Advertisement

The Measurement of Estrogens

  • Geoff Holder
  • Hugh L. J. MakinEmail author
  • H. Leon Bradlow
Chapter

Abstract

Biologists use the word ‘estrogen’ when referring to molecules which have the ability to induce uterine growth or vaginal cornification in the immature or ovariectomized rodent. The word estrogen was derived from two Greek words – oistros meaning frenzy and gennein – to beget. Chemists and biochemists, however, often restrict their use of this term to molecules that contain a characteristic 18-carbon steroid nucleus with an aromatic (phenolic) A-ring, both those that are biologically active estrogens and those without biologic activity but which are of intrinsic interest, such as the estrogen conjugates. This chapter is concerned only with these steroid compounds. The structure and inter-relationship of some common estrogens are given in Fig. 8.1. In addition to the biological estrogens, there are a wide variety of both natural and synthetic compounds which have estrogenic activity when measured by one or another parameter. While many of the assay procedures described in this review are applicable to these compounds, their application to non C18-steroids will not be discussed here. Methodology for these non-steroidal compounds can be found in reviews by Wang et al. (2002), Wu et al. (2004), Muir (2006), and Delmonte and Rader (2006). While not wishing to downgrade the importance of previous work in the estrogen field, the authors have taken a deliberate decision to exclude most publications prior to 1975, not because these do not have value but simply because space is not unlimited and readers of the present chapter might be expected to be seeking information about methodology which is less than 30 years old. Readers seeking pre-1975 information in this area can find it in Oakey and Holder (1995).

Notes

Acknowledgements

The authors of this chapter acknowledge with gratitude the contribution of Dr. R.E. Oakey who was jointly responsible with Dr. Holder for this chapter in the first edition of the book and on whose work the present chapter has been based. Many colleagues throughout the world, too numerous to list, have kindly helped with comments and copies of their publications, which the authors have been unable to access – we are grateful to all of these colleagues and hope they approve of the final product.

References

  1. Abraham GE (1969) Solid-phase radioimmunoassay of estradiol-17 b. J. Clin. Endocrinol. Metab. 29; 866–870.Google Scholar
  2. Abraham GE (1974) Radioimmunoassay of steroids in biological materials. Acta. Endocrinol. 75; 7–42.Google Scholar
  3. Abul-Hajj YJ, Nurieddin A (1983) Significance of lipoidal estradiol in human mammary tumors. Steroids. 42; 417–426.Google Scholar
  4. Adlercreutz H, Tikkanen MJ, Hunneman DH (1974) Mass fragmentographic determination of eleven estrogens in the body fluids of pregnant and nonpregnant subjects. J. Steroid Biochem. 5; 211–217.Google Scholar
  5. Adlercreutz H, Kiuru I, Rasku S, Wahala K, Fotsis T (2004) An isotope dilution gas spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine. J. Steroid Biochem. Mol. Biol. 92; 399–411.Google Scholar
  6. Agasan AL, Stewart BJ, Watson TG (1994) Development of a radioimmunoassay method for ethynylestradiol in plasma using a monoclonal antibody. J. Immunol. Methods. 177; 251–260.Google Scholar
  7. Ager RP, Oliver RWA (1983) Separation of estrogens in biological fluids and synthetic mixtures on Sephadex G-type gels. J. Chromatogr. 271; 325–340.Google Scholar
  8. Ager RP, Oliver RWA (1984) Separation of estrogen conjugates in urine and synthetic mixtures by high performance liquid chromatographic methods. J. Chromatogr. 309; 1–15.Google Scholar
  9. Akpoviroro J, Fotherby K (1980) Assay of ethinyl oestradiol in human serum and its binding to plasma proteins. J. Steroid Biochem. 13; 773–779.Google Scholar
  10. Aksglaede L, Juul A, Leffers H, Skakkebaek NE, Andersson AM (2006) The sensitivity of the child to sex steroids: possible impact of exogenous estrogens. Hum. Reprod. Update. 12; 341–349.Google Scholar
  11. Albrecht L, Styne D (2007) Laboratory testing of gonadal steroids in children. Pediatr. Endocrinol. Rev. 5; 599–607.Google Scholar
  12. Alkharfy KM, Frye RF (2002) Sensitive liquid chromatographic method using fluorescence detection for the determination of estradiol 3- and 17-glucuronides in rat and human liver microsomal incubations: formation kinetics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 774; 33–38.Google Scholar
  13. Alvarez Sánchez B, Capote FP, Jiménez JR, Luque de Castro MD (2008) Automated solid-phase extraction for concentration and clean-up of female steroid hormones prior to liquid chromatography–electrospray ionization-tandem mass spectrometry: an approach to lipidomics. J. Chromatogr. 1207; 46–54. Aug 29, 2008 [Epub ahead of print].Google Scholar
  14. Anari MR, Bakhtiar R, Zhu B, Huskey S, Franklin RB, Evans DC (2002) Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: application in trace analysis of ethinylestradiol in rhesus monkey plasma. Anal. Chem. 74; 4136–4144.Google Scholar
  15. Anckaert E, Mees M, Schiettecatte J, Smitz J (2002) Clinical validation of a fully automated 17beta-estradiol and progesterone assay (VIDAS) for use in monitoring assisted reproduction treatment. Clin. Chem. Lab. Med. 40; 824–831.Google Scholar
  16. Anckaert E, Platteau P, Schiettecatte J, Devroey P, Van Steirteghem A, Smitz J (2006) Spuriously elevated serum estradiol concentrations measured by an automated immunoassay rarely cause unnecessary cancellation of in vitro fertilization cycles. Fertil. Steril. 85; 1822.e5–e8.Google Scholar
  17. Anderson KE, Kappas A, Conney AH, Bradlow HL, Fishman, J (1984) The influence of dietary protein and carbohydrate on the principal oxidative biotransformations of estradiol in normal subjects. J. Clin. Endocrinol. Metab. 59; 103–107.Google Scholar
  18. Anderson PJB, Hancock KW, Oakey RE (1985) Non-protein bound oestradiol and progesterone in human peripheral plasma before labour and delivery. J. Endocrinol. 104; 7–15.Google Scholar
  19. Andersson AM, Skakkebaek NE (1999) Exposure to exogenous estrogens in food: possible impact on human development and health. Eur. J. Endocrinol. 140; 477–485.Google Scholar
  20. Andreolini F, Borra C, Caccamo F, Di Corcia A, Samperi R (1987) Estrogen conjugates in late-pregnancy fluids: extraction and group separation by a graphitized carbon black cartridge and quantification by high-performance liquid chromatography. Anal. Chem. 59; 1720–1725.Google Scholar
  21. Ankarberg-Lindgren C, Norjavaara E (2008) A purification step prior to commercial sensitive immunoassay is necessary to achieve clinical usefulness when quantifying serum 17beta-estradiol in prepubertal children. Eur. J. Endocrinol. 158; 117–124.Google Scholar
  22. Appelblad P, Irgum K (2002) Separation and detection of neuroactive steroids from biological matrices. J. Chromatogr. A. 955; 151–182.Google Scholar
  23. Arditsoglou A, Voutsa D (2008) Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ. Sci. Pollut. Res. Int. 15; 228–236.Google Scholar
  24. Armamento-Villareal R, Napoli N, Klug T, Civitelli R (2007) The oxidative metabolism of estrogen modulates response to ERT/HRT in postmenopausal women. Bone. 35; 682–688.Google Scholar
  25. Armbruster DA, Tillman MD, Hubbs LM (1994) Limit of detection (LQD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clin. Chem. 40; 1233–1238.Google Scholar
  26. Arroyo D, Ortiz MC, Sarabia LA (2007) Multiresponse optimization and parallel factor analysis, useful tools in the determination of estrogens by gas chromatography–mass spectrometry. J. Chtromatogr. A. 1157; 358–368.Google Scholar
  27. Arslan AA, Zeleniuch-Jacquotte A, Lukanova A, Afanasyeva Y, Katz J, Levitz M, Del Priore G, Toniolo P (2006) Effects of parity on pregnancy hormonal profiles across ethnic groups with a diverse incidence of breast cancer. Cancer. Epidemiol. Biomarkers. Prev. 15; 2123–2130.Google Scholar
  28. Atkinson S, Atkinson MJ, Tarrant AM (2003) Estrogens from sewage in coastal marine environments. Environ. Health Perspect. 111; 531–535.Google Scholar
  29. Badeau M, Vihma V, Mikkola TS, Tiitinen A, Tikkanen MJ (2007) Estradiol fatty acid esters in adipose tissue and serum of pregnant and pre- and postmenopausal women. J. Clin. Endocrinol. Metab. 92; 4327–4331.Google Scholar
  30. Baker TS, Jennison KM, Kellie AE (1977) The direct radioimmunoassay of oestrogen glucuronides in human female urine. Biochem. J. 177; 729–738.Google Scholar
  31. Balaguer P, Joyeux A, Denison MS, Vincent R, Gillesby BE, Zacharewski T (1996) Assessing the estrogenic and dioxin-like activities of chemicals and complex mixtures using in vitro recombinant receptor-reporter gene assays. Can. J. Physiol. Pharmacol. 74; 216–222.Google Scholar
  32. Ball P, Reu G, Schwab J, Knuppen R (1979) Radioimmunoassay of 2-hydroxyestrone and 2-methoxyestrone in human urine. Steroids. 33; 563–567.Google Scholar
  33. Bardia A, Hartmann LC, Vachon CM, Vierkant RA, Wang AH, Olson JE, Sellers TA, Cerhan JR (2006) Recreational physical activity and risk of postmenopausal breast cancer based on hormone receptor status. Arch. Intern. Med. 166; 2478–2483.Google Scholar
  34. Barnard G, Kohen F (1990) Idiometric assay; non-competitive immunoassay for small molecules typified by the measurement of estradiol in serum. Clin. Chem. 36; 1945–1950.Google Scholar
  35. Barnard G, Kohen F, Mikola H, Lovgren T (1989) Measurement of estrone-3-glucuronide in urine by rapid homogeneous time-resolved fluorimmunoassay. Clin. Chem. 35; 555–559.Google Scholar
  36. Barnard G, Karsiliyan H, Kohen F (1991) Idiometric assay, the third way: a noncompetitive immunoassay for small molecules. Am. J. Obstet. Gynecol. 165; 1997–2000.Google Scholar
  37. Barnard G, Amir-Zaltsman Y, Lichter S, Gayer B, Kohen F (1995) The measurement of oestrone- 3-glucuronide in urine by non-competitive idiometric assay. J. Steroid Biochem. Mol. Biol. 55; 107–114.Google Scholar
  38. Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in receiving river water. Environ. Sci. Technol. 34; 5059–5066.Google Scholar
  39. Barthelmes L, Davidson LA, Gaffney C, Gateley C (2005) Pregnancy and breast cancer. Brit. Med. 330; 1375–1378.Google Scholar
  40. Basheer C, Jayaraman A, Kee MK, Valiyaveettil S, Lee HK (2005) Polymer-coated hollow-fiber microextraction of estrogens in water samples with analysis by gas chromatography–mass spectrometry. J. Chromatogr. A. 1100; 137–143.Google Scholar
  41. Bay K, Andersson AM, Skakkebaek NE (2004) Estradiol levels in prepubertal boys and girls – analytical challenges. Int. J. Androl. 27; 266–273.Google Scholar
  42. Beck IC, Bruhn R, Gandrass J, Ruck W (2005) Liquid chromatography-tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. J. Chromatogr. A. 1090; 98–106.Google Scholar
  43. Beck IC, Bruhn R, Gandrass J (2006) Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere. 63; 1870–1878.Google Scholar
  44. Beck J, Totsche KU, Kögel-Knabner I (2008) A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography–mass spectrometry. Chemosphere. 71; 954–960.Google Scholar
  45. Beischer N, Brown J, Wein P, Sheedy M, Stereff M, Boras M (1995) The biochemistry and clinical application of urinary oestriol measurement during late pregnancy in the 1990’s. Aust. N Z J. Obstet. Gynaecol. 35; 151–159.Google Scholar
  46. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF (2007) Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res. 67; 812–817.Google Scholar
  47. Bentz AT, Schneider CM, Westerlind KC (2005) The relationship between physical activity and 2-hydroxyestrone, 16 a -hydroxyestrone, and the 2/16 ratio in premenopausal women. Cancer Causes Control. 16; 455–461.Google Scholar
  48. Berg D, Thaler F, Kuss E (1982) Concentrations of 2-hydroxyestrogens in human sera measured by a heterologous immunoassay with an 125I-labelled ligand. Acta. Endocrinol. 100; 154–160.Google Scholar
  49. Berg SJ, Wynne-Edwards KE (2001) Changes in testosterone, cortisol, and estradiol levels in men becoming fathers. Mayo Clin. Proc. 76; 582–592.Google Scholar
  50. Berstein LM, Tsyrlina EV, Kolesnik OS, Gamajunova VB, Adlercreutz H (2000) Catechol estrogens excretion in smoking and non-smoking postmenopausal women receiving estrogen replacement therapy. J. Steroid Biochem. Mol. Biol. 72; 143–147.Google Scholar
  51. Bhavnani BR, Sarda RR, Woolever CA (1981) Radioimmunoassay of plasma equilin and estrone in postmenopausal women after the administration of Premarin. J. Clin. Endocrinol. Metab. 52; 741–747.Google Scholar
  52. Bhavnani BR, Woolever CA, Wallace D, Pan CC (1989) Metabolism of [ 3H]equilin-[35S]sulfate and [ 3 H]equilin sulfate after oral and intravenous administration in normal postmenopausal women and men. J. Clin. Endocrinol. Metab. 68; 757–765.Google Scholar
  53. Biddle S, Teale P, Robinson A, Bowman J, Houghton E (2007) Gas chromatography–mass spectrometry/mass spectrometry analysis to determine natural and post-administration levels of oestrogens in bovine serum and urine. Anal. Chim. Acta. 586; 115–121.Google Scholar
  54. Blackwell LF, Brown JB, Vigil P, Gross B, Sufi S, d’Arcangues C (2003) Hormonal monitoring of ovarian activity using the Ovarian Monitor, Part I. Validation of home and laboratory results obtained during ovulatory cycles by comparison with radioimmunoassay. Steroids. 68; 465–476.Google Scholar
  55. Bolton AE, Rutherford FJ (1976) Evidence for the presence of 6-keto oestradiol-17 b in human plasma-implications for oestradiol-17 b radioimmunoassays. J. Steroid Biochem. 7; 71–72.Google Scholar
  56. Bolton JL, Thatcher GRJ (2008) Potential mechanisms of estrogen quinone carcinogenesis. Chem. Res. Toxicol. 21; 93–101.Google Scholar
  57. Bosch AMG, Dijkhuisen DM, Schuurs AHWM, van Weemen BK (1978) Enzyme immunoassay for total oestrogens in pregnancy plasma or serum. Clin. Chim. Acta. 89; 59–70.Google Scholar
  58. Bouve J, De Boever J, Leyseele D, Bosmans E, Dubois P, Kohen E, Vandekerckhove D (1992) Direct enzyme immunoassay of estradiol in serum of women enrolled in an in vitro fertilization and embryo transfer program. Clin. Chem. 38; 1409–1413.Google Scholar
  59. Bovee TF, Helsdingen RJ, Koks PD, Kuiper HA, Hoogenboom RL, Keijer J (2004) Development of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein. Gene. 325; 187–200.Google Scholar
  60. Bovee TF, Bor G, Heskamp HH, Hoogenboom RL, Nielen MW (2006) Validation and application of a robust yeast estrogen bioassay for the screening of estrogenic activity in animal feed. Food Addit. Contam. 23; 556–568.Google Scholar
  61. Boyd RA, Zegarac EA, Eldon MA (2003) The effect of food on the bioavailability of norethindrone and ethinyl estradiol from norethindrone acetate/ethinyl estradiol tablets intended for continuous hormone replacement therapy. J. Clin. Pharmacol. 43; 52–58.Google Scholar
  62. Bradlow HL, Sepkovic DW, Klug T, Osborne MP (1998) Application of an improved ELISA assay to the analysis of urinary estrogen metabolites. Steroids. 63; 406–413.Google Scholar
  63. Bradlow HL, Jernström H, Sepkovic DW, Klug TL, Narod SA (2006) Comparison of plasma and urinary levels of 2-hydroxyestrogen and 16 alpha-hydroxyestrogen metabolites. Mol. Genet. Metab. 87; 135–146.Google Scholar
  64. Bravo JC, Fernández P, Durand JS (2005) Flow injection fluorimetric determination of beta-estradiol using a molecularly imprinted polymer. Analyst. 130; 1404–1409.Google Scholar
  65. Brooks JD, Thompson LU (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17beta-hydroxysteroid dehydrogenase in MCF-7 cells. J. Steroid Biochem. Mol. Biol. 94; 461–467.Google Scholar
  66. Brooks JD, Ward WE, Lewis JE, Hilditch J, Nickell L, Wong E, Thompson LU (2004) Supplementation with flaxseed alters estrogen metabolism in postmenopausal women to a greater extent than does supplementation with an equal amount of soy. Am. J. Clin. Nutr. 79; 318–325.Google Scholar
  67. Brown JB (1955) A chemical method for the determination of oestriol, oestrone and oestradiol in human urine. Biochem. J. 60; 185–193.Google Scholar
  68. Canick JA, MacRae AR (2005) Second trimester serum markers. Semin. Perinatol. 29; 203–208.Google Scholar
  69. Cao K, Stack DE, Ramanathan R, Gross ML, Rogan EG, Cavalieri EL (1998) Synthesis and structure elucidation of estrogen quinones conjugated with cysteine, acetylcysteine, and glutathione. Chem. Res. Toxicol. 11; 909–916.Google Scholar
  70. Cao Z, Swift TA, West CA, Rosano TG, Rej R (2004) Immunoassay of estradiol: unanticipated suppression by unconjugated estriol. Clin. Chem. 50; 160–165.Google Scholar
  71. Cargouet M, Perdiz D, Mouatassim-Souali A, Tamisier-Karolak S, Levi Y (2004) Assessment of river contamination by estrogenic compounds in Paris area (France). Sci. Total Environ. 324; 55–66.Google Scholar
  72. Carpinteiro J, Quintana JB, Rodríguez I, Carro AM, Lorenzo RA, Cela R (2004) Applicability of solid-phase microextraction followed by on-fiber silylation for the determination of estrogens in water samples by gas chromatography–tandem mass spectrometry. J. Chromatogr. A. 1056; 179–185.Google Scholar
  73. Castagnetta LA, Granata OM, Arcuri FP, Polito LM, Rosati F, Cartoni GP (1992) Gas chromatography/mass spectrometry of catechol estrogens. Steroids. 57; 437–443.Google Scholar
  74. Castagnetta LA, Granata OM, Traina A, Ravazzolo B, Amoroso M, Miele M, Bellavia V, Agostara B, Carruba G (2002) Tissue content of hydroxyestrogens in relation to survival of breast cancer patients. Clin. Cancer Res. 8; 3146–3155.Google Scholar
  75. Cavalieri E, Rogan E (2006) Catechol quinones of estrogens in the initiation of breast, prostate, and other human cancers: keynote lecture. Ann. NY Acad. Sci. 1089; 286–301.Google Scholar
  76. Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R, Sutter T (2006) Catechol estrogen quinones as initiatorsof breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim. Biophys. Acta. 1766; 63–78.Google Scholar
  77. Cavalieri EL, Devanesan P, Bosland MC, Badawi AF, Rogan EG (2002) Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer. Carcinogenesis. 23; 329–333.Google Scholar
  78. Chan KC, Muschik GM, Issaq HJ, Siiteri PK (1995) Separation of estrogens by micellar electrokinetic chromatography. J. Chromatogr. A. 690; 149–154.Google Scholar
  79. Chandrasekaran A, Osman M, Scatina JA, Sisenwiw SF (1995) Metabolism of equilin sulfate in the dog. J. Steroid Biochem. Mol. Biol. 55; 271–278.Google Scholar
  80. Charles D, Ness AR, Campbell D, Davey Smith G, Hall MH (2004) Taking folate in pregnancy and risk of maternal breast cancer. BMJ. 329; 1375–1376.Google Scholar
  81. Chatterton RT Jr, Geiger AS, Gann PH, Khan SA (2003) Formation of estrone and estradiol from estrone sulfate by normal breast parenchymal tissue. J. Steroid Biochem. Mol. Biol. 86; 159–166.Google Scholar
  82. Chatterton RT Jr, Geiger AS, Khan SA, Helenowski IB, Jovanovic BD, Gann PH (2004) Variation in estradiol, estradiol precursors, and estrogen-related products in nipple aspirate fluid from normal premenopausal women. Cancer Epidemiol. Biomarkers Prev. 13; 928–935.Google Scholar
  83. Chatterton RT Jr, Mateo ET, Hou N, Rademaker AW, Acharya S, Jordan VC, Morrow M (2005) Characteristics of salivary profiles of oestradiol and progesterone in premenopausal women. J. Endocrinol. 186; 77–84.Google Scholar
  84. Chatterton RT Jr, Zujewski J, Mateo ET, Eng-Wong J, Jordan VC (2006) Effect of raloxifene on salivary sex steroid concentrations in premenopausal women. J. Endocrinol. 191; 599–604.Google Scholar
  85. Chattoraj SC, Fanous AS, Cecchini D, Lowe EW (1978) A radioimmunoassay method for urinary catechol estrogens. Steroids. 31; 375–391.Google Scholar
  86. Chen C, Malone KE, Prunty J, Daling JR (1996) Measurement of urinary estrogen metabolites using a monoclonal enzyme-linked immunoassay kit: assay performance and feasibility for epidemiological studies. Cancer Epidemiol. Biomarkers. Prev. 5; 727–732.Google Scholar
  87. Chen CY, Wen TY, Wang GS, Cheng HW, Lin YH, Lien GW (2007) Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Sci. Total Environ. 378; 352–365.Google Scholar
  88. Chen Y, Liu X, Pisha E, Constantinou AI, Hua Y, Shen L, van Breemen RB, Elguindi EC, Blond SY, Zhang F, Bolton JL (2000) A metabolite of equine estrogens, 4-hydroxyequilenin, induces DNA damage and apoptosis in breast cancer cell lines. Chem. Res. Toxicol. 13; 342–350.Google Scholar
  89. Cheng C, Tsai HR (2008) Analysis of steroids in yeast-mediated cell culture by on-line solid-phase extraction coupled high-performance liquid chromatography electrospray-ionization/mass spectrometry and novel continuous postcolumn infusion of internal standard technique. Anal. Chim. Acta. 623; 168–177.Google Scholar
  90. Cheskis BJ, Greger JG, Nagpal S, Freedman LP (2007) Signalling by estrogens. J. Cell Physiol. 213; 610–617.Google Scholar
  91. Cho SH, Jung BH, Lee WY, Chung BC (2006) Direct determination of estriol conjugates in amniotic fluid by capillary electrophoresis with electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20; 2995–2998.Google Scholar
  92. Choi MH, Kim KR, Chung BC (2000) Determination of estrone and 17 beta-estradiol in human hair by gas chromatography–mass spectrometry. Analyst. 125; 711–714.Google Scholar
  93. Chu MC, Zhang X, Gentzschein E, Stanczyk FZ, Lobo RA (2007) Formation of ethinyl estradiol in women during treatment with norethindrone acetate. J. Clin. Endocrinol. Metab. 92; 2205–2207.Google Scholar
  94. Clifton VL, Bisits A, Zarzycki PK (2007) Characterization of human fetal cord blood steroid profiles in relation to fetal sex and mode of delivery using temperature-dependent inclusion chromatography and principal component analysis (PCA). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 855; 249–254.Google Scholar
  95. Coccia ME, Rizzello F (2008) Ovarian reserve. Ann. NY Acad. Sci. 1127; 27–30.Google Scholar
  96. Coelingh Bennink HJ, Holinka CF, Diczfalusy E (2008) Estetrol review: profile and potential clinical applications. Climacteric. 11; 47–58.Google Scholar
  97. Coldham NG, Dave M, Sivapathasundaram S, McDonnell DP, Connor C, Sauer MJ (1997) Evaluation of a recombinant yeast cell estrogen screening assay. Environ. Health Perspect. 105; 734–742.Google Scholar
  98. Coll DA, Rosen CA, Auborn K, Potsic WP, Bradlow HL (1997) Treatment of recurrent respiratory papillomatosis with indole-3-carbinol. Am. J. Otolaryngol. 18; 283–285.Google Scholar
  99. Collier A, Wang J, Diamond D, Dempsey E (2005) Microchip micellar electrokinetic chromatography coupled with electrochemical detection for analysis of synthetic estrogen mimicking compounds. Anal. Chim. Acta. 550; 107–115.Google Scholar
  100. Collins WP, Collins PO, Kilpatrick MJ, Manning PA, Pike JM, Tyler MPP (1979) The concentrations of urinary oestrone-3-glucuronide, LH and pregnanediol-3 a-glucuronide as indices of ovarian function. Acta. Endocrinol. 90; 336–348.Google Scholar
  101. Cooke DG, Binnie JE, Blackwell LF (2007) Validation of a reference ELISA for estrone glucuronide using urine samples normalized by dilution to a constant rate of urine production. Steroids. 72; 580–591.Google Scholar
  102. Coucke W, Devleeschouwer N, Libeer JC, Schiettecatte J, Martin M, Smitz J (2007) Accuracy and reproducibility of automated estradiol-17beta and progesterone assays using native serum samples: results obtained in the Belgian external assessment scheme. Hum. Reprod. 22; 3204–3209.Google Scholar
  103. Courant F, Antignac JP, Maume D, Monteau F, Andre F, Le Bizec B (2007a) Determination of naturally occurring oestrogens and androgens in retail samples of milk and eggs. Food Addit. Contam. 24; 1358–1366.Google Scholar
  104. Courant F, Antignac J-P, Maume D, Monteau F, Andersson A-M, Skakkeback N, Andre F, Le Bizec B (2007b) Exposure assessment of prepubertal children to steroid endocrine disrupters 1. Analytical strategy for estrogens measurement in plasma at ultra-trace level. Anal. Chim. Acta. 586; 105–114.Google Scholar
  105. Courant F, Antignac JP, Laille J, Monteau F, Andre F, Le Bizec B (2008) Exposure assessment of prepubertal children to steroid endocrine disruptors. 2. Determination of steroid hormones in milk, egg, and meat samples. J. Agric. Food Chem. 56; 3176–3184.Google Scholar
  106. Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Res. 20; 358–417.Google Scholar
  107. Croley TR, Hughes RJ, Koenig BG, Metcalfe CD, March RE (2000) Mass spectrometry applied to the analysis of estrogens in the environment. Rapid Commun. Mass Spectrom. 14; 1087–1093.Google Scholar
  108. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 58; 773–781.Google Scholar
  109. Dancoine F, Couplet G, Buvat J, Guittard C, Marcolin G, Fourlinnie JC (1997) Analytical and clinical evaluation of the Immulite estradiol assay in serum from patients undergoing in vitro fertilization: estradiol increase in mature follicles. Clin. Chem. 43; 1165–1171.Google Scholar
  110. D’Ascenzo G, Di Corcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R (2003) Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci. Total Environ. 302; 199–209.Google Scholar
  111. Davis E, Loriaux DL (1975) A simple specific assay for estriol in maternal urine. J. Clin. Endocrinol. Metab. 40; 895–900.Google Scholar
  112. Dawling S, Roodi N, Mernaugh RL, Wang X, Parl FF (2001) Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res. 61; 6716–6722.Google Scholar
  113. Dawling S, Hachey DL, Roodi N, Parl FF (2004) In vitro model of mammary estrogen metabolism: structural and kinetic differences between catechol estrogens 2- and 4-hydroxyestradiol. Chem. Res. Toxicol. 17; 1258–1264.Google Scholar
  114. DeBoever J, Kohen F, Bouve J, Leyseele D, Vandekerckhove D (1990) Direct chemiluminescence immunoassay of estradiol in saliva. Clin. Chem. 36; 2036–2041.Google Scholar
  115. Dehennin L (1989a) Estradiol-17 beta determined in plasma by gas chromatography–mass spectrometry with selected ion monitoring of mixed silyl ether-perfluoroacyl ester derivatives and use of various stable-isotope-labeled internal standards. Clin. Chem. 35; 532–536.Google Scholar
  116. Dehennin L (1989b) Mixed silyl ether-perfluoroacyl ester derivatives for gas chromatography/ mass spectrometry of oestrogens. Application to the quantitative determination of oestriol in human plasma. Biomed. Environ. Mass Spectrom. 18; 314–320.Google Scholar
  117. Delmonte P, Rader JI (2006) Analysis of isoflavones in foods and dietary supplements. J. AOAC Int. 89; 1138–1146.Google Scholar
  118. Delvoux B, Husen B, Aldenhoss Y, Koole L, Dunselman G, Thole H, Groothuis P (2007) A sensitive HPLC method for the assessment of metabolic conversion of estrogens. J. Steroid Biochem. Mol.Biol. 1004; 246–251.Google Scholar
  119. Demers LM (2008) Testosterone and estradiol assays: current and future trends. Steroids. 73; 1333–1338. May 15, 2008 [Epub ahead of print].Google Scholar
  120. DeSilva KH, Vest FB, Karnes HT (1996) Pyrene sulphonyl chloride as a reagent for quantitation of oestrogens in human serum using HPLC with conventional and laser-induced fluorescence detection. Biomed. Chromatogr. 10; 318–324.Google Scholar
  121. Devanesan P, Santen RJ, Bocchinfuso WP, Korach KS, Rogan EG, Cavalieri E (2001) Catechol estrogen metabolites and conjugates in mammary tumors and hyperplastic tissue from estrogen receptor-alpha knock-out (ERKO)/Wnt-1 mice: implications for initiation of mammary tumors. Carcinogenesis. 22; 1573–1576.Google Scholar
  122. Díaz-Cruz MS, López de Alda MJ, López R, Barceló D (2003) Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). J. Mass. Spectrom. 38; 917–923.Google Scholar
  123. Dighe AS, Moy JM, Hayes FJ, Sluss PM (2005) High-resolution reference ranges for estradiol, luteinizing hormone, and follicle-stimulating hormone in men and women using the AxSYM assay system. Clin. Biochem. 38; 175–179.Google Scholar
  124. Ding WH, Chiang CC (2003) Derivatization procedures for the detection of estrogenic chemicals by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 17; 56–63.Google Scholar
  125. Di Pietro DL (1976) Assay of estriol-16alpha-(beta-D-glucuronide) in pregnancy urine with a specific antiserum. Am. J. Obstet. Gynecol. 125; 841–845.Google Scholar
  126. Diver MJ (1992) Monitoring of hormone replacement therapy. Lancet. 340; 1471.Google Scholar
  127. Doerr P (1976) Radioimmunoassay of oestrone in plasma. Acta. Endocrinol. 81; 655–667.Google Scholar
  128. Dong H, Tong AJ, Li LD (2003) Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 59; 279–284.Google Scholar
  129. Dorgan JF, Boudou P, Stanczyk FZ, Longcope C, Tejpar AA, Falk RT, Schussler N, Stephenson HE Jr (2001) Sources of elevated serum androgens in postmenopausal women who develop breast cancer. Cancer Epidemiol. Biomarkers Prev. 10; 407–410.Google Scholar
  130. Dorgan JF, Fears TR, McMahon RP, Aronson Friedman L, Patterson BH, Greenhut SF (2002) Measurement of steroid sex hormones in serum: a comparison of radioimmunoassay and mass spectrometry. Steroids. 67; 151–158.Google Scholar
  131. Dowsett M, Folkerd E (2005) Deficits in plasma oestradiol measurement in studies and management of breast cancer. Breast Cancer Res. 7; 1–4.Google Scholar
  132. Draisci R, Volpe G, Compagnone D, Purificato I, delli Quadri F, Palleschi G (2000) Development of an electrochemical ELISA for the screening of 17 beta-estradiol and application to bovine serum. Analyst. 125; 1419–1423.Google Scholar
  133. Durant AA, Fente CA, Franco CM, Vázquez BI, Mayo S, Cepeda A (2002a) Development of a diphasic dialysis method for the extraction/purification of residues of ethinylestradiol in hair of cattle, and determination by gas chromatography–tandem mass spectrometry. J. Chromatogr. B. 766; 251–256.Google Scholar
  134. Durant AA, Fente CA, Franco CM, Vázquez BI, Cepeda A (2002b) Gas chromatography–tandem mass spectrometry determination of 17alpha-ethinylestradiol residue in the hair of cattle. Application to treated animals. J. Agric. Food Chem. 50; 436–440.Google Scholar
  135. Dyas J, Turkes A, Read GF, Riad-Fahmy D (1981) A radioimmunoassay for ethinyl oestradiol in plasma incorporating an immunosorbent, pre-assay purification procedure. Ann. Clin. Biochem. 18; 37–41.Google Scholar
  136. Dykens JA, Moos WH, Howell N (2005) Development of 17alpha-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study. Ann. NY Acad. Sci. 1052; 116–135.Google Scholar
  137. Eliassen AH, Missmer SA, Tworoger SS, Spiegelman D, Barbieri RL, Dowsett M, Hankinson SE (2006a) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J. Natl. Cancer Inst. 98; 1406–1415.Google Scholar
  138. Eliassen AH, Missmer SA, Tworoger SS, Hankinson SE (2006b) Endogenous steroid hormone concentrations and risk of breast cancer: does the association vary by a woman’s predicted breast cancer risk? J. Clin. Oncol. 24; 1823–1830.Google Scholar
  139. Eliassen AH, Hankinson SE (2008) Endogenous hormone levels and risk of breast, endometrial and ovarian cancers: prospective studies. Adv. Exp. Med. Biol. 630; 148–165.Google Scholar
  140. Eliassen AH, Missmer SA, Tworoger SS, Hankinson SE (2008) Circulating 2-hydroxy- and 16alpha-hydroxy estrone levels and risk of breast cancer among postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 17; 2029–2035.Google Scholar
  141. Elmlinger MW, Kiihnel W, Ranke MB (2002) Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clin. Chem. Lab. Med. 40; 1151–1160.Google Scholar
  142. Embrechts J, Lemiere F, Van Dongen W, Esmans EL, Buytaert P, Van Marck E, Kockx M, Makar A (2003) Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 14; 482–491.Google Scholar
  143. Emons G, Ball P, Postel G, Knuppen R (1979) Radioimmunoassay for 2-methoxy-oestrone in human plasma. Acta. Endocrinol. 91; 158–166.Google Scholar
  144. Falk RT, Gail MH, Fears TR, Rossi SC, Stanczyk F, Adlercreutz H, Kiura P, Wahala K, Donaldson JL, Vaught JB, Fillmore CM, Hoover RN, Ziegler RG (1999) Reproducibility and validity of radioimmunoassays for urinary hormones and metabolites in pre- and postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 8; 567–577.Google Scholar
  145. Falk RT, Rossi SC, Fears TR, Sepkovic DW, Migella A, Adlercreutz H, Donaldson J, Bradlow HL, Ziegler RG (2000) A new ELISA kit for measuring urinary 2-hydroxyestrone, 16alpha-hydroxyestrone, and their ratio: reproducibility, validity, and assay performance after freeze-thaw cycling and preservation by boric acid. Cancer Epidemiol. Biomarkers Prev. 9; 81–87.Google Scholar
  146. Fan Y, Zhang M, Da SL, Feng YQ (2005) Determination of endocrine disruptors in environmental waters using poly(acrylamide-vinylpyridine) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography with fluorescence detection. Analyst. 130; 1065–1069.Google Scholar
  147. Farjam A, Brugman AE, Lingeman H, Brinkman UA (1991) On-line immunoaffinity sample pre-treatment for column liquid chromatography: evaluation of desorption techniques and operating conditions using an anti-estrogen immuno-precolumn as a model system. Analyst. 116; 891–896.Google Scholar
  148. Farré M, Brix R, Kuster M, Rubio F, Goda Y, López de Alda MJ, Barceló D (2006) Evaluation of commercial immunoassays for the detection of estrogens in water by comparison with high-performance liquid chromatography tandem mass spectrometry HPLC-MS/MS (QqQ). Anal. Bioanal. Chem. 385; 1001–1011.Google Scholar
  149. Farre M, Kuster M, Brix R, Rubio F, Lopez de Alda M-J, Barcelo D (2007) Comparative study of an estradiol enzyme-linked immunosorbant assay kit, liquid chromatography–tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water sample. J. Chromatogr. A. 1160; 166–175.Google Scholar
  150. Ferguson PL, Iden CR, McElroy AE, Brownawell BJ (2001) Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-electrospray-MS. Anal. Chem. 73; 3890–3895.Google Scholar
  151. Fernandez MP, Ikonomou MG, Buchanan I (2007) An assessment of estrogenic organic contaminants in Canadian wastewaters. Sci. Total Environ. 373; 250–269.Google Scholar
  152. Fernandez MP, Buchanan ID, Ikonomou MG (2008) Seasonal variability of the reduction in estrogenic activity at a municipal WWTP. Water Res. 42; 3075–3081.Google Scholar
  153. Fernández N, García JJ, Diez MJ, Terán MT, Sierra M (1993) Rapid high-performance liquid chromatographic assay of ethynyloestradiol in rabbit plasma. J. Chromatogr. 619; 143–147.Google Scholar
  154. Ferretti G, Ferranti C, Crovella T, Fiori M, Civitareale C, Marchiafava C, Quadri FD, Cammarata P, Palleschi L (2008) Simultaneous analysis of 17alpha-estradiol and 17beta-estradiol in bovine serum by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 871; 135–140.Google Scholar
  155. Fiet J, Gosling JP, Soliman H, Galons H, Boudou P, Aubin P, Belanger A, Villette JM, Julien R, Brérault JL, Burthier J-M, Morineau G, Al Halnak A, Vexiau P (1994) Hirsutism and acne in women: coordinated radioimmunoassays for eight relevant plasma steroids. Clin. Chem. 40; 2296–2305.Google Scholar
  156. Fine DD, Breidenbach GP, Price TL, Hutchins SR (2003) Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethyl silyl derivatizations and gas chromatography-negative ion chemical ionization tandem mass spectrometry. J. Chromatogr. A. 1017; 167–185.Google Scholar
  157. Fine T, Leskinen P, Isobe T, Shiraishi H, Morita M, Marks RS, Virta M (2006) Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens. Bioelectron. 21; 2263–2269.Google Scholar
  158. Fisher RA, Anderson DC, Burke CW (1974) Simultaneous measurement of unbound testosterone and estradiol fractions in undiluted plasma at 37°C by steady-state gel filtration. Steroids. 24; 809–824.Google Scholar
  159. Fishman J, Bradlow HL (1997) Effect of malnutrition on the metabolism of sex hormones in man. Clin. Pharmacol. Ther. 22 (Part 2); 721–728.Google Scholar
  160. Fishman J, Guzik H (1972) Radioimmunoassay of 15 a -hydroxyestriol in pregnancy plasma.J. Clin. Endocrinol. Metab. 35; 892–896.Google Scholar
  161. Fishman J, Bradlow HL, Gallagher TF (1960) Oxidative metabolism of estrogens. J. Biol. Chem. 235; 3104–3107.Google Scholar
  162. Fishman J, Hellman l, Zumoff B, Gallagher TF (1965) effect of thyroid on hydroxylation of estrogen in man. J. Clin. Endocrinol. Metab. 25; 365–368.Google Scholar
  163. Folan J, Gosling JP, Fottrell PF (1988) Solid-phase enzymoimmunoassay of estrone in serum. Clin. Chem. 34; 1843–1846.Google Scholar
  164. Folan J, Gosling JP, Finn MF, Fottrell PF (1989) Solid-phase enzymoimmunoassay of estrone in saliva. Clin. Chem. 35; 569–572.Google Scholar
  165. Folkerd EJ, Martin LA, Kendall A, Dowsett M (2006) The relationship between factors affecting endogenous oestradiol levels in postmenopausal women and breast cancer. J. Steroid Biochem. Mol. Biol. 102; 250–255.Google Scholar
  166. Fortunati N, Catalano MG (2006) Sex hormone-binding globulin (SHBG) and estradiol cross-talk in breast cancer cells. Horm. Metab. Res. 38; 236–240.Google Scholar
  167. Foster PA (2008) Steroid metabolism in breast cancer. Minerva Endocrinol. 33; 27–37.Google Scholar
  168. Fotsis T (1987) The multi-component analysis of estrogens in urine by ion exchange chromatography and GC-MS. II. Fractionation and quantitation of the main groups of estrogen conjugates. J. Steroid Biochem. 28; 215–222.Google Scholar
  169. Fotsis T, Adlercreutz H (1987) The multi-component analysis of estrogens in urine by ion exchange chromatography and GC-MS. 1. Quantitation of estrogens after initial hydrolysis of conjugates. J. Steroid Biochem. 28; 203–213.Google Scholar
  170. Fowke JH, Qi D, Bradlow HL, Shu XO, Gao YT, Cheng JR, Jin F, Zheng W (2003) Urinary estrogen metabolites and breast cancer: differential pattern of risk found with pre- versus post-treatment collection. Steroids. 68; 65–72.Google Scholar
  171. Franek M (1987) Structural aspects of steroid-antibody specificity. J. Steroid Biochem. 28; 95–108.Google Scholar
  172. Fujino H, Goya S (1992) 12-(difluoro-1,3,5-triazinyl)-benz[/]isoindolo[1,2-&][1,3]benzothiazolidine as a fluorescent labelling reagent for estrogens in high-performance liquid chromatography. Anal. Sci. 8; 715–717.Google Scholar
  173. Gaikwad NW, Yang L, Muti P, Meza JL, Pruthi S, Ingle JN, Rogan EG, Cavalieri EL (2008) The molecular etiology of breast cancer: evidence from biomarkers of risk. Int. J. Cancer. 122; 1949–1957.Google Scholar
  174. Galani A, Sofocleous C, Karahaliou F, Papathanasiou A, Kitsiou-Tzeli S, Kalpini-Mavrou A (2008) Sex-reversed phenotype in association with two novel mutations c.2494delA and c. T3004C in the ligand-binding domain of the androgen receptor gene. Fertil. Steril. 90; e1–e4.Google Scholar
  175. Gallenberg MM, Loprinzi CL (1989) Breast cancer and pregnancy. Semin. Oncol. 16; 369–376.Google Scholar
  176. Gandara BK, Leresche L, Mancl L (2007) Patterns of salivary estradiol and progesterone across the menstrual cycle. Ann. NY Acad. Sci. 1098; 446–450.Google Scholar
  177. Gann PH, Giovanazzi S, Van Horn L, Branning A, Chatterton RT Jr (2001) Saliva as a medium for investigating intra- and interindividual differences in sex hormone levels in premenopausal women. Cancer Epidemiol. Biomarkers Prev. 10; 59–64.Google Scholar
  178. Gann PH, Geiger AS, Helenowski IB, Vonesh EF, Chatterton RT (2006) Estrogen and progesterone levels in nipple aspirate fluid of healthy premenopausal women: relationship to steroid precursors and response proteins. Cancer Epidemiol. Biomarkers Prev. 15; 39–44.Google Scholar
  179. García-Prieto A, Lunar L, Rubio S, Pérez-Bendito D (2006) Hemimicelle-based solid-phase extraction of estrogens from environmental water samples. Analyst. 131; 407–414.Google Scholar
  180. Gaskell SJ, Brownsey BG (1983) Immunoadsorption to improve gas chromatography/high-resolution mass spectrometry of estradiol-17 beta in plasma. Clin. Chem. 29; 677–680.Google Scholar
  181. Gaskell SJ, Finlay EM, Pike AW (1980) Analyses of steroids in saliva using highly selective mass spectrometric techniques. Biomed. Mass. Spectrom. 7; 500–504.Google Scholar
  182. Geisler J, Berntsen H, Lønning PE (2000) A novel HPLC-RIA method for the simultaneous detection of estrone, estradiol and estrone sulphate levels in breast cancer tissue. J. Steroid Biochem. Mol. Biol. 72; 259–264.Google Scholar
  183. Geisler J, Ekse D, Helle H, Duong NK, Lønning PE (2008) An optimised, highly sensitive radio-immunoassay for the simultaneous measurement of estrone, estradiol and estrone sulfate in the ultra-low range in human plasma samples. J. Steroid Biochem. Mol. Biol. 109; 90–95.Google Scholar
  184. Gentili A, Perret D, Marchese S, Mastropasqua R, Curini R, Di Corcia A (2002) Analysis of free estrogens and their conjugates in sewage and river waters by solid-phase extraction then liquid chromatography–electrospray–tandem mass spectrometry. Chromatographia. 56; 25–32.Google Scholar
  185. Ghoneim EM, El-Desoky HS, Ghoneim MM (2006) Adsorptive cathodic stripping voltammetric assay of the estrogen drug ethinylestradiol in pharmaceutical formulation and human plasma at a mercury electrode. J. Pharm. Biomed. Anal. 40; 255–261.Google Scholar
  186. Ghosh SK (1988) Production of monoclonal antibodies to estriol and their application in the development of a sensitive non-isotopic immunoassay. Steroids. 52; 1–14.Google Scholar
  187. Giebenhain ME, Tagatz GE, Gurpide E (1972) Serum levels of unconjugated estetrol-(1,3,5(10)-estratrien 1,15,16,17-tetrol) during human pregnancy. J. Steroid Biochem. 3; 707–714.Google Scholar
  188. Giese RW (2003) Measurement of endogenous estrogens: analytical challenges and recent advances. J. Chromatogr. A. 1000; 401–412.Google Scholar
  189. Gilliland FD, Li YF, Baumgartner K, Crumley D, Samet JM (2001) Physical activity and breast cancer risk in hispanic and non-hispanic white women. Am. J. Epidemiol. 154; 442–450.Google Scholar
  190. Giton F, Valleix A, Boudou P, Villette JM, Bélanger A, Galons H, Fiet J (2002) Specific radioimmunoassay of estrone sulfate. Application to measurement in male plasma. J. Steroid Biochem. Mol Biol. 81; 85–94.Google Scholar
  191. Giton F, de la Taille A, Allory Y, Galons H, Vacherot F, Soyeux P, Abbou CC, Loric S, Cussenot O, Raynaud JP, Fiet J (2008) Estrone sulfate (E(1)S), a prognosis marker for tumor aggressiveness in prostate cancer (PCa). J. Steroid Biochem. Mol. Biol. 109; 158–167.Google Scholar
  192. Glass IA, Lam RC, Chang T, Roitman E, Shapiro LJ, Shackleton CH (1998) Steroid sulphatase deficiency is the major cause of extremely low oestriol production at mid-pregnancy: a urinary steroid assay for the discrimination of steroid sulphatase deficiency from other causes. Prenat. Diagn. 18; 789–800.Google Scholar
  193. Glass TR, Saiki H, Joh T, Taemi Y, Ohmura N, Lackie SJ (2004) Evaluation of a compact bench top immunoassay analyzer for automatic and near continuous monitoring of a sample for environmental contaminants. Biosens. Bioelectron. 20; 397–403.Google Scholar
  194. Glencross RG, Abeywardene SA, Corney SJ, Morris HS (1981) The use of oestradiol-17 beta antiserum covalently coupled to Sepharose to extract oestradiol-17 beta from biological fluids. J. Chromatogr. 223; 193–197.Google Scholar
  195. Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HA (2004) Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J. Clin. Endocrinol. Metab. 89; 3261–3269.Google Scholar
  196. Goebelsmann U, Thorneycroft IH, Nakamura RM, Mishell DR (1972) Estriol in pregnancy 1. A radioimmunoassay for urinary estriol. Am. J. Obstet. Gynecol. 112; 802–806.Google Scholar
  197. Gosling JP (1990) A decade of development in immunoassay methodology. Clin. Chem. 36; 1408–1427.Google Scholar
  198. Gottfried-Blackmore A, Croft G, Clark J, McEwen BS, Jellinck PH, Bulloch K (2007) Characterization of a cerebellar granule progenitor cell line, EtC.1, and its responsiveness to 17-beta-estradiol. Brain Res. 1186; 29–40.Google Scholar
  199. Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K (2008) Brain microglia express steroid-converting enzymes in the mouse. J. Steroid Biochem. Mol. Biol. 109; 96–107.Google Scholar
  200. Grace PB, Taylor JI, Botting NP, Fryatt T, Oldfield MF, Al-Maharik N, Bingham SA (2003) Quantification of isoflavones and lignans in serum using isotope dilution liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17; 1350–1357.Google Scholar
  201. Groschl M (2008) Current status of salivary hormone analysis. Clin. Chem. 54; 1759–1769. August 2008 [Epub].Google Scholar
  202. Gruber CJ, Gruber DM, Gruber IM, Wieser F, Huber JC (2004) Anatomy of the estrogen response element. Trends Endocrinol. Metab. 15; 73–78.Google Scholar
  203. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N. Engl. J. Med. 346; 340–352.Google Scholar
  204. Guillemette C, Bélanger A, Lépine J (2004) Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview. Breast Cancer Res. 6; 246–254.Google Scholar
  205. Guo T, Gu J, Soldin OP, Singh RJ, Soldin SJ (2008) Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography–tandem mass spectrometry without derivatization. Clin. Biochem. 41; 736–741.Google Scholar
  206. Habauzit D, Chopineau J, Roig B (2007) SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal. Bioanal. Chem. 387; 1215–1223.Google Scholar
  207. Habauzit D, Armengaud J, Roig B, Chopineau J (2008) Determination of estrogen presence in water by SPR using estrogen receptor dimerization. Anal. Bioanal. Chem. 390; 873–883.Google Scholar
  208. Hachey DL, Dawling S, Roody N, Parl FF (2003) Sequential action of Phase I and II enzymes Cytochrome P450 1B1 and glutathione S-transferase P1 in mammary estrogen metabolism. Cancer Res. 63; 8492–8499.Google Scholar
  209. Hahn EF, Fishman J (1985) Stereochemistry of 1,2-hydrogen loss during aromatization in the brain. J. Steroid Biochem. Mol. Biol. 22; 597–600.Google Scholar
  210. Hahn EF, Miyairi S, Fishman J (1985) 19-Hydroxylation of androgens in the rat brain. Proc. Natl. Acad. Sci. USA. 82; 2728–2730.Google Scholar
  211. Hájková K, Pulkrabová J, Schtirek J, Hajslová J, Poustka J, Nápravníková M, Kocourek V (2007) Novel approaches to the analysis of steroid estrogens in river sediments. Anal. Bioanal. Chem. 387; 1351–1363.Google Scholar
  212. Hämäläinen E (1982) A micromethod for the simultaneous determination of clinically important androgens and oestrogens in plasma. Scand. J. Clin. Lab. Invest. 42; 493–498.Google Scholar
  213. Hammarsten J, Damber JE, Karlsson M, Knutson T, Ljunggren O, Ohlsson C, Peeker R, Smith U, Mellström D (2009) Insulin and free oestradiol are independent risk factors for benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 12; 160–165.Google Scholar
  214. Hammond GL, Nisker JA, Jones LA, Siiteri PK (1980) Estimation of the percentage of free steroid in undiluted serum by centrifugal ultrafiltration dialysis. J. Biol. Chem. 255; 5023–5026.Google Scholar
  215. Han GZ, Liu ZJ, Shimoi K, Zhu BT (2005) Synergism between the anticancer actions of 2-meth-oxyestradiol and microtubule-disrupting agents in human breast cancer. Cancer Res. 65; 387–393.Google Scholar
  216. Haning RV, Satin KV, Lynskey MT, Levin RM, Speroff L (1977) A direct radioimmunoassay for estriol-16-glucuronide in urine for monitoring pregnancy and the induction of ovulation. Am. J. Obstet. Gynecol. 128; 793–801.Google Scholar
  217. Hankinson SE, Eliassen AH (2007) Endogenous estrogen, testosterone and progesterone levels in relation to breast cancer risk. J. Steroid Biochem. Mol. Biol. 106; 24–30.Google Scholar
  218. Hankinson SE, Willett WC, Manson JE, Colditz GA, Hunter DJ, Spiegelman D, Barbieri RL, Speizer FE (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst. 90; 1292–1299.Google Scholar
  219. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF (2000) Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res. 60; 3440–3444.Google Scholar
  220. Hanselman TA, Graetz DA, Wilkie AC (2004) Comparison of three enzyme immunoassays for measuring 17beta-estradiol in flushed dairy manure wastewater. J. Environ. Qual. 33; 1919–1923.Google Scholar
  221. Hanselman TA, Graetz DA, Wilkie AC, Szabo NJ, Diaz CS (2006) Determination of steroidal estrogens in flushed dairy manure wastewater by gas chromatography–mass spectrometry. J. Environ. Qual. 35; 695–700.Google Scholar
  222. Hanstein B, Djahansouzi S, Dall P, Beckmann MW, Bender HG (2004) Insights into the molecular biology of the estrogen receptor definfe novel therapeutic targets for breast cancer. Eur. J. Endocr. 150; 243–255.Google Scholar
  223. Hauser B, Deschner T, Boesch C (2008) Development of a liquid chromatography–tandem mass spectrometry method for the determination of 23 endogenous steroids in small quantities of primate urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 862; 100–112.Google Scholar
  224. Hayashi N, Hayata K, Sekiba K (1985) Rapid and simultaneous measurement of estrone, estradiol, estriol and estetrol in serum by high performance liquid chromatography with electrochemical detection. Acta Med. Okayama. 39; 143–153.Google Scholar
  225. Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. USA. 93; 9776–9781.Google Scholar
  226. Hedriana HL, Munro CJ, Eby-Wilkens EM, Lasley BL (2001) Changes in rates of salivary estriol increases before parturition at term. Am. J. Obstet. Gynecol. 184; 123–130.Google Scholar
  227. Heine RP, McGregor JA, Dullien VK (1999) Accuracy of salivary estriol testing compared to traditional risk factor assessment in predicting preterm birth. Am. J. Obstet. Gynecol. 180; S214–S218.Google Scholar
  228. Heine RP, McGregor JA, Goodwin TM, Artal R, Hayashi RH, Robertson PA, Varner MW (2000) Serial salivary estriol to detect an increased risk of preterm birth. Obstet. Gynecol. 96; 490–497.Google Scholar
  229. Heisterkamp I, Gandrass J, Ruck W (2004) Bioassay-directed chemical analysis utilizing LC-MS: a tool for identifying estrogenic compounds in water samples? Anal. Bioanal. Chem. 378; 709–715.Google Scholar
  230. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol. Rev. 87; 905–931.Google Scholar
  231. Hendershott CM, Dullien V, Goodwin TM (1999) Serial betamethasone administration: effect on maternal salivary estriol levels. Am. J. Obstet. Gynecol. Jan 180; S219–S222.Google Scholar
  232. Henderson K, Stewart J (2000) A dipstick immunoassay to rapidly measure serum oestrone sulfate concentrations in horses. Reprod. Fertil. Dev. 12; 183–189.Google Scholar
  233. Henderson K, Stewart J (2002) Factors influencing the measurement of oestrone sulphate by dipstick particle capture immunoassay. J. Immunol. Methods. 270; 77–84.Google Scholar
  234. Hernando MD, Mezcua M, Gómez MJ, Malato O, Agüera A, Fernández-Alba AR (2004) Comparative study of analytical methods involving gas chromatography–mass spectrometry after derivatization and gas chromatography–tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. J. Chromatogr. A. 1047; 129–135.Google Scholar
  235. Herold CI, Blackwell KL (2008) Aromatase inhibitors for breast cancer: proven efficacy across the spectrum of disease. Clin. Breast Cancer. 8; 50–64.Google Scholar
  236. Herold DA, Fitzgerald RL (2003) Immunoassays for testosterone in women: better than a guess? Clin. Chem. 49; 1250–1251.Google Scholar
  237. Hershcopf RJ, Bradlow HL, Fishman J, Swaneck GE, Larner JM, Hochberg RB (1985) Metabolism of estradiol fatty acid esters in man. J. Clin. Endocrinol. Metab. 61; 1071–1075.Google Scholar
  238. Higashi T, Shimada K (2004) Derivatization of neutral steroids to enhance their detection characteristics in liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 378; 875–882.Google Scholar
  239. Higashi T, Takayama N, Nishio T, Taniguchi E, Shimada K (2006) Procedure for increasing the detection responses of estrogens in LC-MS based on introduction of a nitrobenzene moiety followed by electron capture atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 386; 658–665.Google Scholar
  240. Higashi T, Nishio T, Hayashi N, Shimada K (2007) Alternative procedure for charged derivatization to enhance detection responses of steroids in electrospray ionization-MS. Chem. Pharm. Bull. (Tokyo). 55; 662–665.Google Scholar
  241. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 55; 224–236.Google Scholar
  242. Hill RA, Kirk DN, Makin HLJ, Murphy GM (eds) (1991) In Dictionary of Steroids. Chapman & Hall, London.Google Scholar
  243. Hinteman T, Schneider C, Schöler HF, Schneider RJ (2006) Field study using two immunoassays for the determination of estradiol and ethinylestradiol in the aquatic environment. Water Res. 40; 2287–2294.Google Scholar
  244. Ho GH, Luo XW, Cy JL, Foo SC, Ng EH (1998) Urinary 2/16 a -hydroxyestrone ratio: correlation with serum insulin-like growth factor binding protein-3 and a potential biomarker of breast cancer risk. Ann. Acad. Med. Singapore. 27; 294–299.Google Scholar
  245. Ho SM, Tang WL, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 Variant. Cancer Res. 66; 5624–5632.Google Scholar
  246. Hobe G, Schon R, Goncharov N, Katsiya G, Koryakin M, Gesson-Cholet I, Oettel M, Zimmermann H (2002) Some new aspects of 17alpha-estradiol metabolism in man. Steroids. 67; 883–893.Google Scholar
  247. Hobkirk R, Nilsen M, Blahey PR (1969) Conjugation of urinary phenolic steroids in the non-pregnant human female with particular reference to estrone sulfate. J. Clin. Endocrinol. Metab. 29; 328–337.Google Scholar
  248. Höckerstedt A, Tikkanen MJ, Jauhiainen M (2002) LCAT facilitates transacylation of 17 beta-estradiol in the presence of HDL3 subfraction. J. Lipid Res. 43; 392–397.Google Scholar
  249. Holinka CF, Diczfalusy E, Coelingh Bennink HJ (2008) Estetrol: a unique steroid in human pregnancy. J. Steroid Biochem. Mol. Biol. 110; 138–143.Google Scholar
  250. Hong Y, Yu B, Sherman M, Yuan Y-C, Zhou D, Chen S (2007) Molecular basis for the aromatization reaction and exemestane-mediated irreversible inhibition of human aromatase. Mol. Endocr. 21; 401–414.Google Scholar
  251. Houtman CJ, Leonards PE, Kapiteijn W, Bakker JF, Brouwer A, Lamoree MH, Legler J, Klamer HJ (2007) Sample preparation method for the ER-CALUX bioassay screening of (xeno-)estrogenic activity in sediment extracts. Sci. Total Environ. 386; 134–144.Google Scholar
  252. Hsing AW, Stanczyk FZ, Bélanger A, Schroeder P, Chang L, Falk RT, Fears TR (2007) Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol. Biomarkers Prev. 16; 1004–1008.Google Scholar
  253. Hsu JF, Chang YC, Chen TH, Lin LC, Liao PC (2007) Evaluation of electrospray ionization and atmospheric pressure chemical ionization for simultaneous detection of estrone and its metabolites using high-performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 860; 49–56.Google Scholar
  254. Hu J, Zhang H, Chang H (2005) Improved method for analyzing estrogens in water by liquid chromatography–electrospray mass spectrometry. J. Chromatogr. A. 1070; 221–224.Google Scholar
  255. Hu R, Zhang L, Yang Z (2008) Picogram determination of estrogens in water using large volume injection gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 390; 349–359.Google Scholar
  256. Hu Y, Zheng Y, Zhu F, Li G (2007) Sol-gel coated polydimethylsiloxane/beta-cyclodextrin as novel stationary phase for stir bar sorptive extraction and its application to analysis of estrogens and bisphenol A. J. Chromatogr. A. 1148; 16–22.Google Scholar
  257. Huang CH, Sedlak DL (2001) Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ. Toxicol. Chem. 20; 133–139.Google Scholar
  258. Hutchins SR, White MV, Hudson FM, Fine DD (2007) Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environ. Sci. Technol. 41; 738–744. Erratum in: Environ Sci Technol. 41; 7192.Google Scholar
  259. Ingrand V, Herry G, Beausse J, de Roubin MR (2003) Analysis of steroid hormones in effluents of wastewater treatment plants by liquid chromatography–tandem mass spectrometry.J. Chromatogr. 1020; 99–104.Google Scholar
  260. International Agency for Research on Cancer (World Health Organisation) have listed as carcinogenic agents steroidal estrogens (Monographs Vol 42, Suppl 7, 1987) and post-menopausal estrogen treatment (Monographs, Vol 72, 1999), http://monographs.iarc.fr
  261. Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 984; 195–202.Google Scholar
  262. Ito K, Oda M, Tsuji A, Maeda M (1999) Simultaneous determination of alpha-fetoprotein, human chorionic gonadotropin and estriol in serum of pregnant women by time-resolved fluoroimmunoassay. J. Pharm. Biomed. Anal. 20; 169–178.Google Scholar
  263. Iwata T, Hirose T, Yamaguchi M (1997) Direct determination of estriol 3- and 16-glucuronides in pregnancy urine by column-switching high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 695; 201–207.Google Scholar
  264. Janocko L, Hochberg RB (1983) Estradiol fatty acid esters occur naturally in human blood. Science. 222; 1334–1336.Google Scholar
  265. Jasieńska G, Ziomkiewicz A, Ellison PT, Lipson SF, Thune I (2004) Large breasts and narrow waists indicate high reproductive potential in women. Proc. R. Soc. Biol. Sci. 271; 1213–1217.Google Scholar
  266. Jayatilaka A, Poole CF (1993) Computer assisted optimization of the gas chromatographic separation of equine estrogens. J. Chromatogr. 617; 19–27.Google Scholar
  267. Jellinck PH, Bradlow HL (1990) Peroxidase-catalyzed displacement of tritium from regiospecifically labeled estradiol and 2-hydroxyestradiol. J. Steroid Biochem. 35; 705–710.Google Scholar
  268. Jellinck PH, Fishman J (1984) Charcoal-catalyzed transfer of tritium into 3H2 O from regiospecifically-labeled 2-hydroxyestradiol in the presence of thiols. Steroids. 43; 559–569.Google Scholar
  269. Jellinck PH, Fishman J (1988) P-450-catalyzed oxidations. Biochemistry. 27; 6111–6116.Google Scholar
  270. Jellinck PH, Hahn EF, Norton BI, Fishman J (1984a) Catechol estrogen formation and metabolism in brain tissue: comparison of tritium release from different positions in ring A of the steroid. Endocrinology. 115; 1850–1856.Google Scholar
  271. Jellinck PH, Norton B, Fishman J (1984b) Regiospecific transfer of tritium into 3H2O from labeled estrogens by mushroom tyrosinase. J. Steroid Biochem. 21; 361–365.Google Scholar
  272. Jellinck PH, Lee SJ, McEwen BS (2001) Metabolism of dehydroepiandrosterone by rat hippocampal cells in culture: possible role of aromatization and 7-hydroxylation in neuroprotection. J. Steroid Biochem. Mol. Biol. 78; 313–317.Google Scholar
  273. Jellinck PH, Croft G, McEwen BS, Gottfried-Blackmore A, Jones G, Byford V, Bulloch K (2005) Metabolism of dehydroepiandrosterone by rodent brain cell lines: relationship between 7-hydroxylation and aromatization. J. Steroid Biochem. Mol. Biol. 93; 81–86.Google Scholar
  274. Jezela-Stanek A, Małunowicz EM, Ciara E, Popowska E, Goryluk-Kozakiewicz B, Spodar K, Czerwiecka M, Jezuita J, Nowaczyk MJ, Krajewska-Walasek M (2006) Maternal urinary steroid profiles in prenatal diagnosis of Smith-Lemli-Opitz syndrome: first patient series comparing biochemical and molecular studies. Clin. Genet. 69; 77–85.Google Scholar
  275. Ji AJ, Nunez MF, Machacek D, Ferguson JE, Iossi MF, Kao PC, Landers JP (1995) Separation of urinary estrogens by micellar electrokinetic chromatography. J. Chromatogr. B Biomed. Appl. 669; 15–26.Google Scholar
  276. Jin L, Qi M, Chen D-Z, Anderson A, Yang G-Y, Arbeit JM, Auborn KJ (1999) Indole-3-carbinol prevents cervical cancer in Human Papilloma Virus Type 16 (HPV16) transgenic mice. Cancer Res. 59; 3991–3997.Google Scholar
  277. Jin S, Yang F, Liao T, Hui Y, Xu Y (2008) Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. Environ. Toxicol. Chem. 27; 146–153.Google Scholar
  278. Johnson AC, Williams RJ, Matthiessen P (2006) The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study. Sci. Total Environ. 362; 166–178.Google Scholar
  279. Jones AM, Honour JW (2006) Unusual results from immunoassays and the role of the clinical endocrinologist. Clin. Endocrinol. (Oxf). 64; 234–244.Google Scholar
  280. Jones ME, Folkerd EJ, Doody DA, Iqbal J, Dowsett M, Ashworth A, Swerdlow AJ (2007) Effect of delays in processing blood samples on measured endogenous plasma sex hormone levels in women. Cancer Epidemiol. Biomarkers Prev. 16; 1136–1139.Google Scholar
  281. Jost J-P, Seldran M, Geiser M (1984) Preferential binding of estrogen-receptor complex to a region containing the estrogen-dependent hypomethylation site preceding the chicken vitello-genin II gene. Proc. Natl. Acad. Sci. USA. 81; 429–433.Google Scholar
  282. Jouanin I, Debrauwer L, Fauglas G, Paris A, Rathahao E (2002) Adduction of catechol estrogens to nucleosides. Steroids. 67; 1091–1099.Google Scholar
  283. Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, Biessy C, Secreto G, Amiano P, Bingham S, Boeing H, Bueno de Mesquita HB, Chang-Claude J, Clavel-Chapelon F, Fournier A, van Gils CH, Gonzalez CA, Gurrea AB, Critselis E, Khaw KT, Krogh V, Lahmann PH, Nagel G, Olsen A, Onland-Moret NC, Overvad K, Palli D, Panico S, Peeters P, Quirós JR, Roddam A, Thiebaut A, Tjønneland A, Chirlaque MD, Trichopoulou A, Trichopoulos D, Tumino R, Vineis P, Norat T, Ferrari P, Slimani N, Riboli E (2005) Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J. Natl. Cancer Inst. 97; 755–765.Google Scholar
  284. Kabat GC, Chang CJ, Sparano JA, Sepkovic DW, Hu XP, Khalil A, Rosenblatt R, Bradlow HL (1997) Urinary estrogen metabolites and breast cancer: a case-control study. Cancer Epidemiol. Biomarkers Prev. 6; 500–504.Google Scholar
  285. Kabat GC, O’Leary ES, Gammon MD, Sepkovic DW, Teitelbaum S, Neugut AI,Santella RP, Bradlow HL (2006) Estrogen metabolism and breast cancer. Epidemiology. 17; 80–88.Google Scholar
  286. Kairemo KJ, Kahn JA, Taipale PJ (1999) Monoclonal gammopathy may disturb oestradiol measurement in the treatment and monitoring of in-vitro fertilization: case report. Hum. Reprod. 14; 2724–2726.Google Scholar
  287. Kallen CB (2004) Steroid hormone synthesis in pregnancy. Obstet. Gynecol. Clin. North Am. 31; 795–816.Google Scholar
  288. Kalyanaraman B, Felix CC, Sealy RC (1985) Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes. Environ. Health Perspect. 64; 185–198.Google Scholar
  289. Katayama M, Taniguchi H (1993) Determination of estrogens in plasma by high performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5,6-dimethyl­benzimi-dazole. J. Chromatogr. 616; 317–322.Google Scholar
  290. Katayama M, Matsuda Y, Shimokawa K, Kaneko S (2003) Simultaneous determination of 16 estrogens, dehydroepiandrosterone and their glucuronide and sulfate conjugates in serum using sodium cholate micelle capillary electrophoresis. Biomed. Chromatogr. 17; 263–267.Google Scholar
  291. Katayama M, Takamatsu K, Kaneko S, Miyaji K, Ishikawa H, Matsuda Y (2007) HPLC for stress-free screening of potential prostate cancer marker catechol estrogens in urine using a diamond-electrode electrochemical and a fluorescence detector. J. Sep. Sci. 30; 2279–2285.Google Scholar
  292. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Inoue K, Saito K, Nakazawa H (2004) Stir bar sorptive extraction with in situ derivatization and thermal desorption–gas chromatography–mass spectrometry in the multi-shot mode for determination of estrogens in river water samples. J. Chromatogr. A. 1049; 1–8.Google Scholar
  293. Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Izumi T, Makino H, Nakazawa H (2005) Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography—mass spectrometry for measurement of phenolic xenoestrogens in human urine samples. J. Chromatogr. B. 820; 49–57.Google Scholar
  294. Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006) Dual derivatization-stir bar sorptive extraction–thermal desorption—gas chromatography–mass spectrometry for determination of 17beta-estradiol in water sample. J. Chromatogr. A. 1105; 140–147.Google Scholar
  295. Kellie AE, Samuel VK, Riley WJ, Robertson DM (1972) Steroid glucuroniside-BSA complexes as antigens. The radioimmunoassay of steroid conjugates. J. Steroid Biochem. 3; 275–288.Google Scholar
  296. Kelly C (2000) Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography–mass spectrometry and gas chromatography–tandem mass spectrometry. J. Chromatogr. A. 872; 309–314.Google Scholar
  297. Kendall A, Dowsett M (2006) Novel concepts for the chemoprevention of breast cancer through aromatase inhibition. Endocr. Relat. Cancer. 13; 827–837.Google Scholar
  298. Kerr EJ, Park BK, Dean PDG (1977) A specific direct radioimmunoassay for oestriol-16 a-glucuronide in pregnancy plasma. Clin. Chim. Acta. 77; 77–82.Google Scholar
  299. Key TJ, Moore JW (1988) Interference of sex-hormone binding globulin in a no-extraction double-antibody radioimmunoassay for estradiol. Clin. Chem. 34; 1357–1358.Google Scholar
  300. Kim JB, Barnard GJ, Collins WP, Kohen F, Lindner HR, Eshhar Z (1982) Measurement of plasma estradiol-17 beta by solid-phase chemiluminescence immunoassay. Clin. Chem. 28; 1120–1124.Google Scholar
  301. Kitagawa F, Otsuka K (2008) Micellar electrokinetic chromatography on microchips. J. Sep. Sci. 31; 794–802.Google Scholar
  302. Kiuru PS, Wähälä K (2006) Microwave-assisted synthesis of deuterium labeled estrogen fatty acid esters. Steroids. 71; 54–60.Google Scholar
  303. Klein KO, Baron J, Collin MJ, McDonnell DP, Cutler JB (1994) Estrogen levels in childhood determined by an ultrasensitive recombinant cell bioassay. J. Clin. Invest. 94; 2475–2489.Google Scholar
  304. Klein KO, Demers, LM, Santner SJ, Baron J, Cutler GB, Santen RJ (1995) Use of ultrasensitive recombinant cell bioassay to measure estrogen levels in women with breast cancer receiving the aromatase inhibitor, letrozole. J. Clin. Endocrinol. Metab. 80; 2658–2660.Google Scholar
  305. Kley HK, Bartmann E, Kruskemper HL (1977) A simple and rapid method to measure non-protein bound fractions of cortisol, testosterone and oestradiol by equilibrium dialysis: comparison with centrifugal filtration. Acta Endocrinol. 85; 209–219.Google Scholar
  306. Klug TL, Bradlow HL, Sepkovic DW (1994) Monoclonal antibody-based enzyme immunoassay for simultaneous quantitation of 2- and 16 a -hydroxyestrone in urine. Steroids. 5; 648–654.Google Scholar
  307. Knust U, Strowitzki T, Spiegelhalder B, Bartsch H, Owen RW (2007) Optimization of an isotope dilution gas chromatography/mass spectrometry method for the detection of endogenous estrogen metabolites in urine samples. Rapid Commun. Mass Spectrom. 21; 2245–2254.Google Scholar
  308. Koehler KF, Helguero LA, Haldosén LA, Warner M, Gustafsson JA (2005) Reflections on the discovery and significance of estrogen receptor beta. Endocr. Rev. 26; 465–478.Google Scholar
  309. Koenn ME, Ndah BV (2003) Method comparison studies for prostate specific antigen and uncon-jugated estriol immunoassays. Clin. Lab. Sci. 16; 94–98.Google Scholar
  310. Koh YK, Chiu TY, Boobis A, Cartmell E, Lester JN, Scrimshaw MD (2007) Determination of steroid estrogens in wastewater by high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 1173; 81–87.Google Scholar
  311. Kohen F, Lindner HR, Gilad S (1983) Development of chemiluminescence monitored immunoassays for steroid hormones. J. Steroid Biochem. 19; 413–418.Google Scholar
  312. Kokko L, Kokko T, Lövgren T, Soukka T (2008) Particulate and soluble Eu(III)-chelates as donor labels in homogeneous fluorescence resonance energy transfer based immunoassay. Anal. Chim. Acta. 606; 72–79.Google Scholar
  313. Kokko T, Kokko L, Lövgren T, Soukka T (2007) Homogeneous noncompetitive immunoassay for 17beta-estradiol based on fluorescence resonance energy transfer. Anal. Chem. 79; 5935–5940.Google Scholar
  314. Kono S, Brandon D, Merriam GR, Loriaux DL, Lipsett MB (1980) Low plasma levels of 2-hydroxyestrone are consistent with its rapid metabolic clearance. Steroids. 36; 463–472.Google Scholar
  315. Korda AR, Challis JRG, Anderson ABM, Turnbull AC (1975) Plasma unconjugated 15 a-hydroxyest-riol (oestetrol) levels in normal human pregnancy. J. Obstet. Gynaecol. Br. Commonw. 82; 882–886.Google Scholar
  316. Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 115; 98–105.Google Scholar
  317. Kuch HM, Ballschmiter K (2000) Determination of endogenous and exogenous estrogens in effluents from sewage treatment plants at the ng/L-level. Fresenius J. Anal. Chem. 366; 392–395.Google Scholar
  318. Kuch HM, Ballschmiter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ. Sci. Technol. 35; 3201–3206.Google Scholar
  319. Kuhnz W, Louton T, Back DJ, Michaelis K (1993) Radioimmunological analysis of ethinylestradiol in human serum. Validation of the method and comparison with a gas chromatographic/mass spectrometric assay. Arzneimittelforschung. 43; 16–21.Google Scholar
  320. Kundu N, Grant M (1976) Radioimmunoassay of 15alpha-hydroxyestriol (estetrol) in pregnancy serum. Steroids. 27; 785–796.Google Scholar
  321. Kuningas K, Ukonaho T, Päkkilä H, Rantanen T, Rosenberg J, Lövgren T, Soukka T (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal. Chem. 78; 4690–4696.Google Scholar
  322. Kuningas K, Päkkilä H, Ukonaho T, Rantanen T, Lövgren T, Soukka T (2007) Upconversion fluorescence enables homogeneous immunoassay in whole blood. Clin. Chem. 53; 145–146.Google Scholar
  323. Kushnir MM, Rockwood AL, Bergquist J, Varshavsky M, Roberts WL, Yue B, Bunker AM, Meikle AW (2008) High-sensitivity tandem mass spectrometry assay for serum estrone and estradiol. Am. J. Clin. Pathol. 129; 530–539.Google Scholar
  324. Kwan I, Bhattacharya S, McNeil A, van Rumste MM (2008) Monitoring of stimulated cycles in assisted reproduction (IVF and ICSI). Cochrane Database Syst. Rev. Apr 16; CD005289, 1–12.Google Scholar
  325. Labadie P, Budzinski H (2005) Development of an analytical procedure for determination of selected estrogens and progestagens in water samples. Anal. Bioanal. Chem. 381; 1199–1205.Google Scholar
  326. Labadie P, Hill EM (2007) Analysis of estrogens in river sediments by liquid chromatography–electrospray ionisation mass spectrometry. Comparison of tandem mass spectrometry and time-of-flight mass spectrometry. J. Chromatogr. A. 1141; 174–181.Google Scholar
  327. Labadie P, Peck M, Minier C, Hill EM (2007) Identification of the steroid fatty acid ester conjugates formed in vivo in Mytilus edulis as a result of exposure to estrogens. Steroids. 72; 41–49.Google Scholar
  328. Lahmann PH, Friedenreich C, Schuit AJ, Salvini S, Allen NE, Key TJ, Khaw KT, Bingham S, Peeters PH, Monninkhof E, Bueno-de-Mesquita HB, Wirfält E, Manjer J, Gonzales CA, Ardanaz E, Amiano P, Quirós JR, Navarro C, Martinez C, Berrino F, Palli D, Tumino R, Panico S, Vineis P, Trichopoulou A, Bamia C, Trichopoulos D, Boeing H, Schulz M, Linseisen J, Chang-Claude J, Chapelon FC, Fournier A, Boutron-Ruault MC, Tjønneland A, Føns JN, Overvad K, Kaaks R, Riboli E (2007) Physical activity and breast cancer risk: the European prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomarkers Prev. 16: 36–42.Google Scholar
  329. Lakhani N, Sparreboom A, Venitz J, Dahut WL, Figg WD (2006) Plasma protein binding of the investigational anticancer agent 2-methoxyestradiol. Anticancer Drugs. 17; 977–983.Google Scholar
  330. Lakhani NJ, Sarkar MA, Venitz J, Figg WD (2003) 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 23; 165–172.Google Scholar
  331. Lakhani NJ, Lepper ER, Sparreboom A, Dahut WL, Venitz J, Figg WD (2005) Determination of 2-methoxyestradiol in human plasma, using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19; 1176–1182.Google Scholar
  332. Lakhani NJ, Sparreboom A, Xu X, Veenstra TD, Venitz J, Dahut WL, Figg WD (2007) Characterization of in vitro and in vivo metabolic pathways of the investigational anticancer agent, 2-meth-oxyestradiol. J. Pharm. Sci. 96; 1821–1831.Google Scholar
  333. Lamar CA, Dorgan JF, Longcope C, Stanczyk FZ, Falk RT, Stephenson HE Jr (2003) Serum sex hormones and breast cancer risk factors in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 12; 380–383.Google Scholar
  334. Lampinen-Salomonsson M, Bondesson U, Petersson C, Hedeland M (2006) Differentiation of estriol glucuronide isomers by chemical derivatization and electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20; 1429–1440.Google Scholar
  335. Lanfranco F, Zirilli L, Baldi M, Pignatti E, Corneli G, Ghigo E, Aimaretti G, Carani C, Rochira V (2008) A novel mutation in the human aromatase gene: Insights on the relationship among serum estradiol, longitudinal growth and bone mineral density in an adult man under estrogen replacement treatment. Bone. 43; 628–635. May 23, 2008 [Epub ahead of print].Google Scholar
  336. Larner JM, Shackleton CH, Roitman E, Schwartz PE, Hochberg RB (1992) Measurement of estradiol-17-fatty esters in human tissues. J. Clin. Endocr. Metab. 75; 195–200.Google Scholar
  337. Lasley BL, Shideler SE, Munro CJ (1991) A prototype for ovulation detection: pros and cons. Am. J. Obstet. Gynecol. 165; 2003–2007.Google Scholar
  338. Le Bail JC, Lotfi H, Charles L, Pépin D, Habrioux G (2002) Conversion of dehydroepiandroster-one sulfate at physiological plasma concentration into estrogens in MCF-7 cells. Steroids. 67; 1057–1064.Google Scholar
  339. Lebrun CE, van der Schouw YT, de Jong FH, Pols HA, Grobbee DE, Lamberts SW (2005) Endogenous oestrogens are related to cognition in healthy elderly women. Clin. Endocrinol. (Oxf). 63; 50–55.Google Scholar
  340. Lee AJ, Zhu BT (2004) NADPH-dependent formation of polar and nonpolar estrogen metabolites following incubations of 17 beta-estradiol with human liver microsomes. Drug Metab. Dispos. 32; 876–883.Google Scholar
  341. Lee AJ, Kosh JW, Conney AH, Zhu BT (2001) Characterization of the NADPH-dependent metabolism of 17beta-estradiol to multiple metabolites by human liver microsomes and selectively expressed human cytochrome P450 3A4 and 3A5. J. Pharmacol. Exp. Ther. 298; 420–432.Google Scholar
  342. Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT (2003) Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 144; 3382–3398.Google Scholar
  343. Lee JS, Ettinger B, Stanczyk FZ, Vittinghoff E, Hanes V, Cauley JA, Chandler W, Settlage J, Beattie MS, Folkerd E, Dowsett M, Grady D, Cummings SR (2006) Comparison of methods to measure low serum estradiol levels in postmenopausal women. J. Clin. Endocrinol. Metab. 91; 3791–3797.Google Scholar
  344. Lee SH, Kim KM, Jung BH, Chung WY, Park CS, Chung, BC (2003a) Estrogens in female thyroid cancer: alteration of urinary profiles in pre- and post-operative cases. Cancer Lett. 189; 27–32.Google Scholar
  345. Lee SH, Yang YJ, Kim KM, Chung BC (2003b) Altered urinary profiles of polyamines and endogenous steroids in patients with benign cervical disease and cervical cancer. Cancer Lett. 201; 121–131.Google Scholar
  346. Lee WL, Cheng MH, Chao HT, Wang PH (2008) The role of selective estrogen receptor modulators on breast cancer: from tamoxifen to raloxifene. Taiwan J. Obstet. Gynecol. 47; 24–31.Google Scholar
  347. Legler J, van den Brink CE, Brouwe A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol. Sci. 48; 55–66.Google Scholar
  348. Lehtinen L, Adlercreutz H (1977) Solid phase radioimmunoassays of estriol-16 a-glucuronide in urine and plasma. J. Steroid Biochem. 8; 99–104.Google Scholar
  349. Le Noir M, Lepeuple AS, Guieysse B, Mattiasson B (2007) Selective removal of 17beta-estradiol at trace concentration using a molecularly imprinted polymer. Water Res. 41; 2825–2831.Google Scholar
  350. Lépine J, Bernard O, Plante M, Têtu B, Pelletier G, Labrie F, Bélanger A, Guillemette C (2004) Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestro-gen and methoxyestrogen metabolites by human uridine diphosphoglucuronosyltransferases expressed in endometrium. J. Clin. Endocrinol. Metab. 89; 5222–5232.Google Scholar
  351. Levinson SS, Miller JJ (2002) Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin. Chim. Acta. 325; 1–15.Google Scholar
  352. Lewis JG (2006) Steroid analysis in saliva: an overview. Clin. Biochem. Rev. 27; 139–146.Google Scholar
  353. Li W, Li YH, Li AC, Zhou S, Naidong W (2005) Simultaneous determination of norethindrone and ethinyl estradiol in human plasma by high performance liquid chromatography with tandem mass spectrometry - experiences on developing a highly selective method using derivatization reagent for enhancing sensitivity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825; 223–232.Google Scholar
  354. Li Y, Wang Z, Kong D, Murthy S, Dou QP, Sheng S, Reddy GP, Sarkar FH (2007a) Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3’-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J. Biol. Chem. 282; 21542–21550.Google Scholar
  355. Li Y, Yang P, Wang P, Wang L (2007b) Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal. Bioanal. Chem. 387; 585–592.Google Scholar
  356. Licea-Perez H, Wang S, Bowen CL, Yang E (2007) A semi-automated 96-well plate method for the simultaneous determination of oral contraceptives concentrations in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852; 69–76.Google Scholar
  357. Lieberman S (2008) The generally accepted version of steroidogenesis is not free of uncertainties: other tenable and possibly superior renditions may be invented. J. Steroid Biochem. Mol. Biol. 109; 197–199.Google Scholar
  358. Liehr JG (2000) Is estradiol a genotoxic mutagenic carcinogen? Endocr. Rev. 21; 40–54.Google Scholar
  359. Lin YH, Chen CY, Wang GS (2007) Analysis of steroid estrogens in water using liquid chroma-tography/tandem mass spectrometry with chemical derivatizations. Rapid Commun. Mass Spectrom. 21; 1973–1983.Google Scholar
  360. Lipson SF, Ellison PT (1989) Development of protocols for the application of salivary steroid analyses to field conditions. Am. J. Hum. Biol. 71; 863–868.Google Scholar
  361. Liu M, Yan W, Lin JM, Hashi Y, Liu LB, Wei Y (2008) On-line liquid chromatography–mass spectrometry with dilution line to achieve large volume urine injection for the improvement of sensitivity. J. Chromatogr. A. 1198–1199; 87–94.Google Scholar
  362. Liu R, Zhou JL, Wilding A (2004a) Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction–gas chromatography–mass spectrometry. J. Chromatogr. A. 1022; 179–189.Google Scholar
  363. Liu R, Zhou JL, Wilding A (2004b) Microwave-assisted extraction followed by gas chromatography–mass spectrometry for the determination of endocrine disrupting chemicals in river sediments. J. Chromatogr. A. 1038; 19–26.Google Scholar
  364. Liu X, Yao J, Pisha E, Yang Y, Hua Y, van Breemen RB, Bolton JL (2002) Oxidative DNA damage induced by equine estrogen metabolites: role of estrogen receptor alpha. Chem. Res. Toxicol. 15; 512–519.Google Scholar
  365. Lønning PE, Ekse D (1995) A sensitive assay for measurement of plasma estrone sulphate in patients on treatment with aromatase inhibitors. J. Steroid Biochem. Mol. Biol. 55; 409–412.Google Scholar
  366. Lønning PE, Geisler J (2008a) Aromatase inhibitors: assessment of biochemical efficacy measured by total body aromatase inhibition and tissue estrogen suppression. J. Steroid Biochem. Mol. Biol. 108; 196–202.Google Scholar
  367. Lønning PE, Geisler J (2008b) Indications and limitations of third-generation aromatase inhibitors. Expert Opin. Invest. Drugs. 17; 723–739.Google Scholar
  368. Lønning PE, Geisler J, Johannessen DC, Ekse D (1997) Plasma estrogen suppression with aromatase inhibitors evaluated by a novel, sensitive assay for estrone sulphate. J. Steroid Biochem. Mol. Biol. 61; 255–260.Google Scholar
  369. López de Alda MJ, Barceló D (2000) Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection-mass spectrometry. J. Chromatogr. A. 892; 391–406.Google Scholar
  370. López de Alda MJ, Barceló D (2001a) Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by fully automated on-line solid-phase extraction-liquid chromatography-diode array detection. J. Chromatogr. A. 911; 203–210.Google Scholar
  371. López de Alda MJ, Barceló D (2001b) Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fresenius J. Anal. Chem. 371; 437–447.Google Scholar
  372. López de Alda MJ, Barceló D (2001c) Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and progestogens in sediment and water. J. Chromatogr. A. 938; 145–153.Google Scholar
  373. López de Alda MJ, Gil A, Paz E, Barceló D (2002) Occurrence and analysis of estrogens and progestogens in river sediments by liquid chromatography–electrospray–mass spectrometry. Analyst. 127; 1299–1304.Google Scholar
  374. Lopez de Alda MJ, Díaz-Cruz S, Petrovic M, Barceló D (2003) Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment. J. Chromatogr. A. 1000; 503–526.Google Scholar
  375. Loriaux DL, Ruder HJ, Lipsett MB (1971) The measurement of estrone sulfate in plasma. Steroids. 18; 463–472.Google Scholar
  376. Lotinun S, Westerlind KC, Turner RT, Turner RT (2001) Tissue-selective effects of continuous release of 2-hydroxyestrone and 16alpha-hydroxyestrone on bone, uterus and mammary gland in ovariectomized growing rats. J. Endocrinol. 170; 165–174.Google Scholar
  377. Lu F, Zahid M, Saeed M, Cavalieri EL, Rogan EG (2007) Estrogen metabolism and formation of estrogen-DNA adducts in estradiol-treated MCF-10F cells. The effects of 2,3,7,8-tetrachlo-rodibenzo-p-dioxin induction and catechol-O-methyltransferase inhibition. J. Steroid Biochem. Mol. Biol. 105; 150–158.Google Scholar
  378. Lu Y, Bentley GR, Gann PH, Hodges KR, Chatterton RT (1999) Salivary estradiol and progesterone levels in conception and nonconception cycles in women: evaluation of a new assay for salivary estradiol. Fertil. Steril. 71; 863–868.Google Scholar
  379. Luine VN (2008) Sex steroids and cognitive function. J. Neuroendocrinol. 20; 866–872.Google Scholar
  380. Lustig RH, Mobbs CV, Bradlow HL, McEwen BS, Pfaff DW (1989) Differential effects of estradiol and 16a-hydroxyestrone on pituitary and preoptic estrogen receptor regulation. Endocrinology. 125; 2701–2709.Google Scholar
  381. Luukkainen T, Adlercreutz H (1965) Isolation and identification of II-dehydro-estradiol-17-alpha, a new type of urinary steroid, in the urine of pregnant women. Biochim. Biophys. Acta. 107; 579–592.Google Scholar
  382. MacLean AR, Outch K, Russell JM, Brown JB, Dennis PM (1981) Monitoring induction of ovulation by rapid radioimmunoassays of oestrogen and pregnanediol glucuronides. Ann. Clin. Biochem. 18; 343–349.Google Scholar
  383. Makin HLJ, Heftmann E (1988) High-performance liquid chromatography of steroid hormones. In HiWi-Performance Liquid Chromatography in Endocrinology (eds Makin HLJ, Newton R) Monographs in Endocrinology, Vol 30. Springer, Berlin/Heidelberg, Germany, pp. 213–220.Google Scholar
  384. Malekinejad H, Scherpenisse P, Bergwerff AA (2006) Naturally occurring estrogens in processed milk and in raw milk (from gestated cows). J. Agric. Food Chem. 54; 9785–9791.Google Scholar
  385. Mandal C, Ali N (1988) Production of highly specific polyclonal and monoclonal antibodies using estradiol-3-O-carboxymethyl oxime as hapten. Steroids. 52; 551–560.Google Scholar
  386. Mares A, De Boever J, Osher J, Quiroga S, Barnard G, Kohen F (1995) A direct non-competitive idiometric enzyme immunoassay for serum oestradiol. J. Immunol. Methods. 181; 83–90.Google Scholar
  387. Marks V (2002) False-positive immunoassay results: a multicenter survey of erroneous immunoassay results from assays of 74 analytes in 10 donors from 66 laboratories in seven countries. Clin. Chem. 48; 2008–2016.Google Scholar
  388. Markushin Y, Zhong W, Cavalieri EL, Rogan EG, Small GJ, Yeung ES, Jankowiak R (2003) Spectral characterization of catechol estrogen quinone (CEQ)-derived DNA adducts and their identification in human breast tissue extract. Chem. Res. Toxicol. 16; 1107–1117.Google Scholar
  389. Markushin Y, Kapke P, Saeed M, Zhang H, Dawoud A, Rogan EG, Cavalieri EL, Jankowiak R (2005) Development of monoclonal antibodies to 4-hydroxyestrogen-2-N-acetylcysteine conjugates: immunoaffinity and spectroscopic studies. Chem. Res. Toxicol. 18; 1520–1527.Google Scholar
  390. Marrs CR, Ferraro DP, Cross CL (2007) Salivary hormones and parturition in healthy, primigravid women. Int. J. Gynaecol. Obstet. 99; 59–60.Google Scholar
  391. Martinetti A, Seregni E, Bajetta E, Bolelli GF, Ferrari L, Massaron S, Botti C, Bombardieri E (1997) Development of a rapid and ultrasensitive RIA method for estrogen (E2, E1, E1-S) determination with selective solid phase extraction. Int. J. Biol. Markers. 12; 102–105.Google Scholar
  392. Massart C, Gibassier J, Laurent MC, Le Lannou DL (2006) Analytical performance of a new two-step ADVIA Centaur estradiol immunoassay during ovarian stimulation. Clin. Chem. Lab Med. 44; 105–109.Google Scholar
  393. Masters AM, Hahnel R (1989) Investigation of sex-hormone binding globulin interference in direct radioimmunoassays for testosterone and estradiol. Clin. Chem. 35; 979–984.Google Scholar
  394. Matejícek D, Kubán V (2008) Enhancing sensitivity of liquid chromatographic/ion-trap tandem mass spectrometric determination of estrogens by on-line pre-column derivatization. J. Chromatogr. A. 1192; 248–253.Google Scholar
  395. Matejícek D, Houserová P, Kubán V (2007) Combined isolation and purification procedures prior to the high-performance liquid chromatographic-ion-trap tandem mass spectrometric determination of estrogens and their conjugates in river sediments. J. Chromatogr. A. 1171; 80–89.Google Scholar
  396. Matsumoto K, Tsukahara Y, Uemura T, Tsunoda K, Kume H, Kawasaki S, Tadano J, Matsuya T (2002) Highly sensitive time-resolved fluorometric determination of estrogens by high-performance liquid chromatography using a beta-diketonate europium chelate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 773; 135–142.Google Scholar
  397. Matsumoto Y, Kuramitz H, Itoh S, Tanaka S (2005) Quantitative analysis of 17beta-estradiol in river water by fluorometric enzyme immunoassay using biotinylated estradiol. Anal. Sci. 21; 219–224.Google Scholar
  398. Matthews CE, Shu X F, Jin F, Dai D, Heber JR, Ruan Z-X, Gao YT, Zheng W (2003) Lifetime physical activity and breast cancer risk in the Shanghai Breast Cancer Study. Brit. J. Cancer. 84; 994–1001.Google Scholar
  399. Matthews CE, Fowke JH, Dai Q, Bradlow HL, Jin F, Shu XO, Gao YT, Longcope C, Hebert JR, Zheng W (2004) Physical activity, body size, and estrogen metabolism in women. Cancer Causes Control. 15; 473–481.Google Scholar
  400. Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ERa and ERb. Mol. Interv. 3; 281–292.Google Scholar
  401. Matthiessen P, Arnold D, Johnson AC, Pepper TJ, Pottinger TG, Pulman KG (2006) Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms. Sci. Total Environ. 367; 616–630.Google Scholar
  402. McCann SE, Wactawski-Wende J, Kufel K, Olson J, Ovando B, Kadlubar SN, Davis W, Carter L, Muti P, Shields PG, Freudenheim JL (2007) Changes in 2-hydroxyestrone and 16alpha-hydroxyestrone metabolism with flaxseed consumption: modification by COMT and CYP1B1 genotype. Cancer Epidemiol. Biomarkers Prev. 16; 256–262.Google Scholar
  403. McCarthy MM (2008) Estradiol and the developing brain. Physiol. Rev. 88; 91–124.Google Scholar
  404. McCarthy MM, Schwarz JM, Wright CL, Dean SL (2008) Mechanisms mediating oestradiol modulation of the developing brain. J. Neuroendocrinol. 20; 777–783.Google Scholar
  405. McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr. Rev. 20; 279–307.Google Scholar
  406. McGarrigle HHG, Lachelin GCL (1983) Oestrone, oestradiol and oestriol glucosiduronates and sulphates in human puerperal plasma and milk. J Steroid Biochem. 18; 607–611.Google Scholar
  407. McGregor JA, Jackson GM, Lachelin GC, Goodwin TM, Artal R, Hastings C, Dullien V (1995) Salivary estriol as risk assessment for preterm labor: a prospective trial. Am. J. Obstet. Gynecol. 173; 1337–1342.Google Scholar
  408. McGregor JA, Hastings C, Roberts T, Barrett J (1999) Diurnal variation in saliva estriol level during pregnancy: a pilot study. Am. J. Obstet. Gynecol. 180; S223–S225.Google Scholar
  409. McGuinness BJ, Power MJ, Fottrell PF (1994) Radioimmunoassay of 2-hydroxyestrone in urine. Clin. Chem. 40; 80–85.Google Scholar
  410. McTiernan A (2008) Mechanisms linking physical activity with cancer. Nat. Rev. Cancer. 8; 205–211.Google Scholar
  411. Meilahn EN, De Stavola B, Allen DS, Fentiman I, Bradlow HL, Sepkovic DW, Kuller L (1998) Do urinary estrogen metabolites predict breast cancer? Follow up of the Guernsey III cohort. Brit. J. Cancer. 78; 1250–1255.Google Scholar
  412. Mellström D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, Odén A, Johansson H, Orwoll ES, Labrie F, Karlsson MK, Ljunggren O, Ohlsson C (2008) Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J. Bone Miner. Res. 23; 1552–1560.Google Scholar
  413. Micallef JV, Hayes MM, Latif A, Ahsan R, Sufi SB (1995) Serum binding of steroid tracers and its possible effects on direct steroid immunoassay. Ann. Clin. Biochem. 32; 566–574.Google Scholar
  414. Michaud DS, Manson JE, Spiegelman D, Barbieri RL, Sepkovic DW, Bradlow HL, Hankinson SE (1999) Reproducibility of plasma and urinary sex hormone levels in premenopausal women over a one-year period. Cancer Epidemiol. Biomarkers Prev. 8; 1059–1064.Google Scholar
  415. Michnovicz JJ, Galbraith RA (1990) Effects of exogenous thyroxine on C-2 and C-16 alpha hydroxylations of estradiol in humans. Steroids. 55; 22–26.Google Scholar
  416. Michnovicz JJ, Galbraith RA (1991) Cimetidine inhibits catechol estrogen metabolism in women. Metabolism. 40; 170–174.Google Scholar
  417. Middle JG, Kane JW (2009) Oestradiol assays: fitness for purpose? Ann. Clin. Biochem. 46; 441–456.Google Scholar
  418. Midgley AR, Niswender GD, Ram JS (1969) Hapten-radioimmunoassay: a general procedure for the estimation of steroidal and other haptenic substances. Steroids. 13; 731737.Google Scholar
  419. Miilunpohja M, Uphoff A, Somerharju P, Tiitinen A, Wähälä K, Tikkanen MJ (2006) Fatty acid esterification of lipoprotein-associated estrone in human plasma and follicular fluid. J. Steroid Biochem. Mol. Biol. 100; 59–66.Google Scholar
  420. Miller JJ, Valdes R (1991) Approaches to minimising interference cross-reacting molecules in immunoassays. Clin. Chem. 37; 144–153.Google Scholar
  421. Miller KK, Rosner W, Lee H, Hier J, Sesmilo G, Schoenfeld D, Neubauer G, Klibanski A (2004) Measurement of free testosterone in normal women and women with androgen deficiency: comparison of methods. J Clin Endocrinol. Metab. 89; 525–533.Google Scholar
  422. Mills LH, Yu J, Xu XM, Lee AJ, Zhu BT (2008) Naturally-occurring estradiol-17beta-fatty acid esters,but not estradiol-17beta, preferentially induce mammary tumorigenesis in female rats: implications for an important role in human breast cancer. Toxicol. Appl. Pharmacol. 229; 332–341.Google Scholar
  423. Mishra A, Joy KR (2006) HPLC-electrochemical detection of ovarian estradiol-17beta and catecholestrogens in the catfish Heteropneustes fossilis : seasonal and periovulatory changes. Gen. Comp. Endocrinol. 145; 84–91.Google Scholar
  424. Mitamura K, Yatera M, Shimada K (2000a) Studies on neurosteroids XII. Determination of enzymatically formed catechol estrogens and guaiacol estrogens by rat brains using liquid chromatography–mass spectrometry–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 748; 89–96.Google Scholar
  425. Mitamura K, Yatera M, Shimada K (2000b) Studies on neurosteroids. Part XIII. Characterization of catechol estrogens in rat brains using liquid chromatography–mass spectrometry–mass spectrometry. Analyst. 125; 811–814.Google Scholar
  426. Mitani K, Fujioka M, Kataoka H (2005) Fully automated analysis of estrogens in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 1081; 218–224.Google Scholar
  427. Mitchell FL, Davies E (1954) The isolation and estimation of the steroid oestrogens in placental tissue. Biochem. J. 56; 690–698.Google Scholar
  428. Moeder M, Schrader S, Winkler M, Popp P (2000) Solid-phase microextraction-gas chromatography–mass spectrometry of biologically active substances in water samples. J. Chromatogr. A. 873; 95–106.Google Scholar
  429. Mol HGJ, Sunarto S, Steijger OM (2000) Determination of endocrine disruptors in water after derivatization with N-methyl-N-(tert.-butyldimethyltrifluoroacetamide) using gas chromatography with mass spectrometric detection. J. Chromatogr. A. 879; 97–112.Google Scholar
  430. Monk BJ, Tewari KS (2007) The spectrum and clinical sequelae of human papilloma virus infection. Gynecol. Oncol. 107; S6–S13.Google Scholar
  431. Morgan MRA, Whittaker PG, Fuller BP, Dean PGD (1980) A radio-immunoassay for equilin in postmenopausal plasma: plasma levels of equilin determined after oral administration of conjugated equine oestrogens (Premarin). J. Steroid Biochem. 13; 551–555.Google Scholar
  432. Mouatassim-Souali A, Tamisier-Karolak SL, Perdiz D, Cargouet M, Levi Y (2003) Validation of a quantitative assay using GC/MS for trace determination of free and conjugated estrogens in environmental water samples. J. Sep. Sci. 26; 105–111.Google Scholar
  433. Moutsatsou V, Oakey RE (1986) Oestriol and non-protein bound oestriol concentrations in human peripheral plasma before labour and delivery. J. Endocrinol. 108; 75–80.Google Scholar
  434. Mueck AO, Seeger H (2007) Breast cancer: are oestrogen metabolites carcinogenic? Maturitas. 57; 42–46.Google Scholar
  435. Mueck AO, Seeger H (2008) The World Health Organization defines hormone replacement therapy as carcinogenic: is this plausible? Gynecol. Endocrinol. 24; 129–132.Google Scholar
  436. Mueller OT (2008) Gene symbol: AR. Disease: androgen insensitivity syndrome. Hum. Genet. 123; 105–106.Google Scholar
  437. Muir AD (2006) Flax lignans – analytical methods and how they influence our understanding of biological activity. J. AOAC Int. 89; 1147–1157.Google Scholar
  438. Muller M, Rabenoelina F, Balaguer P, Patureau D, Lemenach K, Budzinski H, Barceló D, de Alda ML, Kuster M, Delgenès JP, Hernandez-Raquet G (2008) Chemical and biological analysis of endocrine-disrupting hormones and estrogenic activity in an advanced sewage treatment plant. Environ. Toxicol. Chem. 27; 1649–1658.Google Scholar
  439. Murphy LC, Watson PH (2006) Is oestrogen receptor-beta a predictor of endocrine therapy responsiveness in human breast cancer? Endocr. Relat. Cancer. 13; 327–334.Google Scholar
  440. Musey PI, Collins DC, Preedy JRK (1977) Isocratic separation of estrogen conjugates on DEAE-Sephadex. Steroids. 29; 657–668.Google Scholar
  441. Muti P, Bradlow HL, Micheli A, Krough V, Freudenheim JL, Schunemann HJ, Stanulla M, Yang J, Sepkovic DW, Trevisan M, Berrino F (2000) Estrogen metabolism and risk of breast cancer: a prospective analysis of 2:16a-hydroxyestrone ratio in premenopausal and postmenopausal women. J. Epidemiol. 11; 635–640.Google Scholar
  442. Muti P, Westerlind K, Wu T, Grimaldi T, De Berry III J, Hill H, Freudenheim JL, Schunemann H, Carruba G, Bradlow HL (2002) Urinary estrogen metabolites and prostate cancer: a case-control study. Cancer Causes Control. 13; 947–955.Google Scholar
  443. Nakagomi M, Iida S, Hara Y, Matsuki Y, Nambara T, Suzuki E (1999) Preparation of specific antisera to 15alpha-hydroxyestrogen 15-N-acetylglucosaminides. Steroids. 64; 491–496.Google Scholar
  444. Nakamura S, Sian TH, Daishima S (2001) Determination of estrogens in river water by gas chroma-tography-negative-ion chemical-ionization mass spectrometry. J. Chromatogr. A. 912; 275–282.Google Scholar
  445. Napoli N, Villareal DT, Mumm S, Halstead L, Sheikh S, Caganan M, Rini GB, Armamento-Villareal R (2005) Effect of CYP1A1 gene polymorphisms on estrogen metabolism and bone density. J. Bone Miner. Res. 20; 232–239.Google Scholar
  446. Napoli N, Armamento-Villareal R (2007) Estrogen hydroxylation in osteoporosis. Adv. Clin. Chem. 43; 211–227.Google Scholar
  447. Nelson RE, Grebe SK, O’Kane DJ, Singh RJ (2004) Liquid chromatography–tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin. Chem. 50; 373–384.Google Scholar
  448. Neves MA, Dinis TC, Colombo G, Luisa Sá E Melo M (2008) Biochemical and computational insights into the anti-aromatase activity of natural catechol estrogens. J. Steroid Biochem. Mol. Biol. 110; 10–17.Google Scholar
  449. Nicolas JC, Boussioux AM, Boularan AM, Descamps B, Crastas de Paulet A (1983) Bioluminescent assay of femtomole levels of estrone and estradiol. Anal. Biochem. 135; 141–146.Google Scholar
  450. Nielen MW, Bovee TF, Heskamp HH, Lasaroms JJ, Sanders MB, Van Rhijn JA, Groot MJ, Hoogenboom LA (2006) Screening for estrogen residues in calf urine: comparison of a validated yeast estrogen bioassay and gas chromatography–tandem mass spectrometry. Food Addit. Contam. 23; 1123–1131.Google Scholar
  451. Nilsson M, Dahlman-Wright K, Gustafsson JA (2004) Nuclear receptors in disease: the oestrogen receptors. Essays Biochem. 40; 157–167.Google Scholar
  452. Nishio T, Higashi T, Funaishi A, Tanaka J, Shimada K (2007) Development and application of electrospray-active derivatization reagents for hydroxysteroids. J. Pharm. Biomed. Anal. 44; 786–795.Google Scholar
  453. Noma J, Hayashi N, Sekiba K (1991) Automated direct high-performance liquid chromatographic assay for estetrol, estriol, cortisone and cortisol in Serum and amniotic fluid. J. Chromatogr. Biomed. Appl. 568; 35–44.Google Scholar
  454. Noppe H, De Wasch K, Poelmans S, Van Hoof N, Verslycke T, Janssen CR, De Brabander HF (2005) Development and validation of an analytical method for detection of estrogens in water. Anal. Bioanal. Chem. 382; 91–98.Google Scholar
  455. Noppe H, Verslycke T, De Wulf E, Verheyden K, Monteyne E, Van Caeter P, Janssen CR, De Brabander HF (2007) Occurrence of estrogens in the Scheldt estuary: a 2-year survey. Ecotoxicol. Environ. Saf. 66; 1–8.Google Scholar
  456. Noppe H, Le Bizec B, Verheyden K, De Brabander HF (2008) Novel analytical methods for the determination of steroid hormones in edible matrices. Anal. Chim. Acta. 611; 1–16.Google Scholar
  457. Numazawa M, Nagaoka M, Sohtome N (2005) Aromatase reaction of 3-deoxyandrogens: steric mode of the C-19 oxygenation and cleavage of the C10–C19 bond by humanplacental aromatase. Biochemistry. 44; 10839–10845.Google Scholar
  458. Núñez-De La Mora A, Chatterton RT, Mateo ET, Jesmin F, Bentley GR (2007) Effect of chewing betel nut on measurements of salivary progesterone and estradiol. Am. J. Phys. Anthropol. 132; 311–315.Google Scholar
  459. Núñez-De La Mora A, Bentley GR, Choudhury OA, Napolitano DA, Chatterton RT (2008) The impact of developmental conditions on adult salivary estradiol levels: why this differs from progesterone? Am. J. Hum. Biol. 20; 2–14.Google Scholar
  460. Oakey RE, Holder G (1995) The measurement of estrogens. In Steroid Anaysis (eds Makin HLJ, Gower DB, Kirk DN). Blackie Academic & Professional, Glasgow, pp. 427–467.Google Scholar
  461. O’Connor KA, Brindle E, Holman DJ, Klein NA, Soules MR, Campbell KL, Kohen F, Munro CJ, Shofer JB, Lasley BL, Wood JW (2003) Urinary estrone conjugate and pregnanediol 3-glucuronide enzyme immunoassays for population research. Clin. Chem. 49; 1139–1148.Google Scholar
  462. O’Donnell L, Robertson KM, Jones ME, Simpson ER (2001) Estrogen and spermatogenesis. Endocr. Rev. 22; 289–318.Google Scholar
  463. Ohtaki T, Moriyoshi M, Nakada K, Nakao T, Kawata K (1997 Radioimmunoassay of saliva estrone sulfate in pregnant sows. J. Vet. Med. Sci. 59; 759–763.Google Scholar
  464. Olson SH, Bandera EV, Orlow I (2007) Genetic variants, sex steroid hormone levels, and endometrial cancer: a HuGE review. Am. J. Epidemiol. 165; 235–245.Google Scholar
  465. Osborne MP, Karmali RA, Hershcopf RJ, Bradlow HL, Kourides IA, Williams WR, Rosen PP, Fishman J (1988) Omega-3 fatty acids: modulation of estrogen metabolism and potential for breast cancer prevention. Cancer Invest. 8; 629–631.Google Scholar
  466. Pahuja SL, Kim AH, Lee G, Hochberg RB (1995) Origin of estradiol fatty acid esters in human ovarian follicular fluid. Biol. Reprod. 52; 625–630.Google Scholar
  467. Pape-Zambito DA, Magliaro AL, Kensinger RS (2007) Concentrations of 17beta-estradiol in Holstein whole milk. J. Dairy Sci. 90; 3308–3313.Google Scholar
  468. Pape-Zambito DA, Magliaro AL, Kensinger RS (2008) 17Beta-estradiol and estrone concentrations in plasma and milk during bovine pregnancy. J. Dairy Sci. 91; 127–135.Google Scholar
  469. Paris A, Goutal I, Richard J, Bécret A, Guéraud F (2001) Uterotrophic effect of a saturated fatty acid 17-ester of estradiol-17beta administered orally to juvenile rats. APMIS. 109; 365–375.Google Scholar
  470. Paris F, Servant N, Térouanne B, Balaguer P, Nicolas JC, Sultan C (2002) A new recombinant cell bioassay for ultrasensitive determination of serum estrogenic bioactivity in children. J. Clin. Endocrinol. Metab. 87; 791–797.Google Scholar
  471. Pasqualini JR (2005) Enzymes involved in the formation and transformation of steroid hormones in the fetal and placental compartments. J. Steroid Biochem. Mol. Biol. 97; 401–415.Google Scholar
  472. Pasqualini JR, Chetrite GS (2005) Recent insight on the control of enzymes involved in estrogen formation and transformation in human breast cancer. J. Steroid Biochem. Mol. Biol. 93; 221–236.Google Scholar
  473. Patriarca MT, Goldman KZ, Dos Santos JM, Petri V, Simões RS, Soares JM Jr, Simões MJ, Baracat EC (2007) Effects of topical estradiol on the facial skin collagen of postmenopausal women under oral hormone therapy: a pilot study. Eur. J. Obstet. Gynecol. Reprod. Biol. 130; 202–205.Google Scholar
  474. Pazol K, Kaplan JR, Abbott D, Appt SE, Wilson ME (2004) Practical measurement of total and bioavailable estradiol in female macaques. Clin. Chim. Acta. 340; 117–126.Google Scholar
  475. Pedreira S, Lolo M, Vázquez BI, Franco CM, Cepeda A, Fente C (2007) Liquid chromatography–electrospray ionization–mass spectrometry method in multiple reaction monitoring mode to determine 17alpha-ethynylestradiol residues in cattle hair without previous digestion. J. Agric. Food Chem. 55; 9325–9329.Google Scholar
  476. Pemberton RM, Mottram TT, Hart JP (2005) Development of a screen-printed carbon electro chemical immunosensor for picomolar concentrations of estradiol in human serum extracts. J. Biochem. Biophys. Methods. 63; 201–212.Google Scholar
  477. Peñalver A, Pocurull E, Borrull F, Marcé RM (2002) Method based on solid-phase microextraction-high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J. Chromatogr. A. 964; 153–160.Google Scholar
  478. Peng X, Wang Z, Yang C, Chen F, Mai B (2006) Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography–mass spectrometry. J. Chromatogr. A. 1116; 51–56.Google Scholar
  479. Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 397; 158–166.Google Scholar
  480. Peplonska, B, Lissowska J, Hartman, TJ, Szeszenia-Dabrowska N, Blair S, Zatonski W, Sherman ME, Garcia-Closas M, Brinton LA (2008) Adulthood lifetime physical activity and breast cancer. Epidemiology. 19; 226–236.Google Scholar
  481. Petrovic M, Eljarrat E, López de Alda MJ, Barceló D (2002) Recent advances in the mass spec-trometric analysis related to endocrine disrupting compounds in aquatic environmental samples. J. Chromatogr. A. 974; 23–51.Google Scholar
  482. Petrovic M, Eljarrat E, Lopez De Alda MJ, Barceló D (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data. Anal. Bioanal. Chem. 378; 549–562.Google Scholar
  483. Pfaffenberger CD, Horning EC (1975) Determination of human urinary steroid metabolites using glass open tubular capillary columns. J. Chromatogr. 112; 581–594.Google Scholar
  484. Pfeiffer E, Graf E, Gerstner S, Metzler M (2006) Stimulation of estradiol glucuronidation: a protective mechanism against estradiol-mediated carcinogenesis? Mol. Nutr. Food Res. 50; 385–389.Google Scholar
  485. Pichon V (2007) Selective sample treatment using molecularly imprinted polymers. J. Chromatogr. A. 1152; 41–53.Google Scholar
  486. Pinnella KD, Cranmer BK, Tessari JD, Cosma GN, Veeramachaneni DN (2001) Gas chromatographic determination of catecholestrogens following isolation by solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl. 758; 145–152.Google Scholar
  487. Ponzone R, Mininanni P, Cassina E, Pastorino F, Sismondi P (2008) Aromatase inhibitors for breast cancer: different structures, same effects? Endocr. Relat. Cancer. 15; 27–36.Google Scholar
  488. Pratt JJ, Woldring MG (1976) Radioimmunoassay specificity and the ‘first-come, first serve’ effect. Clin. Chim. Acta. 68; 87–90.Google Scholar
  489. Qin F, Zhao YY, Sawyer MB, Li XF (2008a) Hydrophilic interaction liquid chromatography–tandem mass spectrometry determination of estrogen conjugates in human urine. Anal. Chem. 80; 3404–3411.Google Scholar
  490. Qin F, Zhao YY, Sawyer MB, Li XF (2008b) Column-switching reversed phase-hydrophilic interaction liquid chromatography/tandem mass spectrometry method for determination of free estrogens and their conjugates in river water. Anal. Chim Acta. 627; 91–98.Google Scholar
  491. Quintana JB, Carpinteiro J, Rodriguez I, Lorenzo RA, Carro AM, Cela R (2004) Determination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection. J. Chromatogr. A. 1024; 177–185.Google Scholar
  492. Raeside JI, Christie HL, Renaud RL (1999) Metabolism of oestrone and oestradiol-17beta to conjugated steroids by the accessory sex glands of the male pig. J. Endocrinol. 163; 49–53.Google Scholar
  493. Raff H, Sluss PM (2008) Pre-analytical issues for testosterone and estradiol assays. Steroids. 73; 1297–1304. May 21, 2008 [Epub ahead of print].Google Scholar
  494. Raftogianis R, Creveling C, Weinshilboum R, Weisz J (2000) Estrogen metabolism by conjugation. J. Natl. Cancer Inst. Monogr. 27; 113–124.Google Scholar
  495. Rahhal SN, Fuqua JS, Lee PA (2008) The impact of assay sensitivity in the assessment of diseases and disorders in children. Steroids. 73; 1322–1327. May 4, 2008 [Epub ahead of print].Google Scholar
  496. Rainey WE, Rehman KS, Carr BR (2004) Fetal and maternal adrenals in human pregnancy. Obstet. Gynecol. Clin. North Am. 31; 817–835.Google Scholar
  497. Raju U, Sepkovic DW, Miller WR, Dixon JM, Bradlow HL, Levitz M (2000) Estrone and estradiol metabolism in vivo in human breast cysts. Steroids. 65; 883–888.Google Scholar
  498. Ramanathan R, Cao K, Cavalieri E, Gross ML (1998) Mass spectrometric methods for distinguishing structural isomers of glutathione conjugates of estrone and estradiol. J. Am. Soc. Mass Spectrom. 9; 612–619.Google Scholar
  499. Ramsey PS, Andrews WW (2003) Biochemical predictors of preterm labor: fetal fibronectin and salivary estriol. Clin. Perinatal. 30; 701–733.Google Scholar
  500. Ranadive GN, Mistry JS, Damodaran K, Khosravi MJ, Diamandi A, Gimpel T, Castracane VD, Patel S, Stanczyk FZ (1998) Rapid, convenient radioimmunoassay of estrone sulfate. Clin. Chem. 44; 244–249.Google Scholar
  501. Rao CV (2000) Does full-term pregnancy at a young age protect women against breast cancer through hCG? Obstet. Gynecol. 96; 783–786.Google Scholar
  502. Rao PN, de la Prena A, Goldzieher JW (1974) Antisera for radioimmunoassay of 17 a-ethinylestra-diol and mestranol. Steroids. 24; 803–808.Google Scholar
  503. Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW (2008) Rapid estrogen signaling in the brain. Neurosignals. 16; 140–153.Google Scholar
  504. Reddy S, Iden CR, Brownawell BJ (2005) Analysis of steroid conjugates in sewage influent and effluent by liquid chromatography–tandem mass spectrometry. Anal. Chem. 77; 7032–7038.Google Scholar
  505. Reepmeyer JC, Brower JF, Ye H (2005) Separation and detection of the isomeric equine conjugated estrogens, equilin sulfate and delta8,9-dehydroestrone sulfate, by liquid chromatography–electrospray–mass spectrometry using carbon-coated zirconia and porous graphitic carbon stationary phases. J. Chromatogr. A. 1083; 42–51.Google Scholar
  506. Reinen J, Kool J, Vermeulen NP (2008) Reversed-phase liquid chromatography coupled on-line to estrogen receptor bioaffinity detection based on fluorescence polarization. Anal. Bioanal. Chem. 390; 1987–1998.Google Scholar
  507. Reinsberg J, Jost E (2000) Analytical performance of the fully automated AxSYM estradiol assay. Clin. Chem. Lab. Med. 38; 51–55.Google Scholar
  508. Ribeiro, C, Tiritan ME, Rocha E, Rocha MJ (2007) Development and validation of an HPLC-DAD method for determination of several endocrine disrupting compounds in estuarine water. J. Liq. Chromatogr. 30; 2729–2746.Google Scholar
  509. Ribeiro C, Pardal MA, Martinho F, Margalho R, Tiritan ME, Rocha E, Rocha MJ (2009) Distribution of endocrine disruptors in the Mondego River estuary, Portugal. Environ. Monit. Assess. 149; 183–193. Mar 4, 2008 [Epub ahead of print].Google Scholar
  510. Richardson SD (2006) Environmental mass spectrometry: emerging contaminants and current issues. Anal. Chem. 78; 4021–4046.Google Scholar
  511. Richardson SD (2008) Environmental mass spectrometry: emerging contaminants and current issues. Anal. Chem. 80; 4373–4402.Google Scholar
  512. Rinaldi S, Déchaud H, Biessy C, Morin-Raverot V, Toniolo P, Zeleniuch-Jacquotte A, Akhmedkhanov A, Shore RE, Secreto G, Ciampi A, Riboli E, Kaaks R (2001) Reliability and validity of commercially available, direct radioimmunoassays for measurement of blood andro-gens and estrogens in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 10; 757–765.Google Scholar
  513. Rinaldi S, Déchaud H, Toniolo P, Kaaks R (2002) Reliability and validity of direct radioimmunoassays for measurement of postmenopausal serum androgens and estrogens. IARC Sci. Publ. 156; 323–325.Google Scholar
  514. Rinaldi S, Moret CN, Kaaks R, Biessy C, Kurzer MS, Déchaud H, Peeters PH, van Noord PA (2003) Reproducibility over time of measurements of androgens, estrogens and hydroxyl estrogens in urine samples from post-menopausal women. Eur. J. Epidemiol. 18; 417–424.Google Scholar
  515. Rizzati V, Rathahao E, Gamet-Payrastre L, Delous G, Jouanin I, Guéraud F, Paris A (2005) In vitro aromatic bioactivation of the weak estrogen E(2)alpha and genesis of DNA adducts. Steroids. 70; 161–172.Google Scholar
  516. Robertson HA, Smeaton TC (1973) The concentration of unconjugated oestrone, oestradiol-17 alpha and oestradiol-17beta in the maternal plasma of the pregnant ewe in relation to the initiation of parturition and lactation. J. Reprod. Fertil. 35; 461–468.Google Scholar
  517. Robertson HA, Smeaton TC, Durnford R (1972) A method for the extraction, separation and estimation of unconjugated estrone, estradiol-17 a and estradiol-17 b in plasma. Steroids. 20; 651–667.Google Scholar
  518. Rochira V, Granata AR, Madeo B, Zirilli L, Rossi G, Carani C (2005) Estrogens in males: what have we learned in the last 10 years? Asian J. Androl. 7; 3–20.Google Scholar
  519. Rodríguez-Espinosa J, Otal-Entraigas C, Gascón-Roche N, Mora-Brugués J, Urgell-Rull E, Bordás-Serrat JR, Viscasillas-Molins P (1998) Analytical and clinical performance of an automated immunoassay system (immulite) for estradiol in serum. Clin. Chan. Lab. Med. 36; 969–974.Google Scholar
  520. Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2004) Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction–liquid chromatography–electrospray tandem mass spectrometry method. Anal. Chem. 76; 6998–7006.Google Scholar
  521. Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A. 1152; 97–115.Google Scholar
  522. Rogan EG, Badawi AF, Devanesan PD, Meza JL, Edney JA, West WW, Higginbotham SM, Cavalieri EL (2003) Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis. 24; 697–702.Google Scholar
  523. Roos RW, Medwick T (1980) Application of dansyl derivatization to the high pressure liquid chromatographic identification of equine estrogens. J. Chromatogr. Sci. 18; 626–630.Google Scholar
  524. Rosen CA, Thompson JW, Woodson GE, Bradlow HL (1998) Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol. 118; 810–815.Google Scholar
  525. Rosner W (1997) Errors in the measurement of plasma free testosterone. J. Clin. Endocrinol. Metab. 82; 2014–2015.Google Scholar
  526. Rosner W (2001) An extraordinarily inaccurate assay for free testosterone is still with us. J. Clin. Endocrinol. Metab. 86; 2903.Google Scholar
  527. Rosner W, Auchus RJ, Azziz R, Sluss PM, Raff H (2007) Position statement: utility, limitations, and pitfalls in measuring –4Rtosterone: an Endocrine Society position statement. J. Clin. Endocrinol. Metab. 92; 405–413.Google Scholar
  528. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ. Toxicol. Chem. 15; 241–248.Google Scholar
  529. Roy D, Hachey DL, Liehr JG (1991) Determination of estradiol 2- and 4-hydroxylase activities by gas chromatography with electron-capture detection. J. Chromatogr. 567; 309–318.Google Scholar
  530. Rule G, Henion J (1999) High-throughput sample preparation and analysis using 96-well membrane solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of steroids in human urine. J. Am. Soc. Mass Spectrom. 10; 1322–1327.Google Scholar
  531. Russel KS, Haynes MP, Sinha D, Clerisme E, Bender JR (2000) Human vascular endothelial cells contain membrane-binding sites for estradiol, which mediate rapid intracellular signaling. Proc. Natl. Acad. Sci. USA. 97; 5930–5935.Google Scholar
  532. Salih S, Xu X, Veenstra TD, Duleba AJ, Fouad H, Nagamani M, Al-Hendy A (2007) Lower levels of urinary 2-hydroxyestrogens in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92; 3285–3291.Google Scholar
  533. Salvador A, Moretton C, Piram A, Faure R (2007) On-line solid-phase extraction with on-support derivatization for high-sensitivity liquid chromatography tandem mass spectrometry of estrogens in influent/effluent of wastewater treatment plants. J. Chromatogr. A. 1145; 102–109.Google Scholar
  534. Samarajeewa P, Kellie AE (1975) Radioimmunoassay of steroid glucuronides. The oestrogen C-3 glucuronides as haptens. Biochem. J. 151; 369–376.Google Scholar
  535. Santen RJ, Demers L, Ohorodnik S, Settlage J, Langecker P, Blanchett D, Goss PE, Wang S (2007a) Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids. 72; 666–671.Google Scholar
  536. Santen RJ, Boyd NF, Chlebowski RT, Cummings S, Cuzick J, Dowsett M, Easton D, Forbes JF, Key T, Hankinson SE, Howell A, Ingle J; Breast Cancer Prevention Collaborative Group (2007b) Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocr. Relat. Cancer. 14; 169–187.Google Scholar
  537. Santen RJ, Lee JS, Wang S, Demers LM, Mauras N, Wang H, Singh R (2008) Potential role of ultra-sensitive estradiol assays in estimating the risk of breast cancer and fractures. Steroids. 73; 1318–1321. July 7, 2008 [Epub ahead of print].Google Scholar
  538. Sasano H, Suzuki T, Nakata T, Moriya T (2006) New development in intracrinology of breast carcinoma. Breast Cancer. 13; 129–136.Google Scholar
  539. Sasano H, Suzuki T, Miki Y, Moriya T (2008) Intracrinology of estrogens and androgens in breast carcinoma. J. Steroid Biochem. Mol. Biol. 108; 181–185.Google Scholar
  540. Scalas D, Squadrone S, Gili M, Marchis D, Prearo M, Abete MC (2007) Validation of a dissociation enhanced lanthanide fluorescence immunoassay for the screening of 17beta-estradiol in bovine serum according to European Union decision 2002/657/EC. J. AOAC Int. 90; 1427–1431.Google Scholar
  541. Schatz F, Hochberg RB (1981) Lipoidal derivative of estradiol: the biosynthesis of a nonpolar estrogen metabolite. Endocrinology. 109; 697–703.Google Scholar
  542. Schneider J, Huh MM, Bradlow HL, Fishman J (1984) Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells. J. Biol. Chem. 259; 4840–4845.Google Scholar
  543. Schneider C, Schöler HF, Schneider RJ (2004) A novel enzyme-linked immunosorbent assay for ethynylestradiol using a long-chain biotinylated EE2 derivative. Steroids. 69; 245–253.Google Scholar
  544. Schuurs AHWM, van Weemen BK (1977) Enzyme-immunoassay. Clin. Chim. Acta. 81; 1–40.Google Scholar
  545. Schwarz JM, McCarthy MM (2008) Cellular mechanisms of estradiol-mediated masculinization of the brain. J. Steroid Biochem. Mol. Biol. 109; 300–306.Google Scholar
  546. Schwers J, Eriksson G, Diczfalusy E (1965) 15alpha-hydroxylation: a new pathway of estrogen metabolism in the human fetus and newborn. Biochim. Biophys. Acta. 100; 313–316.Google Scholar
  547. Seifert M (2004) Luminescent enzyme-linked receptor assay for estrogenic compounds. Anal. Bioanal. Chem. 378; 684–687.Google Scholar
  548. Sepkovic DW, Bradlow HL, Michnovicz J, Murtezani S, Levy I, Osborne MP (1994) Catechol estrogen production in rat microsomes after treatment with indole-3-carbinol, ascorbigen, or beta-napthaflavone: a comparison of stable isotope dilution gas chromatography–mass spectrometry and radiometric methods. Steroids. 59; 318–323.Google Scholar
  549. Seronie-Vivien S, Dalenc F, Balaguer P, Nicolas JC, Roche H, Faye JC (2004) A recombinant cell bioassay for measurement of overall estrogenic activity of serum: preliminary results in women with breast cancer. Clin. Chem. Lab. Med. 42; 889–895.Google Scholar
  550. Sesay AM, Cullen DC (2001) Detection of hormone mimics in water using a miniturised SPR sensor. Environ. Monit. Assess. 70; 83–92.Google Scholar
  551. Shackleton CHL (1993) Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J. Steroid Biochem. Mol. Biol. 45; 127–140.Google Scholar
  552. Shareef A, Parnis CJ, Angove MJ, Wells JD, Johnson BB (2004) Suitability of N,O-bis(trimethylsilyl) trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoro­acetamide as derivatization reagents for the determination of the estrogens estrone and 17alpha-ethinylestradiol by gas chromatography–mass spectrometry. J. Chromatogr. A. 1026; 295–300.Google Scholar
  553. Shareef A, Angove MJ, Wells JD (2006) Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17alpha-ethinylestradiol by gas chromatography–mass spectrometry. J. Chromatogr. A. 1108; 121–128.Google Scholar
  554. Shelly W, Draper MW, Krishnan V, Wong M, Jaffe RB (2008) Selective estrogen receptor modulators: an update on recent clinical findings. Obstet. Gynecol. Surv. 63; 163–181.Google Scholar
  555. Shideler SE, Gee NA, Chen J, Laughlin LS, Rapp PR, Morrison JH, Roberts JA, Moran FM, Lasley BL (2003) Contribution of ovarian steroid production to urinary estrone conjugate concentrations in Macaca mulatta. Am. J. Primatol. 61; 111–121.Google Scholar
  556. Shimada K, Mitamura K, Shiroyama M, Yago K (1999) Studies on neurosteroids. IX. Characterization of estrogens in rat brains using gas chromatography–tandem mass spectrometry. J. Chromatogr. A. 847; 171–178.Google Scholar
  557. Shimada K, Mitamura K, Higashi T (2001) Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A. 935; 141–172.Google Scholar
  558. Shirtcliff EA, Granger DA, Schwartz EB, Curran MJ, Booth A, Overman WH (2000) Assessing estradiol in biobehavioral studies using saliva and blood spots: simple radioimmunoassay protocols, reliability, and comparative validity. Harm. Behav. 38; 137–147.Google Scholar
  559. Shou WZ, Jiang X, Naidong W (2004) Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma. Biomed. Chromatogr. 18; 414–421.Google Scholar
  560. Siekmann L (1984) Determination of oestradiol-17-beta in human serum by isotope dilution-mass spectrometry. J. Clin. Chem. Clin. Biochem. 22; 551–557.Google Scholar
  561. Siekmann L, Siekmann A, Breuer H, Dehennin L (1983) Measurement by isotope dilution mass spectrometry of equiline and oestrone in serum of women taking tablets of equine oestrogens. Biomed. Mass Spectrom. 10; 168–174.Google Scholar
  562. Siekmann L, Siekmann A, Bidlingmaier F, Brill K, Albring M (1998) Gestodene and desogestrel do not have a different influence on concentration profiles of ethinylestradiol in women taking oral contraceptives-results of isotope mass spectrometry measurements. Eur. J. Endocrinol. 139; 167–177.Google Scholar
  563. Simoncini T, Rabkin E, Liao JK (2003) Molecular basis of cell membrane estrogen receptor interaction with phosphatidylinositol 3-kinase in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23; 198–203.Google Scholar
  564. Simpkins JW, Dykens JA (2008) Mitochondrial mechanisms of estrogen neuroprotection. Brain Res. Rev. 57; 421–430.Google Scholar
  565. Simpson ER (2003) Sources of estrogen and their importance. J. Steroid Biochem. Mol. Biol. 86; 225–230.Google Scholar
  566. Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K, Britt K, Speed C, Jones M (2002) Aromatase - a brief overview. Annu. Rev. Physiol. 64; 93–127.Google Scholar
  567. Sinicco A, Raiteri R, Rossati A, Savarino A, Di Perri G (2000) Efavirenz interference in estradiol ELISA assay. Clin. Chem. 46; 734–735.Google Scholar
  568. Sjovall J, Axelson M (1984) Sample work-up by column techniques. J. Pharm. Biomed. Anal. 2; 265–280.Google Scholar
  569. Slater CC, Hodis HN, Mack WJ, Shoupe D, Paulson RJ, Stanczyk FZ (2001) Markedly elevated levels of estrone sulfate after long-term oral, but not transdermal, administration of estradiol in postmenopausal women. Menopause. 8; 200–203.Google Scholar
  570. Sluss PM, Hayes FJ, Adams JM, Barnes W, Williams G, Frost S, Ramp J, Pacenti D, Lehotay DC, George S, Ramsay C, Doss RC, Crowley WF Jr (2008) Mass spectrometric and physiological validation of a sensitive, automated, direct immunoassay for serum estradiol using the Architect. Clin. Chim. Acta. 388; 99–105.Google Scholar
  571. Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N. Engl. J. Med. 348; 2431–2442.Google Scholar
  572. Snow RC, Barbieri RL, Frisch RE (1989) Estrogen 2-hydroxylase oxidation and menstrual function among elite oarswomen. J. Clin. Endocrinol. Metab. 69; 369–376.Google Scholar
  573. Södergård R, Bäckström T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J. Steroid Biochem. 16; 801–810.Google Scholar
  574. Soldin OP, Hoffman EG, Waring MA, Soldin SJ (2005) Pediatric reference intervals for FSH, LH, estradiol, T3, free T3, cortisol, and growth hormone on the DPC IMMULITE 1000. Clin. Chim. Acta. 355; 205–210.Google Scholar
  575. Son ED, Lee JY, Lee S, Kim MS, Lee BG, Chang IS, Chung JH (2005) Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo. J. Invest. Dermatol. 124; 1149–1161.Google Scholar
  576. Song RX, Santen RJ (2006) Membrane initiated estrogen signaling in breast cancer. Biol. Reprod. 75; 9–16.Google Scholar
  577. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ. Health Perspect. 103; 113–122.Google Scholar
  578. Speight AC, Hancock KW, Oakey RE (1979) Non-protein-bound oestrogens in plasma and urinary excretion of unconjugated oestrogens in men. Clin. Endocrinol. 10; 329–341.Google Scholar
  579. Spierto FW, Gardner F, Smith SJ (2001) Evaluation of an EIA method for measuring serum levels of the estrogen metabolite 2-hydroxyestrone in adults. Steroids. 66; 59–62.Google Scholar
  580. Spink DC, Lincoln DW 2nd, Dickerman HW, Gierthy JF (1990) 2,3,7,8-Tetrachlorodibenzo-p-dioxin causes an extensive alteration of 17 beta-estradiol metabolism in MCF-7 breast tumor cells. Proc. Natl. Acad. Sci. USA. 87; 6917–6921.Google Scholar
  581. Spink DC, Zhang F, Hussain MM, Katz BH, Liu X, Hilker DR, Bolton JL (2001) Metabolism of equilenin in MCF-7 and MDA-MB-231 human breast cancer cells. Chem. Res. Toxicol. 14; 572–581.Google Scholar
  582. Stanczyk FZ (2002) Measurement of serum estradiol levels in postmenopausal women. JAMA. 288; 450–451; author reply 451.Google Scholar
  583. Stanczyk FZ, Miyakawa I, Goebelsmann U (1980) Direct radio-immunoassay of urinary estrogen and pregnanediol glucuronides during the menstrual cycle. Am. J. Obstet. Gynecol. 137; 443–450.Google Scholar
  584. Stanczyk FZ, Cho MM, Endres DB, Morrison JL, Patel S, Paulson RJ (2003) Limitations of direct estradiol and testosterone immunoassay kits. Steroids. 68; 1173–1178.Google Scholar
  585. Stanczyk FZ, Lee JS, Santen RJ (2007) Standardization of steroid hormone assays: why, how, and when? Cancer Epidemiol. Biomarkers Prev. 16; 1713–1719.Google Scholar
  586. Stanford BD, Weinberg HS (2007) Isotope dilution for quantitation of steroid estrogens and nonylphenols by gas chromatography with tandem mass spectrometry in septic, soil, and ground-water matrices. J. Chromatogr. A. 1176; 26–36.Google Scholar
  587. Stanway SJ, Delavault P, Purohit A, Woo LW, Thurieau C, Potter BV, Reed MJ (2007a) Steroid sulfatase: a new target for the endocrine therapy of breast cancer. Oncologist. 12; 370–374.Google Scholar
  588. Stanway SJ, Purohit A, Reed MJ (2007b) Measurement of estrone sulfate in postmenopausal women: comparison of direct RIA and GC-MS/MS methods for monitoring response to endocrine therapy in women with breast cancer. Anticancer Res. 27; 2765–2767.Google Scholar
  589. Stavrakakis C, Colin R, Héquet V, Faur C, Le Cloirec P (2008) Development and statistical validation of a quantitative method for the determination of steroid hormones in environmental water by column liquid chromatography/tandem mass spectrometry. J. AOAC Int. 91; 237–246.Google Scholar
  590. Stopforth A, Burger BV, Crouch AM, Sandra P (2007) The analysis of estrone and 17beta-estradiol by stir bar sorptive extraction-thermal desorption-gas chromatography/mass spectrometry: application to urine samples after oral administration of conjugated equine estrogens. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 856; 156–164.Google Scholar
  591. Stuart JD (2007) Determination of endocrine disrupting chemicals found in environmental samples by gas chromatography/mass spectrometry. Adv. Chromatogr. 45; 245–273.Google Scholar
  592. Su P, Zhang XX, Chang WB (2003) Direct immunoassay of estrone by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis. 24; 3197–3201.Google Scholar
  593. Su P, Zhang XX, Chang WB (2005) Development and application of a multi-target immunoaffinity column for the selective extraction of natural estrogens from pregnant women’s urine samples by capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 816; 7–14.Google Scholar
  594. Sun Y, Gu C, Liu X, Liang W, Yao P, Bolton JL, van Breemen RB (2005) Ultrafiltration tandemmass spectrometry of estrogens for characterization of structure and affinity for human estrogen receptors. J. Am. Soc. Mass. Spectrom. 16; 271–279.Google Scholar
  595. Sundaram B, Settlage JA, Ohorodnik SK, Taylor PA (2003) A combined GC/MS/MS and LC/ MS/MS bioanalytical method for the quantification of estradiol, estrone, estrone-sulfate, testosterone and anderostenedione. Proceedings of 51st American Society for Mass Spectrometry Conference on Mass Spectrometry and Allied Topics, Montreal, Canada (Abstract WPE086).Google Scholar
  596. Supko JG, Phillips LR (1995) High-performance liquid chromatographic assay for genistein in biological fluids. J. Chromatogr. B Biomed. Appl. 666; 157–167.Google Scholar
  597. Suri R, Hellemann G, Cohen L, Aquino A, Altshuler L (2008) Saliva estriol levels in women with and without prenatal antidepressant treatment. Biol. Psychiatry. 64; 533–537.Google Scholar
  598. Suzuki E, Saegusa K, Matsuki Y, Nambara T (1993) Assay of enzymic O-methylation of catechol oestrogens by high-performance liquid chromatography with coulometric detection. J. Chromatogr. 617; 221–225.Google Scholar
  599. Suzuki E, Nakagomi M, Hashimoto M, Agui M, Iida S, Konno K, Hara Y, Kurihara H, Matsuki Y, Imai K, Ono H (1999) Preparation of specific antisera to 15alpha-hydroxyestrogens. Steroids. 64; 551–557.Google Scholar
  600. Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga S, Hirakawa H, Kimura M, Sasano H (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res. 63; 2762–2770.Google Scholar
  601. Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, Sasano H (2005) Sex steroid-producing enzymes in human breast cancer. Endocr. Relat. Cancer. 12; 701–720.Google Scholar
  602. Suzuki T, Miki Y, Moriya T, Akahira J, Hirakawa H, Ohuchi N, Sasano H (2007) In situ production of sex steroids in human breast carcinoma. Med. Mol. Morphol. 40; 121–127.Google Scholar
  603. Suzuki T, MiM Y, Akahira JI, Moriya T, Ohuchi N, Sasano H (2008a) Aromatase in human breast carcinoma as a key regulator of intratumoral sex steroid concentrations. Endocr. J. 55; 455–463.Google Scholar
  604. Suzuki T, MiM Y, Ohuchi N, Sasano H (2008b) Intratumoral estrogen production in breast carcinoma: significance of aromatase. Breast Cancer. 15; 270–277. Jul 12, 2008 [Epub ahead of print].Google Scholar
  605. Swaneck GE, Fishman J (1988) Covalent binding of the endogenous estrogen 16 a-hydroxyestrone to estradiol receptor in human breast cancer cells: characterization and intranuclear localization. Proc. Natl. Acad. Sci. USA. 85; 7831–7835.Google Scholar
  606. Szulc P, Claustrat B, Munoz F, Marchand F, Delmas PD (2004) Assessment of the role of 17beta-oestradiol in bone metabolism in men: does the assay technique matter? The MINOS study. Clin. Endocrinol. (Oxf). 61; 447–457. Erratum in: Clin. Endocrinol. (Oxf). 61; 522.Google Scholar
  607. Szumski M, Buszewski B (2004) Molecularly imprinted polymers: a new tool for separation of steroid isomers. J. Sep. Sci. 27; 837–842.Google Scholar
  608. Tacey RL, Harman WJ, Kelly LL (1994) Development of a highly sensitive and specific assay for plasma ethinylestradiol using combined extraction liquid chromatography and radioimmunoassay. J. Pharm. Biomed. Anal. 12; 1303–1310.Google Scholar
  609. Tai SS, Welch MJ (2005) Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography–tandem mass spectrometry. Anal. Chem. 77; 6359–6363.Google Scholar
  610. Taieb J, Benattar C, Birr AS, Lindenbaum A (2002) Limitations of steroid determination by direct immunoassay. Clin. Chem. 48; 583–585.Google Scholar
  611. Taieb J, Benattar C, Birr AS, Pous C (2003a) From ACS-180 to Advia-Centaur (Bayer diagnostics): assessment of estradiol, progesterone, LH and FSH assays. Ann. Biol. Clin. (Paris). 61; 223–228 (title translated from French).Google Scholar
  612. Taieb J, Benattar C, Diop R, Birr AS, Lindenbaum A (2003b) Use of the Architect-i2000 estradiol immunoassay during in vitro fertilization. Clin. Chem. 49; 183–186.Google Scholar
  613. Taieb J, Mathian B, Millot F, Patricot MC, Mathieu E, Queyrel N, Lacroix I, Somma-Delpero C, Boudou P (2003c) Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography–mass spectrometry in sera from 116 men, women, and children. Clin. Chem. 49; 1381–1395.Google Scholar
  614. Taieb J, Benattar C, Poiis C (2003d) Hormone determination in the management and monitoring of cycles of medically-assisted reproductive technology: value and difficulties of use. Ann. Biol. Clin. (Paris). 61; 533–540 (title translated from French).Google Scholar
  615. Taieb J, Mendez Lozano DH, Benattar C, Messaoudi C, Poiis C (2007) Enlightenment about the new Architect-i2000 estradiol (Abbott Laboratories) immunoassay during in vitro fertilization. Clin. Biochem. 40; 1423–1426.Google Scholar
  616. Taioli E, Bradlow HL, Garbers SV, Sepkovic DW, Osborne MP, Trachman J, Gangulyl S, Garte SJ (1999) CyplAl genotype, estradiol, metabolism and breast cancer in African-Americans AACR Spring 1996# 1697. Cancer Prevention Detection. 23; 232–237.Google Scholar
  617. Takenouchi N, Oshima K, Shimada K, Takahashi M (2004) The development of a sensitive enzyme immunoassay for the determination of estrone and estradiol-17beta in bovine blood plasma based on the same homologous combination with antiserum and steroid-enzyme conjugate. J. Vet. Med. Sci. 66; 1315–1321.Google Scholar
  618. Tamate K, Charleton M, Gosling JP, Egan D, Ishikawa M, Fottrell PF, Kane MM (1997) Direct colorimetric monoclonal antibody enzyme immunoassay for estradiol-17 beta in saliva. Clin. Chem. 43; 1159–1164.Google Scholar
  619. Tarrant AM, Atkinson S, Atkinson MJ (1999) Estrone and estradiol-17 beta concentration in tissue of the scleractinian coral, Montipora verrucosa. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122; 85–92.Google Scholar
  620. Taylor NF (2006) Urinary steroid profiling. Methods Mol. Biol. 324; 159–175.Google Scholar
  621. Tejada F, Cremades A, Monserrat F, Peñafiel R (1998) Interference of the antihormone RU486 in the determination of testosterone and estradiol by enzyme-immunoassay. Clin. Chim. Acta. 275; 63–69.Google Scholar
  622. Tello FL, Hernández DM (2000) Performance evaluation of nine hormone assays on the Immulite 2000 immunoassay system. Clin. Chem. Lab. Med. 38; 1039–1042.Google Scholar
  623. Ternes TA, Andersen H, Gilberg D, Bonerz M (2002) Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal. Chem. 74; 3498–3504.Google Scholar
  624. Thanki KH, Beach TA, Bass AI, Dickermant HW (1979) Stimulation of oligonucleotide binding of estradiol receptor complexes by accessory proteins. Nucl. Acids Res. 6; 3859–3878.Google Scholar
  625. Thienpont LM, DeLeenheer AP (1998) Efforts by industry towards standardization of serum estradiol-17|3 measurements. Clin. Chem. 44; 671–674.Google Scholar
  626. Thienpont LM, Verhaeghe PG, Van Brussel KA, De Leenheer AP (1988) Estradiol-17|3 quantified in serum by isotope dilution-gas chromatography–mass spectrometry: reversed-phase Cl8 high-performance liquid chromatography compared with immuno-affinity chromatography for sample pretreatment. Clin. Chem. 34; 2066–2069.Google Scholar
  627. Thienpont LM, DeLeenheer AP, Dirscherl C (1997) The certification of estradiol-17|3 in three lyophilized serum materials (CRM 576, CRM 577 and CRM 579). EUR 17540 EN. Directorate-General for Science, Research and Development, Community Bureau of Reference, Brussels.Google Scholar
  628. Tiefenauer LX, Bodmer DM, Frei W, Andres RY (1988) Prevention of bridge binding in immunoassays: a general estradiol tracer structure. J. Steroid Biochem. 32; 251–257.Google Scholar
  629. Tikkanen MJ, Vihma V, Jauhiainen M, Höckerstedt A, Helisten H, Kaamanen M (2002a) Lipoprotein-associated estrogens. Cardiovasc. Res. 56; 184–188.Google Scholar
  630. Tikkanen MJ, Vihma V, Höckerstedt A, Jauhiainen M, Helisten H, Kaamanen M (2002b) Lipophilic oestrogen derivatives contained in lipoprotein particles. Acta. Physiol. Scand. 176; 117–121.Google Scholar
  631. Tivis LJ, Richardson MD, Peddi E, Arjmandi B (2005) Saliva versus serum estradiol: implications for research studies using postmenopausal women. Prog. Neuropsychopharmacol. Biol. Psychiatry. 29; 727–732.Google Scholar
  632. Tiwari RK, Guo L, Bradlow HL, Telang NT, Osborne MP (1994) Selective responsiveness of human breast cancer cells to indole-3-carbinol, a chemopreventive agent. J. Natl. Cancer Inst. 86; 126–131.Google Scholar
  633. Toniolo P, Lukanova A (2005) The challenge of measuring circulating estradiol at low concentrations. Breast Cancer Res. 7; 45–47.Google Scholar
  634. Toran-Allerand CD, Tinnikov AA, Singh RJ, Nethrapalli IS (2005) 17alpha-estradiol: a brain-active estrogen? Endocrinology. 146; 3843–3850.Google Scholar
  635. Towobola OA, Crilly RC, Oakey RE (1980) Oestrone sulphate in plasma from postmenopausal women and the effects of oestrogen and androgen therapy. Clin. Endocrinol. 13; 461–471.Google Scholar
  636. Tremblay RR, Dube JY (1974) Plasma concentrations of free and non-TeBG bound testosterone in women on oral contraceptives. Contraception. 10; 599–605.Google Scholar
  637. Tripodi V, Flor S, Carlucci A, Lucangioli S (2006) Simultaneous determination of natural and synthetic estrogens by EKC using a novel microemulsion. Electrophoresis. 27; 4431–4438.Google Scholar
  638. Trösken ER, Fischer K, Völkel W, Lutz WK (2006) Inhibition of human CYP19 by azoles used as antifungal agents and aromatase inhibitors, using a new LC-MS/MS method for the analysis of estradiol product formation. Toxicology. 219; 33–40.Google Scholar
  639. Tschmelak J, Proll G, Gauglitz G (2004) Immunosensor for estrone with an equal limit of detection as common analytical methods. Anal. Bioanal. Chem. 378; 744–745.Google Scholar
  640. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 227; 115–124.Google Scholar
  641. Tulchinsky D, Korenman SG (1970) A radio-ligand assay for plasma estrone: normal values and variations during the menstrual cycle. J. Clin. Endocrinol. Metab. 31; 76–80.Google Scholar
  642. Tulchinsky D, Frigoletto FD, Ryan KJ, Fishman J (1975) Plasma estetrol as an index of fetal wellbeing. J. Clin. Endocrinol. Metab. 40; 560–567.Google Scholar
  643. Twaddle NC, Churchwell MI, Newbold RR, Delclos KB, Doerge DR (2003) Determination using liquid-chromatography–electrospray tandem mass spectroscopy of ethinylestradiol serum pharmacokinetics in adult Sprague-Dawley rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 793; 309–315.Google Scholar
  644. Ursin G, London S, Stanczyk FZ, Gentzschein E, Paganini-Hill A, Ross RK, Pike MC (1999) Urinary 2-hydroxyestrone/16alpha-hydroxyestrone ratio and risk of breast cancer in post-menopausal women. J. Natl. Cancer Inst. 91; 1067–1072.Google Scholar
  645. Ursin G, Wilson M, Henderson BE, Kolonel LN, Monroe K, Lee HP, Seow A, Yu MC, Stanczyk FZ, Gentzschein E (2001) Do urinary estrogen metabolites reflect the differences in breast cancer risk between Singapore Chinese and United States African-American and white women? Cancer Res. 61; 3326–3329.Google Scholar
  646. Utsunomiya H, Ito K, Suzuki T, Kitamura T, Kaneko C, Nakata T, Niikura H, Okamura K, Yaegashi N, Sasano H (2004) Steroid sulfatase and estrogen sulfotransferase in human endometrial carcinoma. Clin. Cancer Res. 10; 5850–5856.Google Scholar
  647. Van Aerden C, Debrauwer L, Tabet JC, Paris A (1998) Analysis of nucleoside-estrogen adducts by LC/ESI/MS. Analyst. 123; 2677–2680.Google Scholar
  648. Vanluchene E, Hinting A, Dhont M, Serreyn R, Vandekerckhove D (1990) Steroid determinations in human ovarian follicular fluid using capillary gas chromatography. J. Steroid Biochem. 35; 83–89.Google Scholar
  649. Vanluchene E, De Sutter P, Dhont M, Vandekerckhove D (1991) Steroid determinations in human ovarian follicular fluid using reversed phase liquid chromatography. J. Steroid Biochem. Mol. Biol. 39; 177–180.Google Scholar
  650. Vihma V, Adlercreutz H, Tiitinen A, Kiuru P, Wähälä K, Tikkanen MJ (2001) Quantitative determination of estradiol fatty acid esters in human pregnancy serum and ovarian follicular fluid. Clin. Chem. 47; 1256–1262.Google Scholar
  651. Vihma V, Vehkavaara S, Yki-Järvinen H, Hohtari H, Tikkanen MJ (2003a) Differential effects of oral and transdermal estradiol treatment on circulating estradiol fatty acid ester concentrations in postmenopausal women. J. Clin. Endocrinol. Metab. 88; 588–593.Google Scholar
  652. Vihma V, Tiitinen A, Ylikorkala O, Tikkanen MJ (2003b) Quantitative determination of estradiol fatty acid esters in lipoprotein fractions in human blood. J. Clin. Endocrinol. Metab. 88; 2552–2555.Google Scholar
  653. Vining RF, Compton P, McGinley R (1981) Steroid radioimmunoassay-effect of shortened incubation time on specificity. Clin. Chem. 27; 910–913.Google Scholar
  654. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84; 3666–3672.Google Scholar
  655. Vogeser M, Parhofer KG (2007) Liquid chromatography tandem-mass spectrometry (LC-MS/MS) - technique and applications in endocrinology. Exp. Clin. Endocrinol. Diabetes. 115; 559–570.Google Scholar
  656. Vogeser M, Seger C (2008) A decade of HPLC-MS/MS in the routine clinical laboratory – goals for future developments. Clin. Biochem. 41; 649–662.Google Scholar
  657. Voss HF (1999) Saliva as a fluid for measurement of estriol levels. Am. J. Obstet. Gynecol. 180; S226–S231.Google Scholar
  658. Vulliet E, Baugros JB, Flament-Waton MM, Grenier-Loustalot MF (2007) Analytical methods for the determination of selected steroid sex hormones and corticosteriods ( sic ) in wastewater. Anal. Bioanal. Chem. 387; 2143–2151.Google Scholar
  659. Vulliet E, Wiest L, Baudot R, Grenier-Loustalot MF (2008) Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A. 1210; 84–91. Sep 16, 2008 [Epub ahead of print].Google Scholar
  660. Wada K, Takeuchi A, Saiki K, Sutomo R, Van Rostenberghe H, Yusoff NM, Laosombat V, Sadewa AH, Talib NA, Yusoff S, Lee MJ, Ayaki H, Nakamura H, Matsuo M, Nishio H (2006) Evaluation of mutation effects on UGT1A1 activity toward 17beta-estradiol using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 838; 9–14.Google Scholar
  661. Wald NJ, Cuckle HS, Densem JW, Nanchahal K, Royston P, Chard T, Haddow JE, Knight GJ, Palomaki GE, Canick JA (1988) Maternal serum screening for Down’s syndrome in early pregnancy. BMJ. 297; 883–887. Erratum in: BMJ. 297; 1029.Google Scholar
  662. Wang CC, Prasain JK, Barnes S (2002) Review of the methods used in the determination of phytoestrogens. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 777; 3–28.Google Scholar
  663. Wang S, Paris F, Sultan CS, Song RX, Demers LM, Sundaram B, Settlage J, Ohorodnik S, Santen RJ (2005) Recombinant cell ultrasensitive bioassay for measurement of estrogens in post-menopausal women. J. Clin. Endocrinol. Metab. 90; 1407–1413.Google Scholar
  664. Wang S, Lin S, Du L, Zhuang H (2006) Flow injection chemiluminescence immunoassay for 17beta-estradiol using an immunoaffinity column. Anal. Bioanal. Chem. 384; 1186–1190.Google Scholar
  665. Wang S, Huang W, Fang G, He J, Zhang Y (2008) On-line coupling of solid-phase extraction to high-performance liquid chromatography for determination of estrogens in environment. Anal. Chim. Acta. 606; 194–201.Google Scholar
  666. Wang Y, Griffiths WJ (2008) Capillary liquid chromatography combined with tandem mass spectrometry for the study of neurosteroids and oxysterols in brain. Neurochemistry Int. 52; 506–521.Google Scholar
  667. Wang YZ, Wong YC (1998) Sex hormone-induced prostatic carcinogenesis in the noble rat: the role of insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in the development of prostate cancer. Prostate. 35; 165–177.Google Scholar
  668. Warner M, Gustafsson JA (2004) How to understand estrogen signaling from the phenotypes of ERalpha and ERbeta knockout mice. Ernst. Schering Res. Found Workshop. 46; 63–77.Google Scholar
  669. Warren RJ, Fotherby K (1974) Radioimmunoassay of ethinyl oestradiol. J. Endocrinol. 63; 30 p.Google Scholar
  670. Watabe Y, Kubo T, Nishikawa T, Fujita T, Kaya K, Hosoya K (2006) Fully automated liquid chromatography–mass spectrometry determination of 17beta-estradiol in river water. J. Chromatogr. A. 1120; 252–259.Google Scholar
  671. Weigel S, Kallenborn R, Hühnerfuss H (2004) Simultaneous solid-phase extraction of acidic, neutral and basic pharmaceuticals from aqueous samples at ambient (neutral) pH and their determination by gas chromatography–mass spectrometry. J. Chromatogr. A. 1023; 183–195.Google Scholar
  672. Wellejus A, Olsen A, Tjonneland A, Thomsen BL, Overvad K, Loft S (2005) Urinary hydroxyestrogens and breast cancer risk among postmenopausal women: a prospective study. Cancer Epidemiol. Biomarkers Prev. 14; 2137–2142.Google Scholar
  673. Wen Y, Zhou BS, Xu Y, Jin SW, Feng YQ (2006) Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. J. Chromatogr. A. 1133; 21–28.Google Scholar
  674. Westgard JO (2004) (Author) Nothing but the Truth about Quality: Essays on Quality Management in the Healthcare Laboratory. Westgard QC, Madison, WI, see also http//james.madison.com, which contains up-dated information and on-line order form for this book.
  675. Wheeler MJ (1992) Automated immunoassay analysers-an overview. Commercial Lab. Med. 1; 1–5.Google Scholar
  676. Wheeler MJ (2001) Automated immunoassay analysers. Ann. Clin. Biochem. 38; 217–229.Google Scholar
  677. Williams D, Chen S, Young MK (2001) Ratiometric analysis of the ferrocene boronate esters of 2- and 4-hydroxyestradiol by tandem electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 15; 182–186.Google Scholar
  678. Wilson VS, Bobseine K, Gray LE Jr (2004) Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for thedetection of estrogen receptor agonist and antagonists. Toxicol. Sci. 81; 69–77.Google Scholar
  679. Wisdom GB (1976) Enzyme-immunoassay. Clin. Chem. 22; 1243–1255.Google Scholar
  680. Wolthers BG, Kraan GP (1999) Clinical applications of gas chromatography and gas chromatography–mass spectrometry of steroids. J. Chromatogr. A. 843; 247–274.Google Scholar
  681. Woods MN, Gorbach SL, Longcope C, Goldin BR, Dwyer JT, Morrill-LaBrode A (1989) Low-fat, high-fiber diet and serum estrone sulfate in premenopausal women. Am. J. Clin. Nutr. 49; 1179–1183.Google Scholar
  682. Wright K, Collins DC, Musey PI, Preedy JRK (1978a) Direct radioimmunoassay of specific urinary estrogen glucosiduronates in normal men and non-pregnant women. Steroids. 31; 407–426.Google Scholar
  683. Wright K, Collins DC, Virkler M, Musey PI, Dale E, Preedy JRK (1978b) A direct radioimmunoassay for estriol-16 a -glucosiduronate: its use in the determination of plasma and urine levels and renal clearance of this conjugate in pregnancy. Am. J. Obstet. Gynecol. 131; 255–261.Google Scholar
  684. Wright K, Collins DC, Preedy JRK (1978c) The use of specific radioimmunoassays to determine the renal clearance rates of estrone and 17 b-estradiol during the menstrual cycle. J. Clin. Endocrinol. Metab. 47; 1084–1091.Google Scholar
  685. Wu CH, Motohashi T, Abdel-Rahman HA, Flickinger GL, Mikhail G (1976) Free and protein-bound plasma estradiol-17 b during the menstrual cycle. J. Clin. Endocrinol. Metab.43; 436–445.Google Scholar
  686. Wu H, Ramsay C, Ozaeta P, Liu L, Aboleneen H (2002) Serum estradiol quantified by isotope dilution-gas chromatography/mass spectrometry. Clin. Chem. 48; 364–366. Erratum in: Clin. Chem. 48; 686.Google Scholar
  687. Wu Q, Wang M, Simon JE (2004) Analytical methods to determine phytoestrogenic compounds. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 812; 325–355.Google Scholar
  688. Wudy SA, Wachter UA, Homoki J, Teller WM, Shackleton CH (1992) Androgen metabolism assessment by routine gas chromatography/mass spectrometry profiling of plasma steroids: Part 1, Unconjugated steroids. Steroids. 57; 319–324.Google Scholar
  689. Xia YQ, Chang SW, Patel S, Bakhtiar R, Karanam B, Evans DC (2004) Trace level quantification of deuterated 17beta-estradiol and estrone in ovariectomized mouse plasma and brain using liquid chromatography/tandem mass spectrometry following dansylation reaction. Rapid Commun. Mass Spectrom. 18; 1621–1628.Google Scholar
  690. Xiao X, McCalley D (2000) Quantitative analysis of estrogens in human urine using gas chroma-tography/negative chemical ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 14; 1991–2001.Google Scholar
  691. Xiao XY, McCalley DV, McEvoy J (2001) Analysis of estrogens in river water and effluents using solid-phase extraction and gas chromatography-negative chemical ionisation mass spectrometry of the pentafluorobenzoyl derivatives. J. Chromatogr. 923; 195–204.Google Scholar
  692. Xu L, Spink DC (2008) Analysis of steroidal estrogens as pyridine-3-sulfonyl derivatives by liquid chromatography electrospray tandem mass spectrometry. Anal. Biochem. 375; 105–114.Google Scholar
  693. Xu X, Duncan AM, Mars BE, Kurzer MS (1998) Effects of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women. Cancer Epidemiol. Biomarkers Prev. 7; 1101–1108.Google Scholar
  694. Xu X, Duncan AM, Wangen KE, Kurzer MS (2000) Soy consumption alters endogenous estrogen metabolism in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 9; 781–786.Google Scholar
  695. Xu X, Ziegler RG, Waterhouse DJ, Saavedra JE, Keefer LK (2002) Stable isotope dilution high-performance liquid chromatography–electrospray ionization mass spectrometry method for endogenous 2- and 4-hydroxyestrones in human urine. J. Chromatogr. B. 780; 315–330.Google Scholar
  696. Xu X, Keefer LK, Waterhouse DJ, Saavedra JE, Veenstra TD, Ziegler RG (2004) Measuring seven endogenous ketolic estrogens simultaneously in human urine by high-performance liquid chromatography–mass spectrometry. Anal. Chem. 76; 5829–5836.Google Scholar
  697. Xu X, Veenstra TD, Fox SD, Roman JM, Issaq HJ, Falk R, Saavedra JE, Keefer LK, Ziegler RG (2005) Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography–mass spectrometry. Anal. Chem. 77; 6646–6654.Google Scholar
  698. Xu X, Roman JM, Veenstra TD, Van Anda J, Ziegler RG, Issaq HJ (2006) Analysis of fifteen estrogen metabolites using packed column supercritical fluid chromatography–mass spectrometry. Anal. Chem. 78; 1553–1558.Google Scholar
  699. Xu X, Roman J, Issaq H, Keefer L, Veenstra T, Ziegler R (2007) Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography–tandem mass spectrometry. Anal. Chem. 79; 7813–7821.Google Scholar
  700. Xu X, Othman Eel-D, Issaq HJ, Hornung D, Al-Hendy A, Veenstra TD (2008) Multiplexed quan-titation of endogenous estrogens and estrogen metabolites in human peritoneal fluid. Electrophoresis. 29; 2706–2713.Google Scholar
  701. Yaffe K, Sawaya G, Lieberburg I, Grady D (1998) Estrogen therapy in postmenopausal women effects on cognitive function and dementia. JAMA. 279; 688–695.Google Scholar
  702. Yamada H, Yoshizawa K, Hayase T (2002) Sensitive determination method of estradiol in plasma using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 775; 209–213.Google Scholar
  703. Yamashita K, Kobayashi S, Tsukamoto S, Numazawa M (2007a) Synthesis of pyridine-carboxylate derivatives of hydroxysteroids for liquid chromatography–electrospray ionization–mass spectrometry. Steroids. 72; 50–59.Google Scholar
  704. Yamashita K, Okuyama M, Watanabe Y, Honma S, Kobayashi S, Numazawa M (2007b) Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography–electrospray ionization tandem mass spectrometry. Steroids. 72; 819–827.Google Scholar
  705. Yang DT, Owen WE, Ramsay CS, Xie H, Roberts WL (2004) Performance characteristics of eight estradiol immunoassays. Am. J. Clin. Path. 122; 322–327.Google Scholar
  706. Yang L, Lan C, Liu H, Dong J, Luan T (2006a) Full automation of solid-phase microextraction/on-fiber derivatization for simultaneous determination of endocrine-disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 386; 391–397.Google Scholar
  707. Yang L, Luan T, Lan C (2006b) Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry. J. Chromatogr. A. 1104; 23–32.Google Scholar
  708. Yang L, Gaikwad NW, Meza J, Cavalieri EL, Muti P, Trock B, Rogan EG (2008) Novel biomarkers for risk of prostate cancer: Results from a case-control study. Prostate. 69; 41–48.Google Scholar
  709. Yang WC, Regnier FE, Sliva D, Adamec J (2008) Stable isotope-coded quaternization for comparative quantification of estrogen metabolites by high-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol Biomed. Life Sci. 870; 233–240.Google Scholar
  710. Yang YJ, Lee J, Choi MH, Chung BC (2003) Direct determination of estriol 3- and 16-glucuronides in pregnancy urine by column-switching liquid chromatography with electrospray tandem mass spectrometry. Biomed. Chromatogr. 17; 219–225.Google Scholar
  711. Yeast JD, Lu G (2005) Biochemical markers for the prediction of preterm labor. Obstet. Gynecol. Clin. North Am. 32; 369–381.Google Scholar
  712. Yeast JD, Lu G (2007) Biochemical markers for the prediction of preterm delivery. Clin. Perinatal. 34; 573–586.Google Scholar
  713. Ying GG, Kookana RS, Chen Z (2002) On-line solid-phase extraction and fluorescence detection of selected endocrine disrupting chemicals in water by high-performance liquid chromatography. J. Environ. Sci. Health B. 37; 225–234.Google Scholar
  714. Yoon Y, Westerhoff P, Snyder SA, Esparza M (2003) HPLC-fluorescence detection and adsorption of bisphenol A, 17beta-estradiol, and 17alpha-ethynyl estradiol on powdered activated carbon. Water Res. 37; 3530–3537.Google Scholar
  715. Yue W, Santen RJ, Wang JP, Li Y, Verderame MF, Bocchinfuso WP, Korach KS, Devanesan P, Todorovic R, Rogan EG, Cavalieri EL (2003) Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J. Steroid Biochem. Mol. Biol. 86; 477–486.Google Scholar
  716. Zacharia LC, Dubey RK, Jackson EK (2004) A gas-chromatography/mass spectrometry assay to measure estradiol, catecholestrogens and methoxyestrogens in plasma. Steroids. 69; 255–261.Google Scholar
  717. Zahid M, Gaikwad NW, Ali MF, Lu F, Saeed M, Yang L, Rogan EG, Cavalieri EL (2008) Prevention of estrogen-DNA adduct formation in MCF-10F cells by resveratrol. Free Radic. Biol. Med. 45; 136–145.Google Scholar
  718. Zarzycki PK (2008) Simple horizontal chamber for thermostated micro-thin-layer chromatography. J. Chromatogr. A. 1187; 250–259.Google Scholar
  719. Zarzycki PK, Kulhanek KM, Smith R, Clifton VL (2006) Determination of steroids in human plasma using temperature-dependent inclusion chromatography for metabolomic investigations. J. Chromatogr. A. 1104; 203–208.Google Scholar
  720. Zhang F, Swanson SM, van Breemen RB, Liu X, Yang Y, Gu C, Bolton JL (2001) Equine estrogen metabolite 4-hydroxyequilenin induces DNA damage in the rat mammary tissues: formation of single-strand breaks, apurinic sites, stable adducts, and oxidized bases. Chem. Res. Toxicol. 14; 1654–1659.Google Scholar
  721. Zhang H, Henion J (1999) Quantitative and qualitative determination of estrogen sulfates in human urine by liquid chromatography/tandem mass spectrometry using 96-well technology. Anal. Chem. 71; 3955–3964.Google Scholar
  722. Zhang H, Cui D, Wang B, Han YH, Balimane P, Yang Z, Sinz M, Rodrigues AD (2007) Pharmacokinetic drug interactions involving 17alpha-ethinylestradiol: a new look at an old drug. Clin. Pharmacokinet. 46; 133–157.Google Scholar
  723. Zhang H, Yamada H, Tsuno H (2008) Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environ. Sci. Technol. 42; 3375–3380.Google Scholar
  724. Zhang Q, Gross ML (2008) Efficient synthesis, liquid chromatography purification, and tandem mass spectrometric characterization of estrogen-modified DNA bases. Chem. Res. Toxicol. 21; 1244–1252.Google Scholar
  725. Zhang Q, Aft RL, Gross ML (2008) Estrogen carcinogenesis: specific identification of estrogen-modified nucleobase in breast tissue from women. Chem. Res. Toxicol. 21; 1509–1513.Google Scholar
  726. Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG (2007) Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 56; 887–894.Google Scholar
  727. Zhao C, Dahlman-Wright K, Gustafsson JA (2008) Estrogen receptor beta: an overview and update. Nucl. Recept. Signal. 6; e003.Google Scholar
  728. Zhao H, Tian ZZ, Chen BY (2005) Electroacupuncture stimulates hypothalamic aromatization. Brain Res. 1037; 164–170.Google Scholar
  729. Zhao L, Lin JM (2005) Development of a micro-plate magnetic chemiluminescence enzyme immunoassay (MMCLEIA) for rapid- and high-throughput analysis of 17beta-estradiol in water samples. J. Biotechnol. 118; 177–186.Google Scholar
  730. Zhao M, Baker SD, Yan X, Zhao Y, Wright WW, Zirkin BR, Jarow JP (2004) Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids. 69; 721–726.Google Scholar
  731. Zhu BT, Lee AJ (2005) NADPH-dependent metabolism of 17beta-estradiol and estrone to polar and nonpolar metabolites by human tissues and cytochrome P450 isoforms. Steroids. 70; 225–244.Google Scholar
  732. Ziegler RG, Rossi SC, Fears TR, Bradlow HL, Adlercreutz H, Sepkovic D, Kiuru P, Wahala K, Vaught JB, Donaldson JL, Falk RT, Fillmore CM, Siiteri PK, Hoover RN, Gail MH (1997) Quantifying estrogen metabolism: an evaluation of the reproducibility and validity of enzyme immunoassays for 2-hydroxyestrone and 16alpha-hydroxyestrone in urine. Environ. Health Perspect. 105; 607–614.Google Scholar
  733. Zirilli L, Rochira V, Diazzi C, Caffagni G, Carani C (2008) Human models of aromatase deficiency. J. Steroid Biochem. Mol. Biol. 109; 212–218.Google Scholar
  734. Zorita S, Hallgren P, Mathiasson L (2008) Steroid hormone determination in water using an environmentally friendly membrane based extraction technique. J. Chromatogr. A. 1192; 1–8.Google Scholar
  735. Zucchelli GC, Giannessi D, Piro MA, Ferdeghini M, Malvano R (1979) Radioimmunoassay of unconjugated and total serum estetrol using a 125I-iodinated tracer. Harm. Res. 11; 227–239.Google Scholar
  736. Zuehlke S, Duennbier U, Heberer T (2005) Determination of estrogenic steroids in surface water and wastewater by liquid chromatography–electrospray tandem mass spectrometry. J. Sep. Sci. 28; 52–58.Google Scholar
  737. Zuo Y, Zhang K, Lin Y (2007) Microwave-acclerated derivatization for the simultaneous gas chromatographic-mass spectrometric analysis of natural and synthetic estrogenic steroids. J. Chromatogr. A. 1148; 211–218.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Geoff Holder
    • 1
  • Hugh L. J. Makin
    • 2
    Email author
  • H. Leon Bradlow
    • 3
  1. 1.Regional Endocrine Laboratory, Department of Clinical BiochemistrySelly Oak HospitalBirminghamUK
  2. 2.Barts & the Royal London School of Medicine & DentistryQueen Mary University of LondonLondonUK
  3. 3.Alice and David Jurist Institute for ResearchHackensack University Medical CenterHackensackUSA

Personalised recommendations