, Michelle R. Forman, and Cathrine Hoyo. 2011. The Effects of Depression and Use of Antidepressive Medicines during Pregnancy on the Methylation Status of the IGF2 Imprinted Control Regions in the Offspring. Clinical Epigenetics 3 (1): 2–2. doi: 10.1186/1868-7083-3-2.CrossRefGoogle Scholar
  69. Strack, Fritz, and Roland Deutsch. 2004. Reflective and Impulsive Determinants of Social Behavior. Personality and Social Psychology Review 8 (3): 220–247. doi:10.1207/s15327957pspr0803_1.Google Scholar
  70. Sturm, Richard A., and David L. Duffy. 2012. Human Pigmentation Genes Under Environmental Selection. Genome Biology 13 (9): 1–15. doi: 10.1186/gb-2012-13-9-248.CrossRefGoogle Scholar
  71. Tang, Yang, Alex C. Nee, Aigang Lu, Ruiqiong Ran, and Frank R. Sharp. 2003. Blood Genomic Expression Profile for Neuronal Injury. Journal of Cerebral Blood Flow & Metabolism 23 (3): 310–319. doi: 10.1097/01.wcb.0000048518.34839.de.CrossRefGoogle Scholar
  72. Thayer, Zaneta M., and Christopher W. Kuzawa. 2011. Biological Memories of Past Environments: Epigenetic Pathways to Health Disparities. Epigenetics 6 (7): 798–803.CrossRefGoogle Scholar
  73. Tieri, Paolo, Alberto de la Fuente, Alberto Termanini, and Claudio Franceschi. 2011. Integrating Omics Data for Signaling Pathways, Interactome Reconstruction, and Functional Analysis. In Bioinformatics for Omics Data: Methods and Protocols, ed. Bernd Mayer, 415–433. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  74. Twine, Natalie C., Jennifer A. Stover, Bonnie Marshall, Gary Dukart, Manuel Hidalgo, Walter Stadler, Theodore Logan, et al. 2003. Disease-associated Expression Profiles in Peripheral Blood Mononuclear Cells from Patients with Advanced Renal Cell Carcinoma. Cancer Research 63 (18): 6069–6075.Google Scholar
  75. van Leeuwen, Danitsja M., Marcel H.M. van Herwijnen, Marie Pedersen, Lisbeth E. Knudsen, Micheline Kirsch-Volders, Radim J. Sram, Y.C.M. Staal, Edyta Bajak, Joost H.M. van Delft, and Joost C.S. Kleinjans. 2006. Genome-wide Differential Gene Expression in Children Exposed to Air Pollution in the Czech Republic. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 600 (2): 12–22. doi: 10.1016/j.mrfmmm.2006.05.032.CrossRefGoogle Scholar
  76. Vidal, Marc, Michael E. Cusick, and Albert-László Barabási. 2011. Interactome Networks and Human Disease. Cell 144 (6): 986–998. doi: 10.1016/j.cell.2011.02.016.CrossRefGoogle Scholar
  77. Vineis, Paolo, Silvia Stringhini, and Miquel Porta. 2014. The Environmental Roots of Non-communicable Diseases (NCDs) and the Epigenetic Impacts of Globalization. Environmental Research 133: 424–430. doi: 10.1016/j.envres.2014.02.002.CrossRefGoogle Scholar
  78. Waddington, Conrad H. 2012. The Epigenotype. International Journal of Epidemiology 41 (1): 10–13. doi: 10.1093/ije/dyr184.CrossRefGoogle Scholar
  79. Wang, Thomas J., Martin G. Larson, Ramachandran S. Vasan, Susan Cheng, Eugene P. Rhee, Elizabeth McCabe, Gregory D. Lewis, et al. 2011. Metabolite Profiles and the Risk of Developing Diabetes. Nature Medicine 17 (4): 448–453. doi: 10.1038/nm.2307.CrossRefGoogle Scholar
  80. Ward, David C., and David C. White. 2002. The New ‘Omics Era’. Current Opinion in Biotechnology 13 (1): 11–13. doi: 10.1016/S0958-1669(02)00277-X.CrossRefGoogle Scholar
  81. Wheelock, Craig E., Victoria M. Goss, David Balgoma, Ben Nicholas, Joost Brandsma, Paul J. Skipp, Stuart Snowden, et al. 2013. Application of Omics Technologies to Biomarker Discovery in Inflammatory Lung Diseases. European Respiratory Journal 42 (3): 802–825. doi: 10.1183/09031936.00078812.CrossRefGoogle Scholar
  82. Widschwendter, Martin, Sophia Apostolidou, Elke Raum, Dietrich Rothenbacher, Heidi Fiegl, Usha Menon, Christa Stegmaier, Ian J. Jacobs, and Hermann Brenner. 2008. Epigenotyping in Peripheral Blood Cell DNA and Breast Cancer Risk: A Proof of Principle Study. PLoS One 3 (7): e2656. doi: 10.1371/journal.pone.0002656.CrossRefGoogle Scholar
  83. Yashin, Anatoliy I., Deqing Wu, Konstantin G. Arbeev, Liubov S. Arbeeva, Igor Akushevich, Alexander Kulminski, Irina Culminskaya, Eric Stallard, and Svetlana V. Ukraintseva. 2014. Genetic Structures of Population Cohorts Change with Increasing Age: Implications for Genetic Analyses of Human aging and Life Span. Annals of Gerontology and Geriatric Research 1 (4): 1020.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Michael P. Kelly
    • 1
  • Rachel S. Kelly
    • 2
  1. 1.Primary Care Unit, Institute of Public HealthUniversity of CambridgeCambridgeUK
  2. 2.Systems Genetics and Genomics Unit, Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations