Advertisement

Anabolic Steroids: Metabolism, Doping and Detection in Human and Equestrian Sports

  • A. T. KicmanEmail author
  • E. Houghton
  • D. B. Gower
Chapter

Abstract

This chapter highlights the important aspects of detection of doping with synthetic anabolic steroids and discusses some of the problems with, and solutions to, the detection of misuse of the naturally occurring ones.

Keywords

Glucuronic Acid Anabolic Steroid International Olympic Committee Sulfate Conjugate Urinary Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge, with thanks, for permission from the Association of Clinical Biochemists to reproduce parts from an earlier review by Kicman and Gower (2003) that was commissioned by the Analytical Investigations Standing Committee within that Association.

References

  1. Aguilera R, Becchi M, Casabianca H, Hatton CK, Catlin DH, Starcevic B, Pope HG, Jr. (1996a) Improved method of detection of testosterone abuse by gas chromatography/combustion/isotope ratio mass spectrometry analysis of urinary steroids. J. Mass. Spectrom. 31; 169–176.Google Scholar
  2. Aguilera R, Becchi M, Grenot C, Casabianca H, Hatton CK (1996b) Detection of testosterone misuse: comparison of two chromatographic sample preparation methods for gas chromato-graphic-combustion/isotope ratio mass spectrometric analysis. J. Chromatogr. B. 687; 43–53.Google Scholar
  3. Aguilera R, Catlin DH, Becchi M, Phillips A, Wang C, Swerdloff RS, Pope HG, Hatton CK (1999) Screening urine for exogenous testosterone by isotope ratio mass spectrometric analysis of one pregnanediol and two androstanediols. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 727; 95–105.Google Scholar
  4. Aguilera R, Chapman TE, Catlin DH (2000) A rapid screening assay for measuring urinary androsterone and etiocholanolone delta(13)C (per thousand) values by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 14; 2294–2299.Google Scholar
  5. Aguilera R, Chapman TE, Starcevic B, Hatton CK, Catlin DH (2001) Performance characteristics of a carbon isotope ratio method for detecting doping with testosterone based on urine diols: controls and athletes with elevated testosterone/epitestosterone ratios. Clin. Chem. 47; 292–300.Google Scholar
  6. Aguilera R, Hatton CK, Catlin DH (2002) Detection of epitestosterone doping by isotope ratio mass spectrometry. Clin. Chem. 48; 629–636.Google Scholar
  7. Anderson RA, WallaceAM, Kicman AT, Wu FC (1997) Comparison between testosterone oenanthate-induced azoospermia and oligozoospermia in a male contraceptive study. IV. Suppression of endogenous testicular and adrenal androgens. Hum. Reprod. 12; 1657–1662.Google Scholar
  8. Ayotte C (2006) Significance of 19-norandrosterone in athletes’ urine samples. Br. J. Sports. Med. 40; 25–29.Google Scholar
  9. Ayotte C, Goudreault D, Charlebois A (1996) Testing for natural and synthetic anabolic agents in human urine. J. Chromatogr. B. 687; 3–25.Google Scholar
  10. Ayotte C, Charlebois A, Lapointe S, Barriault D, Sylvestre M (1997) Validity of urine samples; microbial degradation. In Recent Advances in Doping Analysis (4); Proceedings of the Manfred Donike Workshop, 14th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U) 17–22 March 1996. Sport & Buch Strauss, Köln.Google Scholar
  11. Ayotte C, Goudreault D, Lajeunesse A, Cleroux M, Richard Y, Charlebois A, Couture JP, Fakirian A (2001) GC/C/IRMS and GC/MS in “natural” steroids testing. In Proceedings of the Manfred Donike Workshop - Recent Advances in Doping Analysis (9) (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Cologne.Google Scholar
  12. Bardin CW, Lipsett MB (1967) Testosterone and androstenedione blood production rates in normal women and women with idiopathic hirsutism or polycystic ovaries. J. Clin. Invest. 46; 891–902.Google Scholar
  13. Bassindale T, Cowan DA, Dale S, HuttAJ, Leeds AR, Wheeler MJ, Kicman AT (2004) Effects of oral administration of androstenedione on plasma androgens in young women using hormonal contraception. J. Clin. Endocrinol. Metab. 89; 6030–6038.Google Scholar
  14. Bean KA, Henion JD (1997) Direct determination of anabolic steroid conjugates in human urine by combined high-performance liquid chromatography and tandem mass spectrometry. J. Chromatogr. B 690; 65–75.Google Scholar
  15. Becchi M, Aguilera R, Farizon Y, Flament MM, Casabianca H, James P (1994) Gas chromatography/combustion/isotope-ratio mass spectrometry analysis of urinary steroids to detect misuse of testosterone in sport. Rapid Commun. Mass Spectrom. 8; 304–308.Google Scholar
  16. Belkien L, Schurmeyer T, Hano R, Gunnarsson PO, Nieschlag E (1985) Pharmacokinetics of 19-nortestosterone esters in normal men. J. Steroid. Biochem. Mol. Biol. 22; 623–629.Google Scholar
  17. Bethune JE (1975) The Adrenal Cortex –A Scope Monograph. Upjohn, Kalamazoo, MI. p. 27.Google Scholar
  18. Bhasin S, Javanbakht M (1999) Can androgen therapy replete lean body mass and improve muscle function in wasting associated with human immunodeficiency virus infection? J. Parenter. Enteral. Nutr. 23; S195–S201.Google Scholar
  19. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Engl. J. Med. 335; 1–7.Google Scholar
  20. Bhasin S, Storer TW, Javanbakht M, Berman N, Yarasheski KE, Phillips J, Dike M, Sinha-Hikim I, Shen R, Hays RD, Beall G (2000) Testosterone replacement and resistance exercise in HIV-infected men with weight loss and low testosterone levels. JAMA. 283; 763–770.Google Scholar
  21. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X,Yarasheski KE, Magliano L, Dzekov C, Dzekov J, Bross R, Phillips J, Sinha-Hikim I, Shen R, Storer TW (2001) Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 281; E1172–E1181.Google Scholar
  22. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, MontoriVM, Gao WQ, Dalton JT (2006) Drug Insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat. Clin. Pract. Endocrinol. Metab. 2; 146–159.Google Scholar
  23. Bi H, Masse R (1992) Studies on anabolic steroids – 12. Epimerization and degradation of anabolic 17 beta-sulfate-17 alpha-methyl steroids in human: qualitative and quantitative GC/MS analysis. J. Steroid Biochem. Mol. Biol. 42; 533–546.Google Scholar
  24. Bi H, MasseR, Just G (1992a) Studies on anabolic steroids. 9. Tertiary sulfates of anabolic 17 alpha-methyl steroids: synthesis and rearrangement. Steroids. 57; 306–312.Google Scholar
  25. Bi H, Masse R, Just G (1992b) Studies on anabolic steroids. 10. Synthesis and identification of acidic urinary metabolites of oxymetholone in a human. Steroids. 57; 453–459.Google Scholar
  26. Bilton RF (1995) Microbial production of testosterone [letter]. Lancet. 345; 1186–1187.Google Scholar
  27. Birchard K. (1998) Why doctors should worry about doping in sport [news] [see comments]. Lancet. 352; 42.Google Scholar
  28. Blakley CR, Carmody JJ, Vestal ML (1980) A new soft ionization technique for mass-spectrometry of complex-molecules. J. Am. Chem. Soc. 102; 5931–5933.Google Scholar
  29. Bogin V, Shaw-Stiffel T (1999) Androgenic anabolic steroids and other therapies for HIV-related wasting. J. Clin. Ligand Assay. 22; 268–278.Google Scholar
  30. Borts DJ; Bowers LD (2000) Direct measurement of urinary testosterone and epitestoster-one conjugates using high-performance liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 35, 50–61.Google Scholar
  31. Bosy TZ, Moore KA, Poklis A (1998) The effect of oral dehydroepiandrosterone (DHEA) on the urine testosterone/epitestosterone (T/E) ratio in human male volunteers. J. Anal. Toxicol. 22; 455–459.Google Scholar
  32. Bowers LD (1989) High-performance liquid-chromatography mass-spectrometry –state of the art for the drug analysis laboratory. Clin. Chem. 35; 1282–1287.Google Scholar
  33. Bowers LD (1996) Metabolic pattern of mibolerone. In Recent Advances in Doping Analysis; Proceedings of the 13th Cologne Workshop on Dope Analysis (eds Donike M, Geyer H, Gotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Köln.Google Scholar
  34. Bowers LD (1997) Analytical advances in detection of performance-enhancing compounds. Clin. Chem. 43; 1299–304.Google Scholar
  35. Bowers LD (1999) Oral dehydroepiandrosterone supplementation can increase the testosterone/epitestosterone ratio. Clin. Chem. 45; 295–297.Google Scholar
  36. Bowers LD, Sanaullah (1996) Direct measurement of steroid sulfate and glucuronide conjugates with high-performance liquid chromatography mass spectrometry. J. Chromatogr. B. 687; 61–68.Google Scholar
  37. Brooks RV (1975) Androgens. Clin. Endocrinol. Metab. 4; 503–520.Google Scholar
  38. Brooks RV, Firth RG, Sumner NA (1975) Detection of anabolic steroids by radioim-munoassay. Br. J. Sports Med. 9; 89–92.Google Scholar
  39. Brooks RV, Jeremiah G, Webb WA, Wheeler M (1979) Detection of anabolic steroid administration to athletes. J. Steroid Biochem. 11; 913–917.Google Scholar
  40. Brown GA, Vukovich MD, Sharp RL, Reifenrath TA, ParsonsKA, King DS (1999) Effect of oral DHEA on serum testosterone and adaptations to resistance training in young men. J. Appl. Physiol. 87; 2274–2283.Google Scholar
  41. Brown GA, Dewey JC, Brunkhorst JA, Vukovich MD, King DS (2004) Changes in serum testosterone and estradiol concentrations following acute androstenedione ingestion in young women. Horm. Metab. Res. 36; 62–66.Google Scholar
  42. Brown GA, Vukovich M, King DS (2006) Testosterone prohormone supplements. Med. Sci. Sports Exerc. 38; 1451–1461.Google Scholar
  43. Bruins AP, Covey TR, Henion JD (1987) Ion spray interface for combined liquid chroma tography/atmospheric pressure ionization mass-spectrometry. Analyt. Chem. 59; 2642–2646.Google Scholar
  44. Callicott R, Kicman AT (2003) Nandrolone progress report to the UK sports council from the expert committee on nandrolone – February 2003. Int. J. Sports Med. 24; 620–626.Google Scholar
  45. Catlin DH, Hatton CK, Starcevic SH (1997) Issues in detecting abuse of xenobiotic anabolic steroids and testosterone by analysis of athletes’ urine. Clin. Chem. 43; 1280–1288.Google Scholar
  46. Catlin DH, Ahrens BD, Kucherova Y (2002) Detection of norbolethone, an anabolic steroid never marketed, in athletes’ urine. Rapid Commun. Mass Spectrom. 16; 1273–1275.Google Scholar
  47. Catlin DH, SekeraMH, Ahrens BD, Starcevic B, Chang YC, Hatton CK (2004) Tetrahydrogestrinone: discovery, synthesis, and detection in urine. Rapid Commun. Mass Spectrom. 18; 1245–1249.Google Scholar
  48. Cawley AT, Hine ER, Trout GJ, George AV, Kazlauskas R (2004) Searching for new markers of endogenous steroid administration in athletes: “looking outside the metabolic box”. Forensic Sci. Int. 143; 103–114.Google Scholar
  49. Cawley AT, Kazlauskas R, Trout GJ, Rogerson JH, George AV (2005) Isotopic fractionation of endogenous anabolic androgenic steroids and its relationship to doping control in sports. J. Chromatogr. Sci. 43; 32–38.Google Scholar
  50. Ciardi M, Ciccoli R, Barbarulo MV, Nicoletti R (1999) Presence of norandrosterone in “normal” urine samples. In Recent Advances in Doping Analysis (6); Proceedings of the Manfred Donike Workshop16th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 15–20 March 1998. Sport & Buch Strauss, Köln.Google Scholar
  51. Cone EJ (1996) Mechanisms of drug incorporation into hair. Ther. Drug Monit. 18; 438–443.Google Scholar
  52. Coutts SB, Kicman AT, Hurst DT, Cowan DA (1997) Intramuscular administration of 5 alpha-dihydrotestosterone heptanoate: changes in urinary hormone profile. Clin. Chem. 43; 2091–2098.Google Scholar
  53. Covey TR, Lee ED, Bruins AP, Henion JD (1986a) Liquid-chromatography mass-spectrometry. Analyt. Chem. 58; 1451A–1461A.Google Scholar
  54. Covey TR, Lee ED, Henion JD (1986b) High-speed liquid-chromatography tandem mass-spectrometry for the determination of drugs in biological samples. Analyt. Chem. 58; 2453–2460.Google Scholar
  55. Cowan DA, Kicman AT (1997) Doping in sport: misuse, analytical tests, and legal aspects [editorial]. Clin. Chem. 43; 1110–1113.Google Scholar
  56. Death AK, Mcgrath KCY, Kazlauskas R, Handelsman DJ (2004) Tetrahydrogestrinone is a potent androgen and progestin. J. Clin. Endocrinol. Metab. 89; 2498–2500.Google Scholar
  57. De Boer D, Gainza Bernal ME, Van Ooyen RD, Maes RA (1991) The analysis of trenbo-lone and the human urinary metabolites of trenbolone acetate by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry. Biol. Mass Spectrom. 20; 459–466.Google Scholar
  58. De Boer D, Bensink SN, Borggreve AR, Vanooijen RD, Maes RAA (1993) Profiling 19-norsteroids III – GC/MS/MS analysis of 19-norsteroids during pregnancy. In 10th Cologne Workshop on Dope Analysis; Proceedings (eds Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S), 7–12 June 1992. Sport & Buch Strauss, Köln.Google Scholar
  59. De Brabander HF, Vanhende J, Batjoens P, Hendriks L, Raus J, Smets F, Pottie G, Van Ginkel L, Stephany RW (1994) Endogenic nortestosterone in cattle. Analyst. 119; 2581–2585.Google Scholar
  60. De Brabander HF, Poelmans S, Schilt R, Stephany RW, Le Bizec B, Draisci R, Sterk SS, Van Ginkel LA, Courtheyn D, Van Hoof N, Macri A, De Wasch K (2004) Presence and metabolism of the anabolic steroid boldenone in various animal species: a review. Food Addit. Contam. 21; 515–525.Google Scholar
  61. Debruyckere G, Vanpeteghem C (1991) Detection of 19-nortestosterone and its urinary metabolites in miniature pigs by gas-chromatography mass-spectrometry. J. Chromatogr. Biomed. Appl. 564; 393–403.Google Scholar
  62. Debruyckere G, Vanpeteghem C, Debrabander HF, Debackere M (1990) Gas chromato-graphic-mass spectrometric confirmation of 19-nortestosterone in the urine of untreated boars – effect of the administration of Laurabolin. Vet. Quart. 12; 246–250.Google Scholar
  63. Debruyckere G, Desagher R, Vanpeteghem C (1992) Clostebol-positive urine after consumption of contaminated meat. Clin. Chem. 38; 1869–1873.Google Scholar
  64. Debruyckere G, Vanpeteghem CH, Desagher R (1993) Influence of the consumption of meat contaminated with anabolic-steroids on doping tests. Analyt. Chim. Ada. 275; 49–56.Google Scholar
  65. Dehennin L (1993) Secretion by the human testis of epitestosterone, with its sulfoconjugate and precursor androgen 5-androstene-3 beta,17 alpha-diol. J. Steroid Biochem. Mol. Biol. 44; 171–177. Google Scholar
  66. Dehennin L (1994) Detection of simultaneous self-administration of testosterone and epitestosterone in healthy men. Clin. Chem. 40; 106–109.Google Scholar
  67. Dehennin L, Matsumoto AM (1993) Long-term administration of testosterone enanthate to normal men: alterations of the urinary profile of androgen metabolites potentially useful for detection of testosterone misuse in sport. J. Steroid Biochem. Mol. Biol. 44; 179–189.Google Scholar
  68. Dehennin L, Jondet M, Scholler R (1987) Androgen and 19-norsteroid profiles in human preovulatory follicles from stimulated cycles: an isotope dilution-mass spectrometric study. J. Steroid Biochem. 26; 399–405.Google Scholar
  69. Dehennin L, Ferry M, Lafarge P, Peres G, Lafarge JP (1998) Oral administration of dehydroe-piandrosterone to healthy men: alteration of the urinary androgen profile and consequences for the detection of abuse in sport by gas chromatography–mass spectrometry. Steroids. 63; 80–87.Google Scholar
  70. Dehennin L, Bonnaire Y, Plou P (1999) Urinary excretion of 19-norandrosterone of endogenous origin in man: quantitative analysis by gas chromatography mass spectrometry. J . Chromatogr. B. 721; 301–307.Google Scholar
  71. Dehennin L, Bonnaire Y, Plou P, Ho ENM, Yiu KCH, Wan TSM (2003) Urinary excretion of endogenous boldenone by entire male horses: identification and quantification by gas chromatography mass spectrometry. Proceedings of the 14th (2002 International Conference of Racing Analysts and Veterinarians. Orlando, FL.Google Scholar
  72. De La Torre R, De La Torre X, Alia C, Segura J, Baro T, Torres-Rodriguez JM (2001a) Changes in androgenic steroid profile due to urine contamination by microorganisms: a prospective study in the context of doping control. Anal. Biochem. 289; 116–123.Google Scholar
  73. De La Torre X, GonzalezJC, PichiniS, Pascual JA, Segura J (2001b) C-13/C-12 isotope ratio MS analysis of testosterone, in chemicals and pharmaceutical preparations. J. Pharm. Biomed. Anal. 24; 645–50.Google Scholar
  74. Deng XS, Kurosu A, Pounder DJ (1999) Detection of anabolic steroids in head hair. J. Forensic Sci. 44; 343–346.Google Scholar
  75. Desroches MC, Mathurin JC, Richard Y, Delahaut P, De Ceaurriz J (2002) Urinary 19-norandrosterone purification by immunoaffinity chromatography: application to gas chro-matography/combustion/isotope ratio mass spectrometric analysis. Rapid Commun. Mass Spectrom. 16; 370–374.Google Scholar
  76. Deventer K, Van Eenoo P, Mikulcikova P, Van Thuyne W, Delbeke FT (2005) Quantitative analysis of androst-4-ene-3,6,17-trione and metabolites in human urine after the administration of a food supplement by liquid chromatography/ion trap-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 828; 21–26.Google Scholar
  77. Deventer K, Van Eenoo P, Delbeke FT (2006) Screening for anabolic steroids in doping analysis by liquid chromatography/electrospray ion trap mass spectrometry. Biomed. Chromatogr. 20; 429–433.Google Scholar
  78. Di Pasquale MG (1990) Dehydroepiandrosterone (DHEA). Beyond Anabolic Steroids. M.G.D. Press, Ontario.Google Scholar
  79. Djerassi C (1992) Steroid research at Syntex: “the pill” and cortisone. Steroids. 57; 631–641.Google Scholar
  80. Djerassi C (2006) Chemical birth of the pill. Am. J. Obstet. Gynecol. 194; 290–298.Google Scholar
  81. Dole M, Mack LL, Hines RL (1968) Molecular beams of macroions. J. Chem. Phys. 49; 2240.Google Scholar
  82. Donike M, Zimmermann J (1980) Preparation of trimethylsilyl, triethylsilyl and tert-butyldimethylsilyl enol ethers from ketosteroids for investigations by gas–chromatography and mass-spectrometry. J. Chromatogr. 202; 483–486.Google Scholar
  83. Donike M, Barwald KR, Klostermann K, Schanzer W, Zimmermann J (1983) Nachweis von exogenem testosteron [Detection of endogenous testosterone]. In Sport: Leistung und Gesundheit, Kongressbd. Dtsch. Sportärztekongress (eds Heck H, Hollmann W, Liesen H, AL E). Deutscher Ärtze-Verlag, Köln.Google Scholar
  84. Donike M, Geyer H, Gotzmann A, Kraft A, Mandel F, Nolteernsting E, Opfermann G, Sigmund G, Schanzer W, Zimmermann J (1988) Dope analysis. In International Athletic Foundation World Symposium on Doping in SportOfficial Proceedings (eds Bellotti P, Benzi G, Ljungqvist A), 10–12 May 1987. International Athletic Foundation (IAF), Florence.Google Scholar
  85. Donike M, Rauth S, Mareck-Engelke U, Geyer H, Nitschke R (1994) Evaluation of longitudinal studies, the determination of subject based reference ranges of the testosterone/ epitestosterone ratio. In Recent Advances in Doping Analysis; Proceedings of the 11th Cologne Workshop on Dope Analysis (eds Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S), 7–12 March 1993. Sport & Buch Strauss, Köln.Google Scholar
  86. Donike M, Mareck-Engelke U, Rauth S (1995a) Statistical evaluation of longitudinal studies, part 2: the usefulness of subject based reference ranges in steroid profiling. In Recent Advances in Doping Analysis; Proceedings of the 12th Cologne Workshop on Dope Analysis (eds Donike M, Geyer H, Gotzmann A, Mareck-Engelke U), 10–15 April 1994. Sport & Buch Strauss, Köln.Google Scholar
  87. Donike M, Ueki M, Kuroda Y, Geyer H, Nolteernsting E, Rauth S, Schanzer W, Schindler U, Volker E, Fujisaki M (1995b) Detection of dihydrotestosterone (DHT) doping: alterations in the steroid profile and reference ranges for DHT and its 5 alpha-metabolites [editorial]. J. Sports Med. Phys. Fitness. 35; 235–250.Google Scholar
  88. Dumasia MC (2003) In vivo biotransformation of 17 alpha-methyltestosterone in the horse revisited: identification of 17-hydroxymethyl metabolites in equine urine by capillary gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 17; 320–329.Google Scholar
  89. Dumasia MC, Houghton E (1981) Studies related to the metabolism of anabolic-steroids in the horse – the identification of some 16-oxygenated metabolites of testosterone and a study of the phase-II metabolism. Xenobiotica. 11; 323–331.Google Scholar
  90. Dumasia MC, Houghton E (1984) Studies related to the metabolism of anabolic-steroids in the horse – the phase-I and phase-II biotransformation of 19-nortestosterone in the equine castrate. Xenobiotica. 14; 647–655.Google Scholar
  91. Dumasia MC, Houghton E, Bradley CV, Williams DH (1983) Studies related to the metabolism of anabolic steroids in the horse – the metabolism of 1-dehydrotestosterone and the use of fast atom bombardment mass-spectrometry in the identification of steroid conjugates. Biomed. Mass Spectrom. 10; 434–440.Google Scholar
  92. Dumasia MC, Houghton E, Sinkins S (1986) Development of a gas-chromatographic mass-spectrometric method using multiple analytes for the confirmatory analysis of anabolic-steroids in horse urine.1. Detection of testosterone phenylpropionate administrations to equine male castrates. J. Chromatogr. 377; 23–33.Google Scholar
  93. Dumasia MC, Houghton E (1988) Biotransformation of 1-dehydrotestosterone in the equine male castrate – identification of the neutral unconjugated and glucuronic-acid conjugated metabolites in horse urine. Biomed. Environ. Mass Spectrom. 17; 383–392.Google Scholar
  94. Dumasia MC, Houghton E, Jackiw M (1989) Steroids in equine testes – the identification of endogenous 19-hydroxy and 19-nor neutral steroids by gas-chromatography mass-spectrometry. J. Endocrinol. 120; 223–229.Google Scholar
  95. Dumasia MC, Teale P, Armstrong R, Houghton E (1996) LC/MS analysis of intact steroid conjugates: a preliminary study on the quantification of testosterone sulphate in equine urine. In Proceedings of the 11th International Conference of Racing Analysts and Veterinarians (eds Auer DE, Houghton E). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  96. Durbeck HW, Buker I (1980) Studies on anabolic steroids. The mass spectra of 17 alpha-methyl-17 beta-hydroxy-1,4-androstadien-3-one (Dianabol) and its metabolites. Biomed. Mass Spectrom. 7; 437–445.Google Scholar
  97. Durbeck HW, Buker I, Scheulen B, Telin B (1978) Gas chromatographic and capillary column gas chromatographic – mass spectrometric determination of synthetic anabolic steroids. I. Methandienone and its metabolites. J. Chromatogr. 167; 117–124.Google Scholar
  98. Durbeck HW, Buker I, Scheulen B, Telin B. (1983) GC and capillary column GC/MS determination of synthetic anabolic steroids. II. 4-chloro-methandienone (oral turinabol) and its metabolites. J. Chromatogr. Sci. 21; 405–410.Google Scholar
  99. Edlund PO, Bowers L, Henion J (1989a) Determination of methandrostenolone and its metabolites in equine plasma and urine by coupled-column liquid-chromatography with ultraviolet detection and confirmation by tandem mass-spectrometry. J. Chromatogr. Biomed. Appl. 487; 341–356.Google Scholar
  100. Edlund PO, Bowers L, Henion J, Covey TR (1989b) Rapid-determination of methandrostenolone in equine urine by isotope-dilution liquid-chromatography tandem mass-spectrometry. J. Chromatogr. Biomed. Appl. 497; 49–57.Google Scholar
  101. FDA White Paper March 11. Health Effects of Androstenedione. Rockville, MD, Food and Drug Administration.Google Scholar
  102. Felzmann W, Gmeiner GN, Gartner P (2005) First synthesis of a pentadeuterated 3’-hydrox-ystanozolol – an internal standard in doping analysis. Steroids. 70; 103–110.Google Scholar
  103. Fox J, Dumasia MC, Stanley S, Houghton E (2001) The in vivo transformation of nore-thandrolone in the horse. In Proceedings of the 13th International Conference of Racing Analysts and Veterinarians (eds Williams RB, Houghton E, Wade JF). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  104. Franke WW, Berendonk B (1997) Hormonal doping and androgenization of athletes: a secret program of the German Democratic Republic government. Clin. Chem. 43; 1262–1279.Google Scholar
  105. Gaillard Y, Vayssette F, Pepin G (2000) Compared interest between hair analysis and urinalysis in doping controls. Results for amphetamines, corticosteroids and anabolic steroids in racing cyclists. Forensic Sci. Int. 107; 361–379.Google Scholar
  106. Garle M, Ocka R, Palonek E, Bjorkhem I (1996) Increased urinary testosterone epites-tosterone ratios found in Swedish athletes in connection with a national control program – evaluation of 28 cases. J. Chromatogr. B. 687; 55–59.Google Scholar
  107. Garrett WM, Hoover DJ, Shackleton CHL, Anderson LD (1991) Androgen metabolism by porcine granulosa-cells during the process of luteinization invitro – identification of 19-oic-androstenedione as a major metabolite and possible precursor for the formation of c-18 neutral steroids. Endocrinology. 129; 2941–2950.Google Scholar
  108. Geyer H, Parr MK, Mareck U, Reinhart U, Schrader Y, Schanzer W (2004) Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids – results of an international study. Int. J. Sports Med. 25; 124–129.Google Scholar
  109. Goudreault D, Masse R (1990) Studies on anabolic steroids – 4. Identification of new urinary metabolites of methenolone acetate (Primobolan) in human by gas chromatography/mass spectrometry. J. Steroid Biochem. Mol. Biol. 37; 137–154. Google Scholar
  110. Goudreault D, Masse R (1991) Studies on anabolic steroids – 6. Identification of urinary metabolites of stenbolone acetate (17 beta-acetoxy-2-methyl-5 alpha-androst-1-en-3-one) in human by gas chromatography/mass spectrometry. J. Steroid Biochem. Mol. Biol. 38; 639–655.Google Scholar
  111. Goudreault D, Bherer P, Levesque JF, Pourier D, Ayotte C (2001) Androstenedione metabolism: end of the story. In Recent Advances in Doping Analysis ((9); Proceedings of the Manfred Donike Workshop, 19th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 18–23 March 2001. Sport & Buch Strauss, Köln.Google Scholar
  112. Gourdie T, Beresford G (1995) The detection of ethylestrenol and its metabolites in the horse. In Proceedings of the 10th International Conference of Racing Analysts and Veterinarians (eds Kallings P, Bondesson U, Houghton E). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  113. Gower DB (1984) The role of cytochrome P-450 in steroidogenesis and properties of some of the steroid-transforming enzymes. In Biochemistry of Steroid Hormones (eds Makin HLJ). Blackwell, Oxford, London/Edinburgh/Boston, FL/Palo Alto, CA/Melbourne.Google Scholar
  114. Gower DB, Houghton E, Kicman AT (1995) Anabolic steroids: metabolism, doping and detection in equestrian and human sports. In Steroid Analysis (eds Makin HLJ, Gower DB, Kirk DN). Blackie Academic & Professional, Glasgow.Google Scholar
  115. Gower DB, Mallet AI, Watkins WJ, Wallace LM, Calame JP (1997) Capillary gas chromatography with chemical ionization negative ion mass spectrometry in the identification of odorous steroids formed in metabolic studies of the sulphates of androsterone, DHA and 5 alpha-androst-16-en-3 beta-ol with human axillary bacterial isolates. J. Steroid Biochem. Mol. Biol. 63; 81–89.Google Scholar
  116. Grant JK, Beastall GH (1983) Clinical Biochemistry of Steroid Hormones. Croom Helm, London/Canberra.Google Scholar
  117. Grosse J, Anielski P, Hemmersbach P, Lund H, Mueller RK, Rautenberg C, Thieme D (2005) Formation of 19-norsteroids by in situ demethylation of endogenous steroids in storedurine samples. Steroids. 70; 499–506.Google Scholar
  118. Guan FY, Uboh CE, Soma LR, Luo Y, Rudy J, Tobin T (2005) Detection, quantification and confirmation of anabolic steroids in equine plasma by liquid chromatography and tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 829; 56–68.Google Scholar
  119. Haber E, Munoz-Guerra JA, Soriano C, Carreras D, Rodriguez C, Rodriguez FA (2001) Automated sample preparation and gas chromatographic-mass spectrometric analysis of urinary androgenic anabolic steroids. J. Chromatogr. B. 755; 17–26.Google Scholar
  120. Halket JM, Zaikin VG (2003) Derivatization in mass spectrometry – 1. Silylation. Eur. J. Mass Spectrom. 9; 1–21.Google Scholar
  121. Harris EK (1975) Some theory of reference values. I. Stratified (categorized) normal ranges and a method for following an individual’s clinical laboratory values. Clin. Chem. 21; 1457–1464.Google Scholar
  122. Harris EK, Cooil BK, Shakarji G, Williams GZ (1980) On the use of statistical models of within-person variation in long-term studies of healthy individuals. Clin. Chem. 26; 383–391.Google Scholar
  123. Haywood PE, Dunnett N (1994) Development of a sample collection kit for racing animals with multi-layered security and a sample cooling facility. In Proceedings of the 10th International Conference of Racing Analysts and Veterinarians (eds Kallings P, Bondesson U, Houghton E). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  124. Hebestreit M, Flenker U, Fussholler G, Geyer H, Guntner U, Mareck U, Piper T, Thevis M, Ayotte C, Schanzer W (2006) Determination of the origin of urinary norandrosterone traces by gas chromatography combustion isotope ratio mass spectrometry. Analyst. 131; 1021–1026.Google Scholar
  125. Henderson GL, Harkey MR, Zhou C, Jones RT, Jacob P, 3RD (1996) Incorporation of isotopically labeled cocaine and metabolites into human hair: 1. Dose-response relationships. J. Anal. Toxicol. 20; 1–12.Google Scholar
  126. Hengge UR, Baumann M, Maleba R, Brockmeyer NH, Goos M (1996) Oxymetholone promotes weight gain in patients with advanced human immunodeficiency virus (HIV-1) infection. Br. J. Nutr. 75; 129–138.Google Scholar
  127. Ho ENM, Yiu KCH, Tang FPW, Dehennin L, Plou P, Bonnaire Y, Wan TSM (2004) Detection of endogenous boldenone in the entire male horses. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 808; 287–294.Google Scholar
  128. Ho ENM, Leung DKK, Wan TSM, Yu NH (2005) Metabolic studies of methe-nolone acetate in horses. Analyt. Chim. Acta. 540; 111–119.Google Scholar
  129. Ho ENM, Leung DKK, Wan TSM, Yu NH (2006) Comprehensive screening of anabolic steroids, corticosteroids, and acidic drugs in horse urine by solid-phase extraction and liquid chromatography–mass spectrometry. J. Chromatogr. A. 1120; 38–53.Google Scholar
  130. Honour JW(1996) Testing for drug abuse. Lancet. 348; 41–43.Google Scholar
  131. Horning S, Donike M (1994) High resolution GC/MS. In Recent Advances in Doping Analysis; Proceedings of the 11th Cologne Workshop on Dope Analysis (eds Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S), 7–12 March 1993. Sport & Buch Strauss, Köln.Google Scholar
  132. Horning S, Schanzer W (1997) Steroid screening using GC/HRMS. In Recent Advances in Doping Analysis (4); Proceedings of the 14th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke), 17–22 March 1993. Sport & Buch Strauss, Köln.Google Scholar
  133. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwel RN (1974) Atmospheric-pressure ionization (API) mass-spectrometry – solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. J. Chromatogr. Sci. 12; 725–729.Google Scholar
  134. Horning S, Geyer H, Flenker U, Schanzer W (1998) Detection of exogenous steroids by 13C/12C analysis. In Recent Advances in Doping Analysis; Proceedings of the 15th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Köln.Google Scholar
  135. Horning S, Geyer H, Machnik M, Schanzer W, Hilkert A, Oesselmann J (1997) Detection of exogenous testosterone by 13C/12C analysis. In Recent Advances in Doping Analysis; Proceedings of the 14th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Köln.Google Scholar
  136. Horton R, Tait JF(1966) Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. J. Clin. Invest. 45; 301–313.Google Scholar
  137. Houghton E (1977) Studies related to metabolism of anabolic steroids in horse – 19-nortestos-terone. Xenobiotica. 7; 683–693.Google Scholar
  138. Houghton E, Dumasia MC (1979) Studies related to the metabolism of anabolic-steroids in the horse – testosterone. Xenobiotica. 9; 269–279.Google Scholar
  139. Houghton E, Dumasia MC (1980) Studies related to the metabolism of anabolic-steroids in the horse – the identification of some 16-oxygenated metabolites of 19-nortestosterone. Xenobiotica. 10; 381–390.Google Scholar
  140. Houghton E, Oxley GA, Moss MS, Evans S (1978) Studies related to metabolism of anabolic steroids in horse – gas-chromatographic mass-spectrometric method to confirm administration of 19-nortestosterone or its esters to horses. Biomed. Mass Spectrom. 5; 170–173.Google Scholar
  141. Houghton E, Dumasia MC, Wellby JK (1981) The use of combined high-performance liquid-chromatography negative-ion chemical ionization mass-spectrometry to confirm the administration of synthetic corticosteroids to horses. Biomed Mass Spectrom, 8; 558–64.Google Scholar
  142. Houghton E, Copsey J, Dumasia MC, Haywood PE, Moss MS, Teale P (1984) Studies related to the metabolism of anabolic-steroids in the horse – testosterone. Biomed. Mass Spectrom. 11; 96–99.Google Scholar
  143. Houghton E, Dumasia MC, Teale P, Moss MS, Sinkins S (1986a) Development of a gas-chromatographic mass-spectrometric method using multiple analytes for the confirmatory analysis of anabolic-steroid residues in horse urine. 2. Detection of administration of 19-nortestosterone phenylpropionate to equine male castrates and fillies. J. Chromatogr. 383; 1–8.Google Scholar
  144. Houghton E, Ginn A, Teale P, Dumasia MC, Moss MS (1986b) Detection of the administration of anabolic preparations of nandrolone to the entire male horse. Equine Vet. J. 18; 491–493.Google Scholar
  145. Houghton E, Grainger L, Dumasia MC, Teale P (1992) Application of gas-chromatography mass-spectrometry to steroid analysis in equine sports – problems with enzyme hydrolysis. Org. Mass Spectrom. 27; 1061–1070.Google Scholar
  146. Houghton E, Teale P, Dumasia MC (2007) Studies related to the origin of C18 neutral steroids isolated from extracts of urine from the male horse: the identification of urinary 19-oic acids and their decarboxylation to produce estr-4-en-17 beta-ol-3-one (19-nortestosterone) and estr-4-ene-3,17-dione (19-norandrost-4-ene-3,17-dione) during sample processing. Analyt. Chim. Acta. 586; 196–207.Google Scholar
  147. Iribarne JV, Thomson BA (1976) Evaporation of small ions from charged droplets. J. Chem. Phys. 64; 2287–2294.Google Scholar
  148. Jakobsson J, Ekstrom L, Inotsume N, Garle M, Lorentzon M, Ohlsson C, Roh HK, Carlstrom K, Rane A (2006) Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J. Clin. Endocrinol. Metab. 91; 687–693.Google Scholar
  149. JamesV, Kicman A, FD (2004) Medical aspects of drug use in the gym. Drug Ther. Bull. 42; 1–5.Google Scholar
  150. Jasuja R, Catlin DH, Miller A, Chang YC, Herbst KL, Starcevic B, Artaza JN, Singh R, Datta G, Sarkissian A, Chandsawangbhuwana C, Baker M, Bhasin S (2005) Tetrahydrogestrinone is an androgenic steroid that stimulates androgen receptor-mediated, myogenic differentiation in C3H10T1/2 multipotent mesenchymal cells and promotes muscle accretion in orchidectomized male rats. Endocrinology. 146; 4472–4478.Google Scholar
  151. Johansen KL, Mulligan K, Schambelan M (1999) Anabolic effects of nandrolone decanoate in patients receiving dialysis – a randomized controlled trial. JAMA. 281; 1275–1281.Google Scholar
  152. Johansen KL, Painter PL, SakkasGK, Gordon P, Doyle J, Shubert T (2006) Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: a randomized, controlled trial. J. Am. Soc. Nephrol. 17; 2307–2314.Google Scholar
  153. Jondorf WR (1977) Application of radioimmunoassay method for detecting 19-nortestosterone (nandrolone) in equine and canine plasma. Vet. Rec. 100; 560–562.Google Scholar
  154. Jurado C, Kintz P, Menendez M, Repetto M (1997) Influence of the cosmetic treatment of hair on drug testing. Int. J. Legal Med. 110; 159–163.Google Scholar
  155. Khalil MW, Walton JS (1985) Identification and measurement of 4-oestren-3,17-dione (19-norandrostenedione) in porcine ovarian follicular-fluid using high-performance liquid-chromatography and capillary gas-chromatography mass-spectrometry. J. Endocrinol. 107; 375–381.Google Scholar
  156. Kicman AT, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann. Clin. Biochem. 40; 321–356.Google Scholar
  157. Kicman AT, Bassindale T, Cowan DA, Dale S, Hutt AJ, Leeds AR (2003) Effect of androstenedione ingestion on plasma testosterone in young women; a dietary supplement with potential health risks. Clin. Chem. 49; 167–169.Google Scholar
  158. Kicman AT, BrooksRV, Collyer SC, Cowan DA, Nanjee MN, Southan GJ, Wheeler MJ (1990) Criteria to indicate testosterone administration. Br. J. Sports Med. 24; 253–264.Google Scholar
  159. Kicman AT, Oftebro H, Walker C, Norman N, Cowan DA (1993) Potential use of ketoconazole in a dynamic endocrine test to differentiate between biological outliers and testosterone use by athletes. Clin. Chem. 39; 1798–1803.Google Scholar
  160. Kicman AT, Cowan DA, Myhre L, Nilsson S, Tomten S, Oftebro H (1994) Effect on sports drug tests of ingesting meat from steroid (methenolone)-treated livestock. Clin. Chem. 40; 2084–2087.Google Scholar
  161. Kicman AT, Coutts SB, Walker CJ, Cowan DA (1995) Proposed confirmatory procedure for detecting 5 alpha-dihydrotestosterone doping in male athletes. Clin. Chem. 41; 1617–1627.Google Scholar
  162. Kicman AT, Coutts SB, Cowan DA, Handelsman DJ, Howe CJ, Burring S, Wu FC (1999) Adrenal and gonadal contributions to urinary excretion and plasma concentration of epitestosterone in men – effect of adrenal stimulation and implications for detection of testosterone abuse. Clin. Endocrinol. (Oxf). 50; 661–668.Google Scholar
  163. KicmanAT, Fallon JK, Cowan DA, Walker C, Easmon S, Mackintosh D (2002) Candida albicans in urine can produce testosterone: impact on the testosterone/epitestosterone sports drug test. Clin. Chem. 48; 1799–1801.Google Scholar
  164. Kidwell DA (1999) Is hair testing culturally biased and why is this a concern in the US? Second European Meeting on Hair Analysis. Martigny, Switzerland.Google Scholar
  165. Kim CS, Whittem T, Beresford G (1996) Detection of ethylestrenol in equine urine and plasma. In Proceedings of the 11th International Conference of Racing Analysts and Veterinarians (eds Auer DE, Houghton E). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  166. Kim Y, Lee Y, Kim M, Yim YH, Lee W (2000a) Determination and excretion study of gestrinone in human urine by high performance liquid chromatography and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 14; 1293–1300.Google Scholar
  167. Kim Y, LeeY, Kim M, Yim YH, Lee W (2000b) Determination of the metabolites of gestrinone in human urine by high performance liquid chromatography, liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 14; 1717–1726.Google Scholar
  168. King DS, Sharp RL, Vukovich MD, Brown GA, Reifenrath TA, Uhl NL, Parsons KA (1999) Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men: a randomized controlled trial [see comments]. JAMA. 281; 2020–2028.Google Scholar
  169. Kintz P, Cirimele V, Sachs H, Jeanneau T, Ludes B (1999) Testing for anabolic steroids in hair from two bodybuilders. Forensic Sci. Int. 101; 209–216.Google Scholar
  170. Kintz P, CirimeleV, Ludes B (2000) Pharmacological criteria that can affect the detection of doping agents in hair. Forensic Sci. Int. 107; 325–334.Google Scholar
  171. Kokkonen J, Leinonen A, Tuominen J, Seppala T (1999) Comparison of sensitivity between gas chromatography-low-resolution mass spectrometry and gas chromatography-high-resolution mass spectrometry for determining metandienone metabolites in urine. J. Chromatogr. B Biomed. Sci. Appl. 734; 179–189.Google Scholar
  172. Kurkela, M., Garcia-Horsman, J. A., Luukkanen, L., Morsky, S., Taskinen, J., Baumann, M., Kostiainen, R., Hirvonen, J. & Finel, M. (2003) Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs). J. Biol. Chem. 278; 3536–3544.Google Scholar
  173. Kuuranne, T., Vahermo, M., Leinonen, A. & Kostiainen, R. (2000) Electrospray and atmospheric pressure chemical ionization tandem mass spectrometric behavior of eight anabolic steroid glucuronides. J. Am. Soc. Mass Spectrom. 11; 722–730.Google Scholar
  174. Kuuranne, T., Kotiaho, T., Pedersen-Bjergaard, S., Rasmussen, K. E., Leinonen, A., Westwood, S. & Kostiainen, R. (2003a) Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. J Mass Spectrom. 38; 16–26.Google Scholar
  175. Kuuranne, T., Kurkela, M., Thevis, M., Schanzer, W., Finel, M. & Kostiainen, R. (2003b) Glucur onidation of anabolic androgenic steroids by recombinant human UDP-glucurono syltransferases. Drug Metab Dispos 31; 1117–11124.Google Scholar
  176. Laidler, P., Cowan, D. A., Hider, R. C. & Kicman, A. T. (1994) New decision limits and quality-control material for detecting human chorionic gonadotropin misuse in sports. Clin. Chem. 40; 1306–1311.Google Scholar
  177. Le Bizec, B., Monteau, F, Gaudin, I. & Andre, F. (1999) Evidence for the presence of endogenous 19-norandrosterone in human urine. J. Chromatogr. B 723; 157–172.Google Scholar
  178. Le Bizec, B., Gaudin, I., Monteau, F, Andre, F, Impens, S., De Wasch, K & De Brabander, H. (2000) Consequence of boar edible tissue consumption on urinary profiles of nandrolone metabolites. I. Mass spectrometric detection and quantification of 19-norandrosterone and 19-noretiocholanolone in human urine. Rapid Commun. Mass Spectr. 14; 1058–1065.Google Scholar
  179. Le Bizec, B., Bryand, F, Gaudin, I., Monteau, F, Poulain, F & Andre, F (2002a) Endogenous nandrolone metabolites in human urine. Two-year monitoring of male professional soccer players. J. Analyt. Toxicol. 26; 43–47.Google Scholar
  180. Le Bizec B, Bryand F, Gaudin I, Monteau F, Poulain F, Andre F (2002b) Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin. Steroids. 67; 105–110.Google Scholar
  181. Leder BZ, Longcope C, Catlin DH, Ahrens B, Schoenfeld DA, Finkelstein JS (2000) Oral androstenedione administration and serum testosterone concentrations in young men. JAMA. 283; 779–782.Google Scholar
  182. Leder BZ, Leblanc KM, Longcope C, Lee H, Catlin DH, Finkelstein JS (2002) Effects of oral androstenedione administration on serum testosterone and estradiol levels in postmenopausal women. J. Clin. Endocrinol. Metab. 87; 5449–5454.Google Scholar
  183. Leinonen A, Kuuranne T, Kostiainen R (2002) Liquid chromatography/mass spectrometry in anabolic steroid analysis-optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J. Mass Spectrom. 37; 693–698.Google Scholar
  184. Leinonen A, Kuuranne T, Kotiaho T, Kostiainen R (2004) Screening of free 17-alkyl-substituted anabolic steroids in human urine by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids. 69; 101–109.Google Scholar
  185. Leinonen A, Vuorensola K, Lepola LM, KuuranneT, Kotiaho T, Ketola RA, Kostiainen R (2006) Liquid-phase microextraction for sample preparation in analysis of unconjugated anabolic steroids in urine. Analyt. Chim. Acta. 559; 166–172.Google Scholar
  186. Leung GNW, Ho ENM, Leung DKK, Tang FPW, Wan TSM, Yeung JHK, Wong HNC (2005a) Metabolic studies of clostebol acetate in horses. Chromatographia. 61; 397–402.Google Scholar
  187. LeungGNW, Ho ENM, Leung DKK, Tang FPW, Yiu KCH, Wan TSM, Xu X, Yeung JHK, Wong HNC (2005b) Metabolic studies of clostebol acetate and mesterolone in horses. In Proceedings of the 15th International Conference of Racing Analysts and Veterinarians (eds Albert PH, Morton T, Wade JF). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  188. Levesque J-F, Ayotte C (1999) Criteria for the detection of androstenedione oral administration. In Recent Advances in Doping Analysis (7); Proceedings of the Manfred Donike Workshop, 17th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 14–19 March 1999. Sport & Buch Strauss, Köln.Google Scholar
  189. Levesque JF, Templeton E, Trimble L, Berthelette C, Chauret N (2005) Discovery, biosynthesis, and structure elucidation of metabolites of a doping agent and a direct analogue, tetrahydrogestrinone and gestrinone, using human hepatocytes. Analyt. Chem. 77; 3164–3172.Google Scholar
  190. Machnik M, Schanzer W, Hilkert A, Oesselmann J (1997) Detection of exogenous testosterone by 13C/12C analysis. In Recent Advances in Doping Analysis (4); Proceedings of the 14th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Köln.Google Scholar
  191. Maitre A, Saudan C, Mangin P, Saugy M (2004) Urinary analysis of four testosterone metabolites and pregnanediol by gas chromatography-combustion-isotope ratio mass spectrometry after oral administrations of testosterone. J. Analyt. Toxicol. 28; 426–431.Google Scholar
  192. Mareck-Engelke U, Geyer H, Schanzer W (1998) The interpretation of female steroid profiles. In Recent Advances in Doping Analysis (5); Proceedings of the Manfred Donike Workshop15th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 23–28 February 1997. Sport & Buch Strauss, Köln.Google Scholar
  193. Mareck-Engelke U, Schultze G, Geyer H, Schanzer W (2002) The appearance of urinary 19-norandrosterone during pregnancy. Eur. J. Sports Sci. 2; 1–7.Google Scholar
  194. Mason PM, Hall SE, Gilmour I, Houghton E, Pillinger C, Seymour MA (1998) The use of stable carbon isotope analysis to detect the abuse of testosterone in cattle. Analyst. 123; 2405–2408.Google Scholar
  195. Masse R, Laliberte C, Tremblay L, Dugal R (1985) Gas chromatographic/mass spectrometric analysis of 19-nortestosterone urinary metabolites in man. Biomed. Mass Spectrom. 12; 115–121.Google Scholar
  196. Masse R, Ayotte C, Bi HG, Dugal R (1989a) Studies on anabolic steroids. III. Detection and characterization of stanozolol urinary metabolites in humans by gas chromatography–mass spectrometry. J. Chromatogr. 497; 17–37.Google Scholar
  197. Masse R, Ayotte C, Dugal R (1989b) Studies on anabolic steroids. I. Integrated methodological approach to the gas chromatographic–mass spectrometric analysis of anabolic steroid metabolites in urine. J. Chromatogr. 489; 23–50.Google Scholar
  198. Masse R, Bi HG, Ayotte C, Dugal R (1989c) Studies on anabolic steroids. II – Gas chro-matographic/mass spectrometric characterization of oxandrolone urinary metabolites in man. Biomed. Environ. Mass Spectrom. 18; 429–438.Google Scholar
  199. Masse R, Bi HG, Ayotte C, Du P, Gelinas H, Dugal R (1991) Studies on anabolic steroids. V. Sequential reduction of methandienone and structurally related steroid A-ring substituents in humans: gas chromatographic–mass spectrometric study of the corresponding urinary metabolites. J. Chromatogr. 562; 323–340.Google Scholar
  200. Masse R, Goudreault D (1992) Studies on anabolic steroids – 11. 18-hydroxylated metabolites of mesterolone, methenolone and stenbolone: new steroids isolated from human urine. J. Steroid Biochem. Mol. Biol. 42; 399–410.Google Scholar
  201. Mathurin JC, Herrou V, Bourgogne E, Pascaud L, De Ceaurriz J (2001) Gas chromatography–combustion-isotope ratio mass spectrometry analysis of 19-norsteroids: application to the detection of a nandrolone metabolite in urine. J. Chromatogr. B. 759; 267–275.Google Scholar
  202. Mchugh CM, Park RT, Sonksen PH, Holt RIG (2005) Challenges in detecting the abuse of growth hormone in sport. Clin. Chem. 51; 1587–1593.Google Scholar
  203. Mckinney AR, RidleyDD, Suann CJ (2001a) Metabolism of methandrostenolone in the horse: a gas chromatographic–mass spectrometric investigation of phase I and phase II metabolism. J. Chromatogr. B. 765; 71–79.Google Scholar
  204. Mckinney AR, Ridley DD, Suann CJ (2001b) The metabolism of norethandrolone in the horse: characterization of 16-, 20- and 21-oxygenated metabolites by gas chromatography/mass spectrometry. J. Mass Spectrom. 36; 145–150.Google Scholar
  205. Mckinney AR, Suann CJ, Dunstan AJ, Mulley SL, Ridley DD, Stenhouse AM (2004) Detection of stanozolol and its metabolites in equine urine by liquid chromatography–electrospray ionization ion trap mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 811; 75–83.Google Scholar
  206. Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. A. 842; 351–371.Google Scholar
  207. Minto CF, Howe C, Wishart S, Conway AJ, Handelsman DJ (1997) Pharmacokinetics and pharmacodynamics of nandrolone esters in oil vehicle: Effects of ester, injection site and injection volume. J. Pharmacol. Exp. Ther. 281; 93–102.Google Scholar
  208. Morales AJ, Nolan JJ, Nelson JC, Yen SS (1994) Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol. Metab. 78; 1360–1367.Google Scholar
  209. Muck WM, Henion JD (1990) High-performance liquid-chromatography tandem mass-spectrometry – its use for the identification of stanozolol and its major metabolites in human and equine urine. Biomed. Environ. Mass Spectrom. 19; 37–51.Google Scholar
  210. Mueller RK, Grosse J, Lang R, Thieme D (1995) Chromatographic techniques – the basis of doping control. J. Chromatogr. B Biomed. Appl. 674; 1–11.Google Scholar
  211. Murata M, Warren EH, Riddell SR (2003) A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J. Exp. Med. 197; 1279–189.Google Scholar
  212. Nakahara Y, Takahashi K, Kikura R (1995) Hair analysis for drugs of abuse. X. Effect of physicochemical properties of drugs on the incorporation rates into hair. Biol. Pharm. Bull. 18; 1223–1227.Google Scholar
  213. Nandrolone Review (2000) and Progress Report (2003) download from UK Sport (http://www.uksport.gov.uk/pages/nandrolone_review_and_progress_report). Accessed August 2007.
  214. Nestler JE, Barlascini CO, Clore JN, Blackard WG (1988) Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J. Clin. Endocrinol. Metab. 66; 57–61.Google Scholar
  215. Nielen MWF, Bovee TFH, Van Engelen MC, Rutgers P, Hamers ARM, Van Rhijn IHA, Hoogenboom L (2006) Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Analyt. Chem. 78; 424–431.Google Scholar
  216. Oftebro H (1992) Evaluating an abnormal urinary steroid profile. Lancet. 339; 941–942.Google Scholar
  217. Oftebro H, Jensen J, Mowinckel P, Norli HR (1994) Establishing a ketoconazole suppression test for verifying testosterone administration in the doping control of athletes. J. Clin. Endocrinol. Metab. 78; 973–977.Google Scholar
  218. Opfermann G, Schanzer W (1997) Trimethylsilylation – aspects for derivatisation. In Recent Advances in Doping Analysis (4); Proceedings of the 14th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 17–22 March 1996. Sport & Buch Strauss, Köln.Google Scholar
  219. Palonek E, Gottlieb C, Garle M, Bjorkhem I, Carlstrom K (1995) Serum and urinary markers of exogenous testosterone administration. J. Steroid Biochem. Mol. Biol. 55; 121–127.Google Scholar
  220. Peng SH, Segura J, Farre M, De La Torre X (2000) Oral testosterone administration detected by testosterone glucuronidation measured in blood spots dried on filter paper. Clin. Chem. 46; 515–522.Google Scholar
  221. Perry PJ, Macindoe JH, Yates WR, Scott SD, Holman TL (1997) Detection of anabolic steroid administration: ratio of urinary testosterone to epitestosterone vs the ratio of urinary testosterone to luteinizing hormone. Clin. Chem. 43; 731–735.Google Scholar
  222. Raynaud E, Audran M, Pages JC, Brun JF, Fedou C, Chanal JL, Orsetti A (1993a) Urinary-excretion of testosterone and epitestosterone glucuronides in preadolescents and adolescents. Pathol. Biol. 41; 159–163.Google Scholar
  223. Raynaud E, Audran M, Pages JC, Fedou C, Brun JF, Chanal JL, Orsetti A (1993b) Determination of urinary testosterone and epitestosterone during pubertal development – a cross-sectional study in 141 normal-male subjects. Clin. Endocrinol. 38; 353–359.Google Scholar
  224. Reilly CA, Crouch DJ (2004) Analysis of the nutritional supplement 1AD, its metabolites, and related endogenous hormones in biological matrices using liquid chromatography–tandem mass spectrometry. J. Analyt. Toxicol. 28; 1–10.Google Scholar
  225. Rendic S, Nolteernsting E, Schanzer W (1999) Metabolism of anabolic steroids by recombinant human cytochrome P450 enzymes. Gas chromatographic–mass spectrometric determination of metabolites. J. Chromatogr. B Biomed. Sci. Appl. 735; 73–83.Google Scholar
  226. Reznik Y Dehennin L, Coffin C, Mahoudeau J, Leymarie P (2001) Urinary nandrolone metabolites of endogenous origin in man: A confirmation by output regulation under human chorionic gonadotropin stimulation. J. Clin. Endocrinol. Metab. 86; 146–150.Google Scholar
  227. Rivier L (2000) Is there a place for hair analysis in doping controls? Forensic Sci. Int. 107; 309–323.Google Scholar
  228. Robinson N, Taroni F, Saugy M, Ayotte C, Mangin P, Dvorak J (2001a) Detection of nandrolone metabolites in urine after a football game in professional and amateur players: a Bayesian comparison. Forensic Sci. Int. 122; 130–135.Google Scholar
  229. Robinson N, Taroni F, Saugy M, Ayotte C, Mangin P, Dvorak J (2001b) Detection of nandrolone metabolites in urine after a football game in professional and amateur players: a Bayesian comparison. Forensic Sci. Int. 122; 130–135.Google Scholar
  230. Rollins DE, Wilkins DG, Krueger GG (1996) Codeine disposition in human hair after single and multiple doses. Eur. J. Clin. Pharmacol. 50; 391–397.Google Scholar
  231. Ruokonen A, Vihko R (1974) Steroid metabolism in testis tissue – concentrations of unconjugated and sulfated neutral steroids in boar testis. J. Steroid Biochem. Mol. Biol. 5; 33–38.Google Scholar
  232. Sachs H, Dressler U (2000) Detection of THCCOOH in hair by MSD-NCI after HPLC cleanup. Forensic Sci. Int. 107; 239–247.Google Scholar
  233. Saugy M, Robinson N, Cardis C, Schweizer C, Rivier L, Mangin P, Ayotte C, Dvorak C (1999) Nandrolone metabolites in football players: utility for in and out of competton testing. In Recent Advances in Doping Analysis (7); Proceedings of the Manfred Donike Workshop (eds Schanzer W, Geyer HGotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Köln.Google Scholar
  234. Schanzer W (1996) Metabolism of anabolic androgenic steroids [see comments]. Clin. Chem. 42; 1001–1020.Google Scholar
  235. Schanzer W, Donike M (1992) Metabolism of boldenone in man – gas-chromatographic mass-spectrometric identification of urinary excreted metabolites and determination of excretion rates. Biol. Mass. Spectrom. 21; 3–16.Google Scholar
  236. Schanzer W, Donike M (1993) Metabolism of anabolic steroids in man: synthesis and use of reference substances for identification of anabolic steroid metabolites. Analyt. Chim. Acta. 275; 23–48.Google Scholar
  237. Schanzer W, Opfermann G, Donike M (1990) Metabolism of stanozolol: identification and synthesis of urinary metabolites. J. Steroid Biochem. 36; 153–174.Google Scholar
  238. Schanzer W, Geyer H, Donike M (1991) Metabolism of metandienone in man: identification and synthesis of conjugated excreted urinary metabolites, determination of excretion rates and gas chromatographic–mass spectrometric identification of bis-hydroxylated metabolites. J. Steroid Biochem. Mol. Biol. 38; 441–464.Google Scholar
  239. Schanzer W, Opfermann G, Donike M (1992) 17-Epimerization of 17 alpha-methyl anabolic steroids in humans: metabolism and synthesis of 17 alpha-hydroxy-17 beta-methyl steroids. Steroids. 57; 537–550.Google Scholar
  240. Schanzer W, Delahaut P, Geyer H, Machnik M, Horning S (1996) Long-term detection and identification of metandienone and stanozolol abuse in athletes by gas chromatography-high-resolution mass spectrometry. J. Chromatogr. B Biomed. Appl. 687; 93–108.Google Scholar
  241. Schanzer W, Geyer H, Fussholler G, Halatcheva N, Kohler M, Parr MK, Guddat S, Thomas A, Thevis M (2006) Mass spectrometric identification and characterization of a new long-term metabolite of metandienone in human urine. Rapid Commun. Mass Spectrom. 20; 2252–2258.Google Scholar
  242. Schmitt N, Flament MM, Goubault C, Legros P, Grenier-Loustalot MF, Denjean A (2002) Nandrolone excretion is not increased by exhaustive exercise in trained athletes. Med. Sci. Sports Exerc. 34; 1436–1439.Google Scholar
  243. Schoene C, Nedderman ANR, Houghton E (1994) Preliminary-study of the metabolism of 17-alpha-methyltestosterone in horses utilizing gas-chromatography – mass-spectrometric techniques. Analyst. 119; 2537–2542.Google Scholar
  244. Segura J, Pichini S, Peng SH, De La Torre X (2000) Hair analysis and detectability of single dose administration of androgenic steroid esters. Forensic Sci. Int. 107; 347–359.Google Scholar
  245. Sekera MH, Ahrens BD, Chang YC, Starcevic B, Georgakopoulos C, Catlin DH (2005) Another designer steroid: discovery, synthesis, and detection of ‘madol’ in urine. Rapid Commun. Mass Spectrom. 19; 781–784.Google Scholar
  246. Shackleton CH, Phillips A, Chang T, Li Y (1997a) Confirming testosterone administration by isotope ratio mass spectrometric analysis of urinary androstanediols. Steroids. 62; 379–387.Google Scholar
  247. Shackleton CH, Roitman E, Phillips A, Chang T (1997b) Androstanediol and 5-androstenediol profiling for detecting exogenously administered dihydrotestosterone, epitestosterone, and dehydroepiandrosterone: potential use in gas chromatography isotope ratio mass spectrometry. Steroids. 62; 665–673.Google Scholar
  248. Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Ashenden MJ, Gore CJ, Parisotto R, Hahn AG (2002) Development of reference ranges in elite athletes for markers of altered erythropoiesis. Haematologica. 87; 1248–1257.Google Scholar
  249. Short RV (1960) Steroids present in the follicular fluid of the mare. J. Endocrinol. 20; 147–156.Google Scholar
  250. Silberzahn P, Dehennin L, Zwain I, Reiffsteck A (1985) Gas chromatography–mass spectrometry of androgens in equine ovarian follicles at ultrastructurally defined stages of development. Identification of 19-nortestosterone in follicular fluid. Endocrinology. 117; 2176–2181.Google Scholar
  251. Smith SJ, Cox JE, Houghton E, Dumasia MC, Moss MS (1987) In-vitro biosynthesis of C18 neutral steroids in horse testes. J. Reprod. Fertil. Suppl. 35; 71–78.Google Scholar
  252. Snow DH (1993) Anabolic steroids. Vet. Clin. North Am. Equine. Pract. 9; 563–576.Google Scholar
  253. Solomon AM, Bouloux PMG (2006) Modifying muscle mass – the endocrine perspective. J. Endocrinol. 191; 349–360.Google Scholar
  254. Southan GJ, Brooks RV, Cowan DA, Kicman AT, Unnadkat N, Walker CJ (1992) Possible indices for the detection of the administration of dihydrotestosterone to athletes. J. Steroid Biochem. Mol. Biol. 42; 87–94.Google Scholar
  255. Stanley SMR, Wilhelmi BS, Rodgers JP, Guthrie A (1994) Detection of corticosteroids by high-performance liquid-chromatography negative-ion chemical-ionization mass-spectrometry using a particle-beam interface. Biol. Mass Spectrom. 23; 483–491.Google Scholar
  256. Stanley SMR, Owens NA, Rodgers JP (1995) Detection of flunixin in equine urine using high-performance liquid-chromatography with particle-beam and atmospheric-pressure ionization mass-spectrometry after solid-phase extraction. J Chromatogr B Biomed Appl, 667; 95–103.Google Scholar
  257. Stanley SMR, Kent S, Rodgers JP (1997) Biotransformation of 17-alkyl steroids in the equine: high-performance liquid chromatography mass spectrometric and gas chromatography mass spectrometric analysis of fluoxymesterone metabolites in urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 704; 119–128.Google Scholar
  258. Starcevic B, Distefano E, Wang C, Catlin DH (2003) Liquid chromatography–tandem mass spectrometry assay for human serum testosterone and trideuterated testosterone. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 792; 197–204.Google Scholar
  259. Swiss Pharmaceutical Society (2008) Index Nominum: International Drug Directory, 19th edn. Medpharm Scientific Publishers, Stuttgart.Google Scholar
  260. Tang FP, Law WC, Wan TSM, Crone DL (2000) Metabolic studies of some oral anabolic steroids in the horse: part 1, oxymethelone and mestanolone. In Proceedings of the 12th International Conference of Racing Analysts and Veterinarians (eds Laviolette B, Koupai-Abyazani MR). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  261. Tang FPW, Watkins KL, Wan TSM (2001) Metabolic studies of some oral anabolic steroids in the horse: part 2, danazol. In Proceedings of the 13th International Conference of Racing Analysts and Veterinarians (eds Williams RB, Houghton E, Wade JF). Newmarket, R & W Publications, Queensland, Australia.Google Scholar
  262. Teale P, Houghton E. (1991) The development of a gas-chromatographic mass-spectrometric screening-procedure to detect the administration of anabolic-steroids to the horse. Biol. Mass Spectrom. 20; 109–114.Google Scholar
  263. Thevis M, Geyer H, Mareck U, Schanzer W (2005) Screening for unknown synthetic steroids in human urine by liquid chromatography–tandem mass spectrometry. J. Mass Spectrom. 40; 955–962.Google Scholar
  264. Thieme D, Anielski P, Grosse J, Sachs H, Mueller RK (2003) Identification of anabolic steroids in serum, urine, sweat and hair – comparison of metabolic patterns. Analyt. Chim. Acta. 483; 299–306.Google Scholar
  265. Tomoda H (1999) Effect of oxymetholone on left ventricular dimensions in heart failure secondary to idiopathic dilated cardiomyopathy or to mitral or aortic regurgitation. Am. J. Cardiol. 83; 123–125, A9.Google Scholar
  266. Tsivou M, Kioukia-Fougia N, Lyris E, Aggelis Y, Fragkaki A, Kiousi X, Simitsek P, Dimopoulou H, Leontiou IP, Stamou M, Spyridaki MH, Georgakopoulos C (2006) An overview of the doping control analysis during the Olympic Games of 2004 in Athens, Greece. Analyt. Chim. Acta. 555; 1–13.Google Scholar
  267. Turgeon D, Carrier JS, Levesque E, Hum DW, Belanger A (2001) Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology. 142; 778–87.Google Scholar
  268. Uralets VP, Gillette PA (1999) Over-the-counter anabolic steroids 4-androsten-3,17-dione; 4-androsten-3beta,17beta-diol; and 19-nor-4-androsten-3,17-dione: excretion studies in men. J. Anal. Toxicol. 23; 357–366.Google Scholar
  269. Uralets VP, Gillette PA (2000) Over-the-counter delta5 anabolic steroids 5-androsen-3,17-dione; 5-androsten-3beta, 17beta-diol; dehydroepiandrosterone; and 19-nor-5- androsten-3,17-dione: excretion studies in men. J. Anal. Toxicol. 24; 188–193.Google Scholar
  270. Uralets VP, Gillette PA, Duvall B, Latven RK (1996) Trenbolone: screening and con-firmation. In Recent Advances in Doping Analysis; Proceedings of the 13th Cologne Workshop on Dope Analysis (eds Donike M, Geyer H, Gotzmann A, Mareck-Engelke U). Sport & Buch Strauss, Köln.Google Scholar
  271. Van De Kerkhof DH, Van Ooijen RD, De Boer D, Fokkens RH, Nibbering NMM, Zwikker JW, Thijssen JHH, Maes RAA (2002) Artifact formation due to ethyl thio-incorporation into silylated steroid structures as determined in doping analysis. J. Chromatogr. A. 954; 199–206.Google Scholar
  272. Van Der Vies J (1993) Pharmacokinetics of anabolic steroids. Wien Med Wochenschr. 143; 366–368.Google Scholar
  273. Van Eenoo P, Delbecke FT (2006) Metabolism and excretion of anabolic steroids in doping control – New steroids and new insights. J. Steroid Biochem. Mol. Biol. 101; 161–178.Google Scholar
  274. Van Eenoo P, Delbecke FT, De Jong FH, De Backer P (1999a) Urinary metabolites of endogenous nandrolone in women: a case study. In Recent Advances in Doping Analysis (6); Proceedings of the Manfred Donike Workshop16th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 15–20 March 1998. Sport & Buch Strauss, Köln.Google Scholar
  275. Van Eenoo P, Delbeke FT, Desmet N, De Backer P (1999b) Excretion studies with 4-androstene-3,17-dione. In Recent Advances in Doping Analysis (6); Proceedings of the Manfred Donike Workshop16th Cologne Workshop on Dope Analysis (eds Schanzer W, Geyer H, Gotzmann A, Mareck-Engelke U), 15–20 March 1998. Sport \Buch Strauss, Köln.Google Scholar
  276. Vandenbroeck M, Vanvyncht G, Gaspar P, Dasnois C, Delahaut P, Pelzer G, Degraeve J, Maghuinrogister G (1991) Identification and characterization of 19-nortestosterone in urine of meat-producing animals. J. Chromatogr. Biomed. Appl. 564; 405–412.Google Scholar
  277. Ward RJ, Shackleton CH, Lawson AM (1975) Gas chromatographic – mass spectrometric methods for the detection and identification of anabolic steroid drugs. Br. J. Sports Med. 9; 93–97.Google Scholar
  278. Weidolf LOG, Lee ED, Henion JD (1988) Determination of boldenone sulfoconjugate and related steroid sulfates in equine urine by high-performance liquid-chromatography tandem mass-spectrometry. Biomed. Environ. Mass Spectrom. 15; 283–289.Google Scholar
  279. Wennig R (2000) Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 107; 5–12.Google Scholar
  280. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Analyt. Chem. 57; 675–679.Google Scholar
  281. Wijnand HP, Bosch AMG, Donker CW (1985) Pharmacokinetic parameters of nandrolone (19-nortestosterone) after intramuscular administration of nandrolone decanoate (Deca-Durabolin) to healthy-volunteers. Acta Endocrinol. 110; 19–30.Google Scholar
  282. Wilson W, De Villena FPM, Lyn-Cook BD, Chatterjee PK, Bell TA, Detwiler DA, Gilmore RC, Valladeras IC, Wright CC, Threadgill DW, Grant DJ (2004) Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics. 84; 707–714.Google Scholar
  283. Yap BK, Kazlauskas R, Elghazi K, Johnston GAR, Weatherby RP (1996) Profiling of urinary testosterone and luteinizing hormone in exercise-stressed male athletes, using gas chromatography mass spectrometry and enzyme immunoassay techniques. J. Chromatogr. B. 687; 117–125.Google Scholar
  284. Yu NH, Ho ENM, Leung DKK. Wan TSM (2005) Screening of anabolic steroids in horse urine by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 37; 1031–1038.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Forensic Science and Drug Monitoring (Drug Control Centre), Division of Pharmaceutical ScienceKings College LondonLondonUK
  2. 2.HFL, Sports ScienceFordhamUK

Personalised recommendations