Skip to main content

From Climatology to Climate Science in the Twentieth Century

  • Chapter
  • First Online:
The Palgrave Handbook of Climate History

Abstract

This chapter provides a short historical account of major developments and shifts in twentieth-century climate research. It explores a pattern of changes in the study of climate: from a geographical to a physical science; from an empirically focused study to a theory-based one; from the collection of measurements and descriptions to a search for causes and explanations; and from a bottom-up, local-scale practice to an increasingly top-down, global-scale science. The chapter pays particular attention to the roles of temporal and spatial scales, namely to the globalization of climate knowledge. A globalization of climate science and knowledge shifted attention away from local and regional human–climate interactions and the role of climate in human affairs to the investigation of purely physical processes, represented in differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Lehmann, 2015, 51.

  2. 2.

    e.g. Flohn, 1954, 11–13; Khrgian, 1970, 312.

  3. 3.

    Humboldt, 1845, 340.

  4. 4.

    Humboldt’s concept of climate was holistic in three ways: first, climate represented the whole of atmospheric phenomena at a defined location (synthesis of phenomena); second, it represented the whole of climates in different locations (synthesis in space); third, it focused on the relationship of humans and climate (Heymann, 2010a, 587). Humboldt’s ideas stood representative of “the basic goals of the nineteenth century climatologists … to understand the relationship between climate, vegetation, agriculture, and man” (Khrgian, 1970, 302).

  5. 5.

    Khrgian, 1970, 312.

  6. 6.

    Knobloch, 2007, 12.

  7. 7.

    Rupke, 2008, 175–202. Similarly, Aleksandr Ivanovich Voeikov, one of the most influential Russian climatologists and geographers, pursued an interest in large-scale climatic processes in his fundamental Climates of the Earth, Particularly of Russia (1884). E.g. Khrgian, 1970, 314–15; Oldfield, 2013, 517.

  8. 8.

    Coen, 2010, 843–46.

  9. 9.

    Hann, 1908, 3–4.

  10. 10.

    Köppen, 1895, 614.

  11. 11.

    Köppen, 1895, 619.

  12. 12.

    Köppen, 1895, 627.

  13. 13.

    Köppen and Geiger, 1936.

  14. 14.

    Köppen, 1918, 1923, 1936; Wilcock, 1968.

  15. 15.

    Werlen, 1993, 244; Bahrenberg, 1995, 152.

  16. 16.

    Köppen and Geiger, 1936.

  17. 17.

    Kutzbach, 1979.

  18. 18.

    Nebeker, 1995, 48.

  19. 19.

    Wagner et al., 1931, F1–F3.

  20. 20.

    Flohn, 1951, 201.

  21. 21.

    Scherhag, 1936.

  22. 22.

    Flohn, 1992, 19.

  23. 23.

    Flohn, 1950a, 142; Flohn, 1992, 7, 14.

  24. 24.

    Flohn, 1950a, 1950b; Petterssen, 1950.

  25. 25.

    Bergeron, 1930.

  26. 26.

    Flohn, 1951, 210.

  27. 27.

    Hettner, 1930; Flohn, 1950b.

  28. 28.

    Christaller, 1933; Kiesewetter, 2000, 79–90; Bobek and Schmithüsen, 1949.

  29. 29.

    Flohn, 1954, 11–12.

  30. 30.

    Malberg, 2007; interview with Günther Warnecke, November 26, 2015; interview with Heinz Fortak, November 27, 2015.

  31. 31.

    Krüger, 2013; Brönnimann, 2002; Imbrie and Imbrie, 1979, 19–57.

  32. 32.

    A notable exception is Brooks, 1922 and Brooks, 1949; see also Kenworthy, 2012.

  33. 33.

    Brückner, 1890; Lehmann, 2015.

  34. 34.

    Fleming, 1998.

  35. 35.

    Sörlin, 2011.

  36. 36.

    Callendar, 1938; Fleming, 2007, 65–77.

  37. 37.

    Callendar, 1938, 237.

  38. 38.

    Rudloff, 1967; Lamb, 1982.

  39. 39.

    Lehmann, 2015; Coen, 2010.

  40. 40.

    Bjerknes, 1904; Thorpe et al., 2003; Gramelsberger, 2009. Bjerknes provided a description of these equations in prose. Figure 38.1 gives six of the seven equations in the form elaborated by Lewis Fry Richardson and presented in Aspray, 1990, 124–27; see also Dahan Dalmedico, 2001, 398–99 and Nebeker, 1995, 66.

  41. 41.

    Friedman, 1989.

  42. 42.

    Friedman, 1989; Ellingsen, 2015.

  43. 43.

    Volkert, 1999; Gramelsberger, 2017.

  44. 44.

    Richardson, 1922; Lynch, 2005.

  45. 45.

    Harper, 2008; Nebeker, 1995.

  46. 46.

    Phillips, 1956, 154.

  47. 47.

    Quoted in Lewis, 1998, 52.

  48. 48.

    Persson, 2005a.

  49. 49.

    Persson, 2005b, 2005c.

  50. 50.

    Flohn, 1965, 385.

  51. 51.

    Craddock et al., 1962, 7.

  52. 52.

    Weart, 2008; Edwards, 2010.

  53. 53.

    Kellogg, 1971; Heymann, 2012.

  54. 54.

    Kellogg, 1971, 123.

  55. 55.

    Charney et al., 1979, xiii.

  56. 56.

    WMO, 1979, 714.

  57. 57.

    Hansen et al., 1981.

  58. 58.

    Heymann and Hundebøl, 2017.

  59. 59.

    Faust, 1960.

  60. 60.

    DeVorkin, 1992; Devorkin and Sanchez-Ron, 1996.

  61. 61.

    Henderson, 2013; Mason, 1975.

  62. 62.

    Dahan Dalmedico, 2010.

  63. 63.

    Dahan Dalmedico, 2010, 291.

  64. 64.

    Hulme, 2011.

  65. 65.

    Lovelock and Margulis, 1974, 2.

  66. 66.

    Lovelock and Margulis, 1974, 3.

  67. 67.

    Ruse, 2013; Schneider and Boston, 1992.

  68. 68.

    Bretherton, 1985.

  69. 69.

    Uhrqvist, 2015; Schellnhuber, 1998, 8.

  70. 70.

    Schellnhuber, 1999.

  71. 71.

    Schellnhuber, 1999, C20.

  72. 72.

    Fisher, 1988, 59.

  73. 73.

    Lenhard and Winsberg, 2010, 253.

  74. 74.

    Quoted in Fisher, 1988, 55.

  75. 75.

    Clifford, 2009, 359.

  76. 76.

    Achermann, forthcoming.

  77. 77.

    Jouzel, 2013, 2526; Martin-Nielsen, 2012, 2013.

  78. 78.

    Dansgaard, 1953.

  79. 79.

    Dansgaard, 1953, 469.

  80. 80.

    Dansgaard et al., 1969, 380.

  81. 81.

    Dansgaard, 2005, 69–74.

  82. 82.

    Broecker, 1987.

  83. 83.

    Edwards, 1999.

  84. 84.

    Edwards, 2010.

  85. 85.

    Agar, 2006; Sepkoski, 2013.

  86. 86.

    Lehmann, 2015, 69.

  87. 87.

    Heymann, 2010b.

  88. 88.

    Heymann, 2009, 2010a.

  89. 89.

    Heymann, 2010a, 2010b.

  90. 90.

    e.g. Shackley et al., 1998; Hulme, 2008.

  91. 91.

    Smith, 2007; see also Edwards, 2006.

  92. 92.

    Fleming, 2010.

  93. 93.

    Jouzel et al., 2007.

  94. 94.

    Jasanoff, 2001; Cosgrove, 2001.

  95. 95.

    Edwards, 2006.

  96. 96.

    Livingstone, 1993, 216–93.

  97. 97.

    Meadows et al., 1972.

  98. 98.

    Randall et al., 2003, 1548.

  99. 99.

    Guillemot, 2017, 13.

  100. 100.

    Holm et al., 2013.

  101. 101.

    Palsson et al., 2012.

References

  • Achermann, Dania. “Snow and Avalanche Research as a Patriotic Duty: Switzerland’s Ground Work for Cold War Ice and Snow Sciences.” In Ice and Snow in the Cold War: Histories of Extreme Climatic Environments, edited by Julia Herzberg, Christian Kehrt, and Franziska Torma. New York: Berghahn Books, forthcoming.

    Google Scholar 

  • Agar, Jon. “What Difference Did Computers Make?” Social Studies of Science 36 (2006): 869–907.

    Article  Google Scholar 

  • Aspray, William. John von Neumann and the Origins of Modern Computing. Cambridge, MA: MIT Press, 1990.

    Google Scholar 

  • Bahrenberg, Gerhard. “Der Bruch der modernen Geographie mit der Tradition.” In Kontinuität und Diskontinuität der deutschen Geographie in Umbruchphasen, edited by Ute Wardenga and Ingrid Honsch, 151–59. Münster: Institut für Geographie der Westfälischen Wilhelms-Universität, 1995.

    Google Scholar 

  • Bergeron, Tom. “Richtlinien einer dynamischen Klimatologie.” Meteorologische Zeitschrift 47 (1930): 246–62.

    Google Scholar 

  • Bjerknes, Vilhelm. “Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik.” Meteorologische Zeitschrift 21 (1904): 1–7.

    Google Scholar 

  • Bobek, H., and J. Schmithüsen. “Die Landschaft im logischen System der Geographie.” Erdkunde 3 (1949): 112–20.

    Article  Google Scholar 

  • Bretherton, Francis P. “Earth System Science and Remote Sensing.” Proceedings of the IEEE 73 (1985): 1118–27.

    Article  Google Scholar 

  • Broecker, Wallace. “Unpleasant Surprises in the Greenhouse.” Nature 328 (1987): 123–26.

    Article  Google Scholar 

  • Brönnimann, Stefan. “Picturing Climate Change.” Climate Research 22 (2002): 87–95.

    Article  Google Scholar 

  • Brooks, C.E.P. The Evolution of Climate. London: Benn Brothers, 1922.

    Google Scholar 

  • Brooks, C.E.P. Climate Through the Ages. Revised ed. New York: McGraw-Hill, 1949.

    Google Scholar 

  • Brückner, Edward. Klimaschwankungen seit 1700, nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. Wien-Olmutz: E. Hölzel, 1890.

    Google Scholar 

  • Callendar, G.S. “The Artificial Production of Carbon Dioxide and Its Influence on Temperature.” Quarterly Journal of the Royal Meteorological Society 64 (1938): 223–40.

    Article  Google Scholar 

  • Charney, Jule G. et al. Carbon Dioxide and Climate: A Scientific Assessment. Washington, DC: Climate Research Board, National Research Council, 1979.

    Google Scholar 

  • Christaller, Walter. Die zentralen Orte in Süddeutschland. Eine ökonomisch-geographische Untersuchung über die Gesetzmäßigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischer Funktion. Jena: Fischer, 1933.

    Google Scholar 

  • Clifford, Nicholas. “Globalization: Science, (Physical) Geography and Environment.” In Key Concepts in Geography, edited by Nicholas Clifford, Sarah Holloway, Stephen Rice, and Gill Valentine, 2nd ed., 344–64. Los Angeles: SAGE, 2009.

    Google Scholar 

  • Coen, Deborah R. “Climate and Circulation in Imperial Austria.” The Journal of Modern History 82 (2010): 839–75.

    Article  Google Scholar 

  • Cosgrove, Denis. Apollo’s Eye: A Cartographic Genealogy of the Earth in the Western Imagination. Baltimore, MD: Johns Hopkins University Press, 2001.

    Google Scholar 

  • Craddock, J.M. et al. The Present Status of Long-Range Forecasting in the World. Geneva: World Meteorological Association, 1962.

    Google Scholar 

  • Dahan Dalmedico, Amy. “History and Epistemology of Models: Meteorology (1946–1963) as a Case Study.” Archive for the History of Exact Sciences 55 (2001): 395–422.

    Article  Google Scholar 

  • Dahan Dalmedico, Amy. “Putting the Earth System in a Numerical Box? The Evolution from Climate Modeling Toward Global Change.” Studies in History and Philosophy of Modern Physics 41 (2010): 282–92.

    Article  Google Scholar 

  • Dansgaard, Willi. “The Abundance of O18 in Atmospheric Water and Water Vapour.” Tellus 5 (1953): 461–69.

    Article  Google Scholar 

  • Dansgaard, Willi. Frozen Annals: Greenland Ice Sheet Research. Copenhagen: Niels Bohr Institute, 2005.

    Google Scholar 

  • Dansgaard, Willi et al. “One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet.” Science 166 (1969): 377–80.

    Article  Google Scholar 

  • DeVorkin, David. Science With a Vengeance: How the Military Created the US Space Sciences After World War II. New York: Springer-Verlag, 1992.

    Google Scholar 

  • DeVorkin, David, and Jose M. Sanchez-Ron. “The Military Origins of the Space Sciences in the American V-2 Era.” In National Military Establishments and the Advancement of Science and Technology, edited by Paul Forman, 233–60. Boston: Kluwer Academic Publishers, 1996.

    Chapter  Google Scholar 

  • Edwards, Paul N. “Global Climate Science, Uncertainty, and Politics: Data-Laden Models, Model-Filtered Data.” Science as Culture 8 (1999): 437–72.

    Article  Google Scholar 

  • Edwards, Paul N. “Meteorology as Infrastructural Globalism.” Osiris 21 (2006): 229–50.

    Article  Google Scholar 

  • Edwards, Paul N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. Cambridge, MA: MIT Press, 2010.

    Google Scholar 

  • Ellingsen, Gunnar. “The Bergen School: Rethinking How Scientific Meteorology Began.” Unpublished Manuscript, University of Bergen, 2015.

    Google Scholar 

  • Faust, Heinrich. “Raketen, Satelliten und Meteorologie.” Meteorologische Rundschau 13 (1960): 130–34.

    Google Scholar 

  • Fisher, Arthur. “One Model to Fit All.” MOSAIC 19 (1988): 52–59.

    Google Scholar 

  • Fleming, James R. Historical Perspectives on Climate Change. New York: Oxford University Press, 1998.

    Google Scholar 

  • Fleming, James R. The Callendar Effect: The Life and Work of Guy Stewart Callendar (1898–1964). Boston: American Meteorological Society, 2007.

    Google Scholar 

  • Fleming, James R. “Knowing Global Environments: New Historical Perspectives on the Field Sciences.” In Knowing Global Environments: New Historical Perspectives on the Field Sciences, edited by Jeremy Vetter, 190–211. Piscataway, NJ: Rutgers University Press, 2010.

    Google Scholar 

  • Flohn, Hermann. “Neue Anschauungen über die allgemeine Zirkulation der Atmosphäre und ihre klimatische Bedeutung.” Erdkunde 4 (1950a): 141–62.

    Google Scholar 

  • Flohn, Hermann. “Scherhags ‘Neue Methoden der Wetteranalyse und Wetterprognose’ und die Entwicklung der dreidimensionalen Synoptik.” Meteorologische Rundschau 3 (1950b): 19–27.

    Google Scholar 

  • Flohn, Hermann. “Ergebnisse und Probleme der Meteorologie 1940 bis 1950.” Naturwissenschaftliche Rundschau 5 (1951): 201–10.

    Google Scholar 

  • Flohn, Hermann. Witterung und Klima in Mitteleuropa. Stuttgart: S. Hirzel Verzag, 1954.

    Google Scholar 

  • Flohn, Hermann. “Probleme der theoretischen Klimatologie.” Naturwissenschaftliche Rundschau 18 (1965): 385–92.

    Google Scholar 

  • Flohn, Hermann. Meteorologie im Übergang, Erfahrungen und Erinnerungen. Bonn: Dummler, 1992.

    Google Scholar 

  • Fortak, Heinz. Interview with authors. November 27, 2015.

    Google Scholar 

  • Friedman, Robert M. Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Ithaca, NY: Cornell University Press, 1989.

    Google Scholar 

  • Gramelsberger, Gabriele. “Conceiving Meteorology as the Exact Science of the Atmosphere: Vilhelm Bjerknes’s Paper of 1904 as a Milestone.” Meteorologische Zeitschrift 18 (2009): 669–73.

    Article  Google Scholar 

  • Gramelsberger, Gabriele. “Calculating the Weather: Emerging Cultures of Prediction in the Late Nineteenth- and Early Twentieth-Century.” In Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based Modeling and Simulation, edited by Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, 61–83. New York: Routledge, 2017.

    Google Scholar 

  • Guillemot, Hélène. “How to Develop Climate Models? The “Gamble” of Improving Climate Model Parameterizations.” In Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based Modeling and Simulation, edited by Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, 120–36. New York: Routledge, 2017.

    Google Scholar 

  • Hann, Julius. Handbuch der Klimatologie, Vol. 1. Stuttgart: Engelhorn, 1908.

    Google Scholar 

  • Hansen, J. et al. “Climate Impact of Increasing Atmospheric Carbon Dioxide.” Science 213 (1981): 957–66.

    Article  Google Scholar 

  • Harper, Kristine. Weather by the Numbers: The Genesis of Modern Meteorology. Cambridge, MA: MIT Press, 2008.

    Book  Google Scholar 

  • Henderson, Gabriel. “Global Atmospheric Research Program.” In Climate Change: An Encyclopedia of Science and History, edited by Brian Black et al. Santa Barbara, CA: ABC-CLIO, 2013.

    Google Scholar 

  • Hettner, Alfred. Die Klimate der Erde. Leipzig: Teubner, 1930.

    Google Scholar 

  • Heymann, Matthias. “Klimakonstruktionen: Von der klassischen Klimatologie zur Klimaforschung.” NTM Journal of the History of Science, Technology and Medicine 17 (2009): 171–97.

    Google Scholar 

  • Heymann, Matthias. “The Evolution of Climate Ideas and Knowledge.” Wiley Interdisciplinary Reviews: Climate Change 1 (2010a): 581–97.

    Google Scholar 

  • Heymann, Matthias. “Understanding and Misunderstanding Computer Simulation: The Case of Atmospheric and Climate Science—An Introduction.” Studies in History and Philosophy of Modern Physics 41 (2010b): 193–200.

    Article  Google Scholar 

  • Heymann, Matthias. “Constructing Evidence and Trust: How Did Climate Scientists’ Confidence in Their Models and Simulations Emerge.” In The Social Life of Climate Change Models: Anticipating Nature, edited by Kirsten Hastrup and Martin Skrydstrup, 203–24. New York: Routledge, 2012.

    Google Scholar 

  • Heymann, Matthias, and Nils Hundebøl. “From Heuristic to Predictive: Making Climate Models Political Instruments.” In Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based Modeling and Simulation, edited by Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, 100–19. New York: Routledge, 2017.

    Google Scholar 

  • Holm, Poul et al. “Collaboration Between the Natural, Social and Human Sciences in Global Change Research.” Environmental Science and Policy 28 (2013): 25–35.

    Article  Google Scholar 

  • Hulme, Mike. “Geographical Work at the Boundaries of Climate Change.” Transactions of the Institute of British Geographers 33 (2008): 5–11.

    Article  Google Scholar 

  • Hulme, Mike. “Reducing the Future to Climate: A Story of Climate Determinism and Reductionism.” Osiris 26 (2011): 245–66.

    Article  Google Scholar 

  • Humboldt, Alexander von. Cosmos: A Survey of the General Physical History of the Universe. New York: Harper & Bros, 1845.

    Google Scholar 

  • Imbrie, John, and Katherine Palmer Imbrie. Ice Ages: Solving the Mystery. Short Hills, NJ: Enslow Publishers, 1979.

    Book  Google Scholar 

  • IPCC. “Long Term Climate Change: Projections, Commitments and Irreversibility.” In Fifth Assessment Report, The Physical Science Basis, 1029–136. Cambridge: Cambridge University Press, 2013.

    Google Scholar 

  • Jasanoff, Sheila. “Image and Imagination: The Formation of Global Environmental Consciousness.” In Changing the Atmosphere: Expert Knowledge and Environmental Governance, edited by Clark A. Miller and Paul N. Edwards, 303–37. Cambridge, MA: MIT Press, 2001.

    Google Scholar 

  • Jouzel, Jean. “A Brief History of Ice Core Science Over the Last 50 Years.” Climate of the Past 9 (2013): 2525–47.

    Article  Google Scholar 

  • Jouzel, Jean et al. “Orbital and Millennial Antarctic Climate Variability Over the Past 800,000 Years.” Science 317 (2007): 793–96.

    Google Scholar 

  • Kellogg, William. “Predicting the Climate.” In Man’s Impact on the Climate, edited by William Henry Matthews, William Kellogg, and G.D. Robinson, 123–32. Cambridge, MA: MIT Press, 1971.

    Google Scholar 

  • Kellogg, William. Effects of Human Activities on Global Climate. Geneva: World Meteorological Association, 1977.

    Google Scholar 

  • Kenworthy, Joan. “Meteorologist’s Profile – Charles Ernest Pelham Brooks I.S.O., D.Sc. (1888–1957).” Weather 67 (2012): 235–37.

    Article  Google Scholar 

  • Khrgian, A.K. Meteorology: A Historical Survey. Jerusalem: Keter Press, 1970.

    Google Scholar 

  • Kiesewetter, Hubert. Region und Industrie in Europa 1815–1995. Stuttgart: Steiner, 2000.

    Google Scholar 

  • Knobloch, Eberhard. “Alexander von Humboldt – The Explorer and the Scientist.” Centaurus 49 (2007): 3–14.

    Article  Google Scholar 

  • Köppen, Wladimir. “Die gegenwärtige Lage und die neueren Fortschritte der Klimatologie.” Geographische Zeitschrift 1 (1895): 613–28.

    Google Scholar 

  • Köppen, Wladimir. “Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf.” Petermanns Geographische Mitteilungen 64 (1918): 193–203, 243–48.

    Google Scholar 

  • Köppen, Wladimir. Die Klimate der Erde, Grundriss der Klimakunde. Leipzig: Walter de Gruyter & Co., 1923.

    Google Scholar 

  • Köppen, Wladimir. “Das geographische System der Klimate.” In Handbuch der Klimatologie, edited by W. Köppen and R. Geiger, Vol. I, C1–C44. Berlin: Gebr. Borntröger, 1936.

    Google Scholar 

  • Köppen, Wladimir, and Rudolf Geiger. “Preface.” In Handbuch der Klimatologie, Vol. I. Berlin: Gebr. Borntröger, 1936.

    Google Scholar 

  • Krüger, Tobias. Discovering the Ice Ages: International Reception and Consequences for a Historical Understanding of Climate. Leiden: Brill, 2013.

    Book  Google Scholar 

  • Kutzbach, Gisela. The Thermal Theory of Cyclones, A History of Meteorological Thought in the Nineteenth Century. Boston: American Meteorological Society, 1979.

    Book  Google Scholar 

  • Lamb, Hubert H. Climate, History, and the Modern World. New York: Methuen, 1982.

    Book  Google Scholar 

  • Lehmann, Philipp. “Whither Climatology? Brückner’s Climate Oscillations, Data Debates, and Dynamic Climatology.” History of Meteorology 7 (2015): 49–70.

    Google Scholar 

  • Lenhard, Johannes, and Eric Winsberg. “Holism, Entrenchment, and the Future of Climate Model Pluralism.” Studies in History and Philosophy of Modern Physics 41 (2010): 253–62.

    Article  Google Scholar 

  • Lewis, John M. “Clarifying the Dynamics of the General Circulation, Phillips’s 1956 Experiment.” Bulletin of the American Meteorological Society 79 (1998): 39–60.

    Article  Google Scholar 

  • Livingstone, David. The Geographical Tradition: Episodes in the History of a Contested Enterprise. Oxford: Blackwell Publishers, 1993.

    Google Scholar 

  • Lovelock, James, and Lynn Margulis. “Atmospheric Homeostasis by and for the Biosphere: The Gaia Hypothesis.” Tellus 26 (1974): 2–9.

    Article  Google Scholar 

  • Lynch, Peter. The Emergence of Numerical Weather Prediction, Richardson’s Dream. Cambridge: Cambridge University Press, 2005.

    Google Scholar 

  • Malberg, Horst. “In Memoriam Professor Dr. Richard Scherhag.” Beiträge des Instituts für Meteorologie 80 (2007): 1–4.

    Google Scholar 

  • Martin-Nielsen, Janet. “‘The Deepest and Most Rewarding Hole Ever Drilled’: Ice Cores and the Cold War in Greenland.” Annals of Science 70 (2012): 47–70.

    Article  Google Scholar 

  • Martin-Nielsen, Janet. Eismitte in the Scientific Imagination: Knowledge and Politics at the Center of Greenland. New York: Palgrave Macmillan, 2013.

    Book  Google Scholar 

  • Mason, B.J. “The GARP Atlantic Tropical Experiment.” Contemporary Physics 75 (1975): 17–20.

    Google Scholar 

  • Meadows, Donella et al. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind. New York: Universe Books, 1972.

    Google Scholar 

  • NASA. Earth System Science – Overview: A Program for Global Change. Washington, DC: National Aeronautics and Space Administration, 1986.

    Google Scholar 

  • Nebeker, Frederik. Calculating the Weather: Meteorology in the 20th Century. San Diego, CA: Academic Press, 1995.

    Google Scholar 

  • Oldfield, Jonathan. “Climate Modification and Climate Change Debates Among Soviet Physical Geographers, 1940s–1960s.” Wiley Interdisciplinary Reviews: Climate Change 4 (2013): 513–24.

    Google Scholar 

  • Palsson, Gisli et al. “Reconceptualizing the ‘Anthropos’ in the Anthropocene: Integrating the Social Sciences and Humanities in Global Environmental Change Research.” Environmental Science and Policy 28 (2012): 3–13.

    Article  Google Scholar 

  • Persson, Anders. “Early Operational Numerical Weather Prediction Outside the USA: An Historical Introduction. Part 1: Internationalism and Engineering NWP in Sweden, 1952–69.” Meteorological Applications 12 (2005a): 135–59.

    Article  Google Scholar 

  • Persson, Anders. “Early Operational Numerical Weather Prediction Outside the USA: An Historical Introduction. Part III: Endurance and Mathematics – British NWP, 1948–1965.” Meteorological Applications 12 (2005b): 381–413.

    Article  Google Scholar 

  • Persson, Anders. “Early Operational Numerical Weather Prediction Outside the USA: An Historical Introduction. Part II: Twenty Countries Around the World.” Meteorological Applications 12 (2005c): 269–89.

    Google Scholar 

  • Petterssen, Sverre. “Some Aspects of the General Circulation of the Atmosphere.” Centenary Proceedings of the Royal Meteorological Society (1950): 120–55.

    Google Scholar 

  • Phillips, N.A. “The General Circulation of the Atmosphere: A Numerical Experiment.” Quarterly Journal of the Royal Meteorological Society 82 (1956): 123–64.

    Article  Google Scholar 

  • Randall, David et al. “Breaking the Cloud Parameterization Deadlock.” Bulletin of the American Meteorological Society 84 (2003): 1547–64.

    Article  Google Scholar 

  • Richardson, Lewis. Weather Prediction by Numerical Process. Cambridge: Cambridge University Press, 1922.

    Google Scholar 

  • Rudloff, Hans. Die Schwankungen und Pendelungen des Klimas in Europa seit dem Beginn der regelmässigen Instrumenten-Beobachtungen (1670). Braunschweig: Vieweg, 1967.

    Book  Google Scholar 

  • Rupke, Nicolaas. Alexander von Humboldt: A Metabiography. Chicago: University of Chicago Press, 2008.

    Google Scholar 

  • Ruse, Michael. The Gaia Hypothesis: Science on a Pagan Planet. Chicago: University of Chicago Press, 2013.

    Book  Google Scholar 

  • Schellnhuber, Hans-Joachim. “Earth System Analysis: The Scope of the Challenge.” In Earth System Analysis: Integrating Science for Sustainability, edited by Hans-Joachim Schellnhuber and Volker Wenzel, 3–195. Heidelberg: Springer, 1998.

    Chapter  Google Scholar 

  • Schellnhuber, Hans-Joachim. “‘Earth System’ Analysis and the Second Copernican Revolution.” Nature 402 (1999): C19–C23.

    Article  Google Scholar 

  • Scherhag, Richard. “Sofortige Veröffentlichung der Höhenwetterkarten im täglichen Wetterbericht.” Annalen de Hydrologie 64 (1936).

    Google Scholar 

  • Schneider, Steven, and Penelope Boston, eds. Scientists on Gaia. Cambridge, MA: MIT Press, 1992.

    Google Scholar 

  • Sepkoski, David. “Towards ‘A Natural History of Data’: Evolving Practices and Epistemologies of Data in Paleontology, 1800–2000.” Journal of the History of Biology 46 (2013): 401–44.

    Article  Google Scholar 

  • Shackley, Simon et al. “Uncertainty, Complexity and Concepts of Good Science in Climate Change Modeling: Are GCMs the Best Tools?” Climatic Change 38 (1998): 159–205.

    Article  Google Scholar 

  • Smith, Heather A. “Disrupting the Global Discourse of Climate Change: The Case of Indigenous Voices.” In The Social Construction of Climate Change. Power, Knowledge, Norms, Discourses, edited by Mary E. Pettenger, 197–216. Aldershot: Ashgate Publishing Ltd., 2007.

    Google Scholar 

  • Sörlin, Sverker. “The Anxieties of a Science Diplomat: Field Coproduction of Climate Knowledge and the Rise and Fall of Hans Ahlmann’s ‘Polar Warming’.” Osiris 26 (2011): 66–88.

    Article  Google Scholar 

  • Thorpe, Alan et al. “The Bjerknes’ Circulation Theorem: A Historical Perspective.” Bulletin of the American Meteorological Society 84 (2003): 471–80.

    Google Scholar 

  • Uhrqvist, Ola. “One Model to Fit All? The Pursuit of Integrated Earth System Models in GAIM and AIMES.” Historical Social Research 40 (2015): 271–97.

    Google Scholar 

  • Volkert, Hans. “Components of the Norwegian Cyclone Model: Observations and Theoretical Ideas in Europe Prior to 1920.” In The Life Cycles of Extratropical Cyclones, edited by Melvyn Shapiro and Sigbjørn Grønås, 15–28. Boston: American Meteorological Society, 1999.

    Chapter  Google Scholar 

  • Wagner, A. et al. “Klimatologie der freien Atmosphäre.” In Handbuch der Klimatologie, edited by W. Köppen and R. Geiger. Berlin: Gebr. Borntröger, 1931.

    Google Scholar 

  • Warnecke, Günther. Interview with author, November 26, 2015.

    Google Scholar 

  • Weart, Spencer. The Discovery of Global Warming. Revised ed. Cambridge, MA: Harvard University Press, 2008.

    Google Scholar 

  • Werlen, Brunno. “Gibt es eine Geographie ohne Raum? Zum Verhältnis von traditioneller Geographie und zeitgenössischen Gesellschaften.” Erdkunde 47 (1993): 241–55.

    Google Scholar 

  • Wilcock, Arthur. “Köppen After Fifty Years.” Annals of the Association of American Geographers 58 (1968): 12–28.

    Article  Google Scholar 

  • WMO. Proceedings of the World Climate Conference: A Conference of Experts on Climate and Mankind, Geneva. Geneva: World Meteorological Association, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heymann, M., Achermann, D. (2018). From Climatology to Climate Science in the Twentieth Century. In: White, S., Pfister, C., Mauelshagen, F. (eds) The Palgrave Handbook of Climate History. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-43020-5_38

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-43020-5_38

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-43019-9

  • Online ISBN: 978-1-137-43020-5

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics