Analysis of Progestagens

  • P. J. WoodEmail author
  • D. B. Gower


This chapter covers the analysis of steroids with progesterone-like activity, classified as “progestagens”. Steroids in this group include the naturally occurring C21 steroids, progesterone (4-pregnene-3,20-dione) and its metabolites, together with synthetic steroids, such as norgestrel norethisterone (NE), and medroxyprogesterone acetate which also have progestational activity.


Traumatic Brain Injury Corpus Luteum Congenital Adrenal Hyperplasia Progesterone Concentration Neuroactive Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



DBG thanks Mrs D.M. Gower for preparation of the manuscript.


  1. Abraham GE, Swerdloff R, Tulchinsky D, Odell WD (1971) Radioimmunoassay of plasma progesterone. J. Clin. Endocrinol. Metab. 29; 866–870.Google Scholar
  2. Allen WM (1950) Simple method for analysing complicated absorption curves of use in colo-rimetric determination of urinary steroids. J. Clin. Endocrinol. 10; 71–83.Google Scholar
  3. Allen WM, Wintersteiner O (1934) Crystalline progestin. Science (NY). 80; 190–191.Google Scholar
  4. Anderson PJB, Hancock KW, Oakey RE (1985) Non-protein bound oestradiol and progesterone in human peripheral plasma before labour and delivery. J. Endocrinol. 104; 7–15.Google Scholar
  5. Anthony F, Aldrich C. Sharp NC, et al. (1988) The OVEIA assay, a simultaneous measurement of oestrone and pregnanediol glucuronides, for studying the treatment of infertility patients. Hum. Reprod. 3(7); 870–872.Google Scholar
  6. Baker TS, Holdsworth AJ, Coulson W (1984) The dual analyte assay for the detection of the fertile period in women. In Research in Family Planning (eds Bonnar J, Thompson W, Harrison RF). MTP, Lancaster. pp. 45–52.Google Scholar
  7. Barnard G, Kohen F (1998) Monitoring ovarian function by the simultaneous time-resolved fluorescence immunoassay of two urinary steroid metabolites. Clin. Chem. 44(7); 1520–1528.Google Scholar
  8. Basu A, ShrivastavTG, Maitra SK (2006) A direct antigen heterologous enzyme immunoassay for measuring progesterone in serum without using displacer. Steroids. 71(3); 222–230.Google Scholar
  9. Basu A, Maitra SK, Shrivastav TG (2007) Development of dual-enzyme-based simultaneous immunoassay for measurement of progesterone and human chorionic gonadotropin. Anal. Biochem. 366(2); 175–181.Google Scholar
  10. Batra S, Bengtsson LP, Grundsell H, Sjoberg NO (1976) Levels of free and protein bound progesterone in plasma during late delivery. J. Clin. Endocrinol. Metab. 42; 1041–1047.Google Scholar
  11. Baulieu EE (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23; 963–987.Google Scholar
  12. Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int. Rev. Neurobiol. 46; 1–32.Google Scholar
  13. Baumann A, Kulmann H, Gorkov V, et al. (1996) Radioimmunological analysis of cyproter-one acetate in human serum. Comparison with a gas chromatographic/mass spectrometric method and influence of each method on the outcome of a bioequivalence trial. Arzneimittelforschung 46(4); 412–418.Google Scholar
  14. Bernardi F, Hartmann B, Casarosa E, et al. (1998) High levels of serum allopregnanolone in women with premature ovarian failure. Gynaecol. Endocrinol. 12(5); 339–345.Google Scholar
  15. Beyenburg S, Stoffel-Wagner B, Bauer J, Watzka M, Blumcke I, Bidling-maier F, Elgar CE (2001) Neuroactive steroids and seizure susceptibility. Epilepsy Res. 44; 141–153.Google Scholar
  16. Biggio F, Gordini G, Caria S, Murru L, Mostallino MC, Sanna E, Follesa P (2006) Plastic neuronal changes in GABA(A) receptor gene expression induced by progesterone metabolites in molecular and functional studies. Pharmacol. Biochem. Behav. 84; 545–554.Google Scholar
  17. Blom T, Ojanotko-Harri A, Laine M, Huhtaniemi I (1993) Metabolism of progesterone and testosterone in human parotid and submandibular salivary glands in vitro. J. Steroid Biochem. Mol. Med. 44(1); 69–76.Google Scholar
  18. Boudou P, Taieb J, Mathian B, et al. (2001) Comparison of progesterone concentration determination by 12 non-isotopic immunoassays and gas chromatography/mass spectrometry in 99 human serum samples. J. Steroid Biochem. Mol. Biol. 78(1); 97–104.Google Scholar
  19. Brogden RN, Goa KL, Faulds D (1993) Mifepristone: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs. 45; 384–409.Google Scholar
  20. Butenandt A, Schmidt J (1934) Uber die polymorphen Modifikationen des Corpus-luteum-hormons. Berichte der deutschen Chemische Gesellschaft. 67; 2088–2091.Google Scholar
  21. Cameron EHD, Scarisbrick JJ, Morris SE, Read G (1975) 125I-iodohistamine derivatives as tracers for the radioimmunoassay of progestagens. In Fifth Tenovus Workshop: Steroid Immunoassay (eds Cameron EHD, Hillier SG, Griffiths K). Alpha Omega, Cardiff. pp. 153–164.Google Scholar
  22. Carey BJ, Carey AH, Patel S, et al. (2000) A study to evaluate serum and urinary hormone levels following short and long term administration of two regimens of progesterone cream inpostmenopausal women. Br. J. Obst. Gynaecol. 107; 722–726.Google Scholar
  23. Casademont G, Perez B, Garcia Regueiro JA (1996) Simultaneous determination, in calfurine, of twelve anabolic agents as heptafluorobutyryl derivatives by capillary gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Appl. 686(2); 189–198.Google Scholar
  24. Choi MH, Chung BC (1999) GC-MS determination of steroids related to androgen bio-synthesis in human hair with pentafluorophenyldimethylsilyl-trimethylsilyl derivatisation. Analyst. 124(9); 1297–1300.Google Scholar
  25. Christiaens B, Fillet M, Chiap B, et al. (2004) Fully automated method for the liquid chromatographic-tandem mass spectrometric determination of cyproterone acetate in human plasma using restricted access material for on-line clean-up. J. Chromatogr. A. 1056(1, 2); 105–110.Google Scholar
  26. Collins WP, Collins PO, Kilpatrick MJ, et al. (1979) The concentrations of oestrone-3-glucuronide, LH and pregnenediol-3-glucuronide as indices of ovarian function. Acta Endocrinologica. 93; 336–348.Google Scholar
  27. Cooper A, Spencer C, Whitehead MI, et al. (1998) Systemic absorption of progesterone form Progest cream in postmenopausal women. Lancet. 351; 1255–1256.Google Scholar
  28. Corner GW, Allen WM (1929) Physiology of corpus luteum; production of special uterine reaction (progestational proliferation) by extracts of corpus luteum. Am. J. Physiol. 88; 326–339.Google Scholar
  29. Corpechot C, Synguelakis M, Talha S, et al. (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res. 270; 119–125.Google Scholar
  30. Corrie JET, Hunter WM. McPherson JS (1981) A strategy for radioimmunoassay of plasma progesterone with use of a homologous-site 125 I-labelled radioligand. Clin. Chem. 27; 594–599.Google Scholar
  31. Csapo AL, Pulkkinen MO, West WG (1973) Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am. J. Obstet. Gynecol. 115; 759–765.Google Scholar
  32. Czlonkowska AI, Krzascik P, Sienkiewicz-Jaros H, Siemiqtkowski M, Szyndler J, Maciejak P, Bidzinski A, Plaznik A (2001) Rapid down-regulation of GABA-receptors after pre-treatment of mice with progesterone. Pol. J. Pharmcol. 53; 385–388.Google Scholar
  33. Dawson EC, Denissen AEHC, van Weeman BK (1978) A simple and efficient method of raising steroid antibodies in rabbits. Steroids. 31; 357–366.Google Scholar
  34. De Boever J, Kohen F, Vandekerckhove D (1986) Direct solid phase chemiluminescence immunoassay for salivary progesterone. Clin. Chem. 32(5); 363–367.Google Scholar
  35. Delfs, TM, Klein S, Fottrell P, et al. (1994) 24-hour profiles of salivary progesterone. Fertil. Steril. 62(5); 960–966.Google Scholar
  36. Dent AH (2001) Conjugation methods. In The Immunoassay Handbook (ed Wilde D) 2nd edn. Nature, London/New York. pp. 211–228.Google Scholar
  37. Dikkeschei LD, van Veelen H, Nagel GT et al. (1985) Specific and sensitive determination of medroxyprogesterone acetate in human serum by gas chromatography-mass spectrometry. J. Chromatogr. 345(1); 1–10.Google Scholar
  38. Dombroski RA, Casey ML, MacDonald PC (1997) 5-Alpha-dihydroprogesterone formation in human placenta from 5alpha-pregnan-3beta/alpha-ol-20-ones and 5-pregnan-3beta-yl-20-one sulphate. J. Steroid Biochem. Mol. Biol. 63(1–3); 155–163.Google Scholar
  39. Dray F, Andrieu JM, Renaud F (1975) Enzyme immunoassay of progesterone at the pico-gram level using beta galactosidase as label. Biochimica et Biophysica Acta. 403; 134–138.Google Scholar
  40. Dressendorfer RA, Kirschbaum C, Rohde W, et al. (1992) Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement. J. Steroid Biochem. Mol. Biol. 43(7); 683–692.Google Scholar
  41. Dubrovsky BO (2005) Steroids and neuroactive steroids in psychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry. 29; 169–192.Google Scholar
  42. Ebner MJ, Corol DI, Havlikova H, Honour JW, Fry JP (2006) Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 147; 179–190.Google Scholar
  43. Eechaute WP, Dhooge WS, Gao CO, Calders P, Rubens R, Weyne J, Kaufman JM (1999) Progesterone-transforming enzyme activity in the hypothalamus of the male rat. J. Steroid Biochem. Mol. Biol. 70; 159–167.Google Scholar
  44. Ekins RP (1960) The estimation of thyroxine in human plasma by an electrophoretic technique. Clin. Chim. Acta 5; 452–459.Google Scholar
  45. Ekins RP (1990) Measurement of free hormones in blood. Endocr. Rev. 11; 5–46.Google Scholar
  46. Erlanger BF, Borek F, Beiser SM, Lieberman S (1957) Steroid-protein conjugates. Preparation and characteristics of conjugates of bovine serum albumin with testosterone and with cortisone. J. Biol. Chem. 228; 713–727.Google Scholar
  47. Eshhar Z, Kim JB, Barnard G, et al. (1981) Use of monoclonal antibodies to pregnanediol-3 alpha-glucuronide for the development of a solid phase chemiluminescence immunoassay. Steroids. 38(1); 89–109.Google Scholar
  48. Fernholz E (1934) Zur Synthese des Corpus-luteum-hormons. Berichte der deutschen Chemische Gesellschaft. 67; 1855.Google Scholar
  49. Gao CQ, Dhooge WS, Kaufman JM, Weyne JJ, Eechaute WP (2002) Hypothalamic 5α-reductase and 3α-oxido-reductase activity in the male rat. J. Steroid Biochem. Mol. Biol. 80; 91–98.Google Scholar
  50. Gaston-Parry O, Heasman K, Nemorin JK, Robinson TJ (1988) A radioimmunoassay for fluogastone acetate (FGA) and its application to the measurement of plasma FGA and progesterone in ewes treated with FGA-impregnated intravaginal sponges. Aust. J. Biol. Sci. 41(1); 57–67.Google Scholar
  51. Genazzani AR, Petraglia F, Bernadi F, et al. (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J. Clin. Endocrin. Metab. 83; 2099–2103.Google Scholar
  52. Ghoumari AM, Ibanez C, El-Etr M, Leclere P, Eyehenne B, O’Malley BW, Baulieu EE, Schumacher M (2003) Progesterone and its metabolites increase myelin basic protein expression in organotypic slice culture of rat cerebellum. J. Neurochem. 86; 848–859.Google Scholar
  53. Giannetti L, Barchi D, Fiorucci F, et al. (2005) High performance liquid chromatography-tandem mass spectrometry validation of medroxyprogesterone acetate in products of pork origin and serum. J. Chromatogr. Sci. 43(7); 333–336.Google Scholar
  54. Gilbert Evans SE, Ross SE, Sellers EM, et al. (2005) 3alpha-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol. Endocrinol. 21(5); 268–279.Google Scholar
  55. Gillis EH, Gosling JP, Sreenan JM, Kane M (2002) Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J. Immunol. Methods. 267(2); 131–138.Google Scholar
  56. Gillis EH, Traynor I, Gosling JP, Kane M (2006) Improvements to a surface plasmon resonance-based immunoassay for the steroid hormone progesterone. J. AOAC Int. 89(3); 838–842.Google Scholar
  57. Gosling JP (1997) Enzyme immunoassay with and without separation. In Principles and Practice of Immunoassay (eds Price CP, Newman DJ), 2nd edn. Macmillan Reference, London. pp. 349–388.Google Scholar
  58. Gower DB (1984) Part 1: Steroid catabolism and urinary excretion. In Biochemistry of Steroid Hormones (ed Makin HLJ), 2nd edn. Blackwell, Oxford, London/Edinburgh/Boston, MA/Palo Alto, CA/Melbourne. pp. 349–382.Google Scholar
  59. Greenstein BD, Puig-Duran E, Franklin M (1977) Accurate, rapid measurement of the fraction of unbound oestradiol and progesterone in small volumes of undiluted serum at 37°C by miniature steady state gel filtration. Steroids. 30; 331–341.Google Scholar
  60. Groschl M, Wagner R, Rauh M, Dorr HG (2001a) Stability of salivary steroids: the influences of storage, food and dental care. Steroids. 66; 737–741.Google Scholar
  61. Groschl M, Rauh M, Schmid P, Dorr HG (2001b) Relationship between salivary progesterone, 17-hydroxyprogesterone, and cortisol levels throughout the normal menstrual cycle of healthy postmenarcheal girls. Fert. Steril. 76(3); 615–617.Google Scholar
  62. Guo Z, Chu C, Yin G, et al. (2006) An HPLC method for the determination of ng mifepristone in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 832(2); 181–184.Google Scholar
  63. Hagerman DD, Williams KL (1969) Comparison of a protein binding displacement method with a double isotope derivative method for determination of plasma progesterone. Am. J. Obstet. Gyneacol. 104; 114–122.Google Scholar
  64. Hammond GL, Nisker JA, Jones LA, Siiteri PK (1980) Estimation of the percentage of free steroid in undiluted serum by centrifugal ultrafiltration-dialysis. J. Biol.Chem. 255; 5023–5026.Google Scholar
  65. Hardoy MC, Serra M, Carta MG et al. (2006) Increased neuroactive steroid concentrations in women with bipolar disorder or major depressive disorder. J. Clin. Psychopharmacol. 26(4); 379–384.Google Scholar
  66. Havlikova H, Hill M, Kancheva L, Vrbikova J, Pouzar V, Cerny I, Kancheva R (2006) Serum profiles of free and conjugated neuroactive pregnanolone isomers in non-pregnant women of fertile age. J. Clin. Endocrinol. Metab. 91; 3092–3099.Google Scholar
  67. Haynes SP, Corcoran JM, Eastan CJ, Doy FA (1980) Radioimmunoassay of progesterone in unextracted serum. Clin.Chem. 26; 1607–1609.Google Scholar
  68. Heap RB (1964) A fluorescence assay of progesterone. J. Endocrinol. 30; 293–305.Google Scholar
  69. Heydari B, Melledo JM (2002) Low pregnenolone sulphate plasma concentrations in patients with generalised social phobia. Psychol. Med. 32(5); 929–933.Google Scholar
  70. Higashi T, Takido N, Shimada K (2003) Detection and characterisation of 20-oxosteroids in rat brains using LC-electron capture APCI-MS-MS after derivatisation with 2-nitro-4-fluo-romethylphenyl hydrazine. Analyst. 128; 130–133.Google Scholar
  71. Higashi T, Takido N, Shimada K (2005) Studies on neurosteroids XVII. Analysis of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids. 70; 1–11.Google Scholar
  72. Higashi T Nagahama A, Mukai Y, Shimada K (2007a) Studies on neurosteroids XXII. Liquid chromatography-tandem mass spectrometric method for profiling rat brain 3-oxo-4-ene neuroactive steroids. Biomed.Chromatogr. 2008 22(1); 34–43.Google Scholar
  73. Higashi T Nagahama A, Otomi N, Shimada K (2007b) Studies on neurosteroids XIX. Development and validation of liquid chromatography-tandem mass spectrometric method for determination of 5 α-reduced pregnane-type neurosteroids in rat brain and serum. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 848; 188–199.Google Scholar
  74. Hilliard J, Endroczi J, Sawyer CH (1961) Simulation of progestin release from rabbit ovary in vivo. Proc. Soc. Exp. Biol. Med. 108; 154–156.Google Scholar
  75. Hosada H, Takasaki W, Arihara S, et al. (1985) Enzyme labelling of steroids by N-succinimidyl ester method: preparation of alkaline phosphate-labelled antigen for use in enzyme immuno-assay. Chem. Pharm. Bull. 33; 5393–5398.Google Scholar
  76. Hunter WM, Nars PW, Rutherford FJ (1975) Preparation and behaviour of 125I-labelled ligands for phenolic and neutral steroids. In Fifth Tenovus Workshop: Steroid Immunoassay (eds Cameron EHD, Hillier SG, Griffiths K). Alpha Omega, Cardiff. pp. 149–152.Google Scholar
  77. Iughetti L, Predieri B, Luisi S, et al. (2005) Low serum allopregnanolone levels in girls with precocious pubarche. Steroids. 70(10); 725–731.Google Scholar
  78. Janne O, Perheentupa J, Viinika L, Vikho R (1975) Plasma pregnenolone, progesterone, 17-hydroxyprogesterone, testosterone and 5α-dihydrotestosterone in different types of congenital adrenal hyperplasia. Clin. Endocrinol. 4; 39–48.Google Scholar
  79. Johansson EDB (1969a) Progesterone levels in peripheral plasma during the luteal phase of the normal human menstrual cycle measured by a rapid competitive protein binding technique. Acta Endocrinologica (Kobenhavn). 61; 592–606.Google Scholar
  80. Johansson EDB (1969b) Plasma levels of progesterone in pregnancy measured by a rapid competitive protein binding technique. Acta Endocrinologica (Kobenhavn). 61; 607–617.Google Scholar
  81. Kalliala K, Laatikainen T, Luukkainen T, Vihko R (1970) Neutral steroid sulfates in human ovarian blood. J. Clin. Endocrinol. Metab. 30; 533–535.Google Scholar
  82. Karir T, Samuel G, Kothari K, Sivaprasad N, Venkatesh M (2006) Studies on the influence of the structural modifications in the tracer on the immunoassay of progesterone. J. Immun. Immunochem. 27(2); 151–171.Google Scholar
  83. Kesner JS, Knecht EA, Krieg EF, et al. (1994) Validations of time-resolved fluoroimmuno-assays for urinary oestrone 3-glucuronide and pregnanediol 3-glucuronide. Steroids. 59; 205–211.Google Scholar
  84. Kim JK, Adam A, Loo JC, Ong H (1995) A chemiluminescence enzyme immunoassay (CLEIA) for the determination of medroxyprogesterone acetate in human serum. J. Pharm. Biomed. Anal. 13(7); 885–891.Google Scholar
  85. Kim SM, Kim DH (2001) Quantitative determination of medroxyprogesterone acetate in plasma by liquid chromatography/electrospray ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 15(21); 2041–2045.Google Scholar
  86. Kivlighan KT, Granger DA, Schwartz EB, et al. (2005) Blood contamination and the measurement of salivary progesterone and estradiol. Horm. Behav. 47(3); 367–370.Google Scholar
  87. Kushnir MM, Rockwood AL, Roberts WL, et al. (2006) Development and performance evaluation of a tandem mass spectrometry assay fro 4 adrenal steroids. Clin. Chem. 52(8); 1559–1567.Google Scholar
  88. Lahteenmaki P, Heikinheimo O, Croxatto H, et al. (1987) Pharmacokinetics and metabolism of RU486. J. Steroid Biochem. 27; 859–863.Google Scholar
  89. Lambert JJ, Belelli D, Peden DR, Vady AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 71; 67–80.Google Scholar
  90. Lapchak PA (2004) The neuroactive steroid 3α-ol, 5β-pregnan-20-one hemisuccinate, a selective NMDA receptor antagonist, improves behavioural performance following spinal cord ischemia. Brain Res. 997; 152–158.Google Scholar
  91. Laufer N, Maayan R, Hermesh H, Marom S, Gilad R, Strous R, Weizman A (2005) Involvement of GABAA receptor modulating neuroactive steroids in patients with social phobia. Psychiatry Res. 137; 131–136.Google Scholar
  92. Lebech PE (1971) Plasma levels of progesterone in early pregnancy after removal of the foetal placental unit, and following removal of corpus luteum. Acta Endocrinologica. 155(Suppl.); 134.Google Scholar
  93. Lee JR (1990) Osteoporosis reversal: the role of progesterone. Int. Clin. Nutr. Rev. 10; 384–389.Google Scholar
  94. Leith HM, Truran PL, Gaskell SJ (1986) Quantification of progesterone in human saliva. Biomed. Environ. Mass Spectrom. 13(5); 257–261.Google Scholar
  95. Lemaire WJ, Conley PW, Moffett A, et al. (1971) Function of the human corpus luteum during the puerperium: its maintenance by exogenous human chorionic gonadotropin. Am. J. Obstet. Gynecol. 110; 612–618.Google Scholar
  96. Lenton EA, Gelsthorp CH, Harper R (1988) Measurement of progesterone in saliva: assessment of the normal fertile range using spontaneous conception cycles. Clin. Endocrinol. 28; 637–646.Google Scholar
  97. Lephart ED, Lund TD, Horvath TL (2001) Brain androgen and progesterone metabolising enzymes: biosynthesis, distribution and function. Brain Res. Brain Res. Rev. 37; 25–37.Google Scholar
  98. Licea-Perez H, Wang S, Bowen CL, Yang E (2007) A semi-automated 96-well plate method for the simultaneous determination of oral contraceptives concentrations in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 852(1–2); 69–76.Google Scholar
  99. Liere P, Akwa Y, Weill-Engerer S, Eychenne B, Pianos A, Robel P, Sjovall J, Schumacher M, Baulieu EE (2000) Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 739; 301–312.Google Scholar
  100. Lindner HR, Perel E, Friedlander A (1970) In Research on Steroids IV (eds Finkelstein M, Konti C, Klopper A, Cassano C). Pergamons, Oxford. p. 197.Google Scholar
  101. Liu QY, Chang YH, Schaffner AE, Smith SV, Barker JL (2002) Allopregnanolone activates GABA(A) receptor/Cl(–) channels in a multiphasic manner in embryonic rat hippocampal neurons. Neurophysiology. 88; 1147–1158.Google Scholar
  102. Lonsdale D, Nylen K, McIntyre Burnham W (2006) The anti-convulsant effect of progesterone and its metabolites on amygdala-kindled seizures in male rats. Brain Res. 1101; 110–116.Google Scholar
  103. Lu YC, Chatterton RT, Vogelsong KM, May LK (1997) Direct radioimmunoassay of progesterone in saliva. J. Immun. 18(2); 149–163.Google Scholar
  104. Magini A, Pinzani P, Bassi F, et al. (1989) Measurement of oestrone-3-glucuronide and pregnanediol-3alpha-glucuronide in early morning urine samples to monitor ovarian function. J. Biolumin. Chemilumin. 4(1); 567–574.Google Scholar
  105. Maguire J, Mody I (2007) Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J. Neurosci. 27; 2155–2162.Google Scholar
  106. Mares P, Mikulecka A, Haugvicova R, Kasal A (2006) Anticonvulsant action of allopregnanolone in immature rats. Epilepsy Res. 70; 110–117.Google Scholar
  107. Marik J, Hulka J (1978) Luteinised unruptured follicle syndrome: a subtle form of infertility. Fert. Steril. 29; 270–274.Google Scholar
  108. Martin-Garcia E, Darbra S, Pallares M (2007) Intrahippocampal allopregnanolone decreases voluntary chronic alcohol consumption in non-selected rats. Prog. Neuropsycopharmacol. Biol. Psychiatry. 31; 823–831.Google Scholar
  109. Marx CE, Trost WC, Shampine LJ, et al. (2006) The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer’s disease. Biol. Psychiatry. 60(12); 1287–1294.Google Scholar
  110. Matejicek D, Kuban V (2007) High performance liquid chromatography/ion-trap mass spectrometry for separation and simultaneous determination of ethynylestradiol, gestodene, levonorgestrel, cyproterone acetate and desogestrel. Anal. Chim.Acta. 588(2); 304–315.Google Scholar
  111. Meffre D, Pianos A, Liere P, Eychenne B, Cambourg A, Schumacher A, Stein DG, Guennoun R (2007) Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: analysis by gas chromatography-mass spectrometry. Endocrinology. 148; 2505–2517.Google Scholar
  112. Mellon S (1994) Neurosteroids: biochemistry, mode of action and clinical relevance. J. Clin. Endocrinol. Metab. 78; 1003–1008.Google Scholar
  113. Miller SA, Morton MS, Turkes A (1988) Chemiluminescence immunoassay for progesterone in plasma incorporating acridinium labelled antigen. Ann. Clin. Biochem. 25; 27–34.Google Scholar
  114. Minassian SS, Wu CH (1993) Free and protein-bound progesterone during normal and luteal phase defective cycles. Int. J. Gynaecol. Obstet. 43(2); 163–168.Google Scholar
  115. Mitsuma M, Yoshimura S, Kambegawa A, et al. (1989) Development of a direct microplate enzyme immunoassay for the determination of pregnanediol-3 alpha-glucuronide in urine. J. Steroid Biochem. 32(3); 467–471.Google Scholar
  116. Miyake T (1962) Progestational substances. In Methods in Hormone Research (ed Dorfman RI), Vol II. Academic, London/New York. pp. 127–178.Google Scholar
  117. Moneti G, Agati G, Giocannini MG, et al. (1985) Pregnanediol-α-glucuronide measured in diluted urine by mass spectrometry with fast atom bombardment/negative ion ionization. Clin. Chem. 31(1); 46–49.Google Scholar
  118. Monnoyer S, Capancioni S, Richard M, et al. (2005) Development of a high-performance liquid chromatography-tandem mass spectrometry method for the determination of fluogestone acetate in ovine plasma. Journal of Chromatography B, Analytical Technologies in the Biomed. Life Sci. 819(2); 245–251.Google Scholar
  119. Monteleone P, Luisi M, Colurcio B, et al. (2001) Plasma levels of neuroactive steroids are increased in untreated women with anorexia nervosa or bulimia nervosa. Psychosom. Med. 63(1); 62–68.Google Scholar
  120. Munro CJ, Laughlin LS, VonSchalscha T, et al. (1996) An enzyme immunoassay for serum and urinary levonorgestrel in human and non-human primates. Contraception. 54(1); 43–53.Google Scholar
  121. Murphy BEP (1967) Some studies of the protein-binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in body fluids by competitive protein-binding radioassay. J. Endocrinol. 27; 993–990.Google Scholar
  122. Murphy BEP, Allison CM (2000) Determination of progesterone and some of its neuroactive ring A-reduced metabolites in human serum. J. Steroid Biochem. Mol. Biol. 74(3); 137–142.Google Scholar
  123. Murphy BEP, Steinberg SI, Hu F-Y, Allison CM. (2001) Neuroactive ring A-reduced metabolites of progesterone in human plasma during pregnancy: elevated levels of 5 α-dihydroprogesterone in depressed patients during the latter half of pregnancy. J. Clin. Endocrinol. Metab. 86; 5981–5987.Google Scholar
  124. Murphy BEP, Abbott FV, Allison CM, et al. (2004) Elevated levels of some neuroactive progesterone metabolites, particularly isopregnanolone, in women with chronic fatigue syndrome. Psychoneuroendocrinology. 29(2); 245–268.Google Scholar
  125. Nappi RE, Petraglia F, Luisi S, et al. (2001) Serum allopregnanolone in women with postpartum “blues”. Obstet. Gynecol. 97(1); 77–80.Google Scholar
  126. Neill JD, Johansson EDB, Datta JK, Nobil E (1967) Relationship between the plasma levels of luteinising hormone and progesterone during the normal menstrual cycle. J. Clin. Endocrinol. Metab. 27; 1167–1173.Google Scholar
  127. Nieuweboer B, Lubke K (1977) Radioimmunological determination of cyproterone acetate. Horm. Res. 8; 210–213.Google Scholar
  128. Nieuweboer B, Tack J, Tauber U, et al. (1989) Development and application of a radioimmunoassay of the new progestagen gestodene. Contraception. 40 (3); 313–323.Google Scholar
  129. Niswender GD, Midgely AR (1970) In Immunological Methods in Steroid Determination (eds Peron FG, Caldwell BV). Appleton-Century-Crofts, New York. pp. 149–173.Google Scholar
  130. O’Dell LE, Alomary AA, Vallee M, Koob GE, Fitzgerald RL, Pardy RH (2004) Ethanol-induced increases in neuroactive steroids in rat brain and plasma are absent in adrena-lectomized and gonalectomized rats. Eur. J. Pharmacol. 484; 241–247.Google Scholar
  131. O’Leary P, Feddema P, Chen K, et al. (2000) Salivary, but not serum or urinary levels of progesterone are elevated after topical application of progesterone cream to pre- and post-menopausal women. Clin. Endocrinol. 53; 615–620.Google Scholar
  132. Oliver GC, Parker BM, Brasfield DL, Parker CW (1968) The measurement of digitoxin in serum by radioimmunoassay. J. Clin. Invest. 47; 1035–1042.Google Scholar
  133. O’Rorke A, Kane MM, Gosling JP, et al. (1994) Development and validation of a monoclonal antibody enzyme immunoassay for measuring progesterone in saliva. Clin. Chem. 40(3), 454–458.Google Scholar
  134. Ottander U, Poromaa IS, Bjurulf E, et al. (2005) Allopregnanolone and pregnanolone are produced by the human corpus luteum. Mol. Cell Endocrinol. 239(1–2); 37–44.Google Scholar
  135. Pardridge WM (1981) Transport of protein-bound hormones into tissues. Endocr. Rev. 2; 103–123.Google Scholar
  136. Peng CF, Huo TM, Liu LQ, et al. (2007) Determination of medroxyprogesterone acetate residues by CE immunoassay with chemiluminescence detection. Electrophoresis. 28(6); 970–974.Google Scholar
  137. Perusquia M, Jasso-Kamel J (2001) Influence of 5 alpha- and 5 beta-reduced progestins on the contractility of isolated human myometrium at term. Life Sci. 68(26); 2933–2944.Google Scholar
  138. Pettrus EH, Wright DW, Stein DG, Hoffman S-W (2005) Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res. 1049; 112–119.Google Scholar
  139. Pichon M-F, Milgrom E (1973) Competitive protein binding assay of progesterone without chromatography. Steroids. 21; 335–346.Google Scholar
  140. Pinna G, Costa E, Guidotti A (2005) Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behaviour. Proc. Natl. Acad. Sci. USA. 102(6); 2135–2140.Google Scholar
  141. Pommier F, Sioufi A, Godbillon J (1996) Quantitative determination of norethisterone acetate in human plasma by capillary gas chromatography with mass-selective detection. J. Chromatogr. A. 750(1–2); 75–81.Google Scholar
  142. Predieri B, Luisi S, Casarosa E, et al. (2007) High basal serum allopregnanolone levels in overweight girls. Int. J. Obes. (London). 31(3); 543–549.Google Scholar
  143. Ratcliffe WA, Corrie JET, Dalziel A, McPherson JS (1982) Direct 125I-radioligand assays for serum progesterone compared with assays involving extraction of serum. Clin. Chem. 28; 1314–1318.Google Scholar
  144. Read GF, Wilson DW, Hughes IA (1984) The use of salivary progesterone in the assessment of ovarian function in post-menarchal girls. J. Endocrinol. 102; 265–268.Google Scholar
  145. Richardson AP, Kim JB, Barnard GJ, et al. (1985) Chemiluminescence immunoassay of plasma progesterone with progesterone-acridinium ester used as the labelled antigen. Clin. Chem. 31; 1664–1668.Google Scholar
  146. Riepe FG, Wonka S, Partsch CJ, Sippell WG (2001) Automated chromatographic system for the simultaneous measurement of plasma pregnenolone and 17-hydroxypregnenolone by radioimmunoassay. J. Chromatogr. B Biomed. Sci. Appl. 763(1–2); 99–106.Google Scholar
  147. Riondel A, Tait JF, Tait S, et al. (1965) Estimation of progesterone in human peripheral blood using 35 S-thiosemicarbazide. J. Clin. Endocrinol. Metab. 25; 229–242.Google Scholar
  148. Ritsner M, Maayan R, Gibel A, Weizman A (2007) Difference in blood pregnenolone and dehydroepiandrosterone levels between schizophrenia patients and healthy subjects. Eur. Neuropsychopharmacol. 17(5); 358–365.Google Scholar
  149. Rosenthal HE, Slauntwhite WR, Sandberg AA (1969) Transcortin: a corticosteroid-binding protein of plasma. X. Cortisol and progesterone interplay and unbound levels of these steroids in pregnancy. J. Endocrinol. Metab. 29; 352–367.Google Scholar
  150. Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology. 28; 139–168.Google Scholar
  151. Ryan KJ, Smith OW (1965) Biogenesis of steroid hormones in the human ovary. Recent Prog. Horm. Res. 21; 367–409.Google Scholar
  152. Samarajeewa P, Baker TS, Coulson WF (1983) The urinary assay of steroid glucuronides: their value and methodology. In Immunoassays for Clinical Chemistry (eds Hunter WM, Corrie JET). Churchill Livingstone, Edinburgh. pp. 414–421.Google Scholar
  153. Sear JW, Holly JM, Trafford DJ, Makin HL (1980) Plasma concentrations of alphax-alone by gas chromatography: comparison with other gas chromatographic methods and gas chromatography-mass spectrometry. J. Pharm. Pharmacol. 32(5); 349–352.Google Scholar
  154. Self CH (1985) Enzyme amplification-a general method applied to provide an immunoassisted assay for placental alkaline phosphatase. J. Immunol. Methods. 76(2); 389–393.Google Scholar
  155. Serra M, Sanna E, Mostallino MC, Biggio G (2007) Social isolation stress and neuroactive steroids. Eur. Neuropsychopharmacol. 17; 1–11.Google Scholar
  156. Shackleton CHL, Taylor NF, Honour JW (1980) An Atlas of Chromatographic Profiles of Neutral Urinary Steroids in Health and Disease. Packard-Becker B.V., Delft, the Netherlands.Google Scholar
  157. Shackleton CHL, MattoxVR, Honour JW (1983) Analysis of intact steroid conjugates by secondary ion mass spectrometry (including FABMS) and by gas chromatography. J. Steroid Biochem. 19; 209–217.Google Scholar
  158. Shah H, Saranko AM, Harkonen M, Adlercreutz H (1984) Direct solid phase fluoroenzymeimmunoassay of 5 beta-pregnane-3 alpha, 20 alpha-diol-3 alpha glucuronide in urine. Clin. Chem. 30(2); 185–187.Google Scholar
  159. Sheehan PM, Rice GE, Moses EK, Brennecke SP (2005) 5-Beta-dihydroprogesterone and steroid 5 beta-reductase decrease in association with human parturition at term. Molecular Hum. Reprod. 11(7); 495–501.Google Scholar
  160. Shirtcliff EA, Granger DA, Schwartz E, Curran MJ (2001) Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology. 26; 165–173.Google Scholar
  161. Short RV (1960) The secretion of sex hormones by the adrenal gland. Biochem. Soc. Symp. 18; 59–84.Google Scholar
  162. Short RV, Levett L (1962) The fluorimetric determination of progesterone in human plasma during pregnancy and the menstrual cycle. J. Endocrinol. 25; 239–244.Google Scholar
  163. Soini E, Hemmila I. (1979) Fluoroimmunoassay: present status and key problems. Clin. Chem. 25; 353–361.Google Scholar
  164. Soldin OP, Guo T, Weiderpass E, et al. (2005) Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertility Sterility. 84(3); 701–710.Google Scholar
  165. Sommerville IF, Deshpande GN (1958) The quantitative determination of progesterone and pregnanediol in human plasma. J. Clin. Endocrinol. Metab. 18; 1223–1236.Google Scholar
  166. Sommerville IF, Pickett MT, Collins WP, Denyer DC (1963) A modified method for the quantitative determination of progesterone in human plasma. Acta Endocrinol. 43; 101–109.Google Scholar
  167. Song J, Wadhwa L, Bejjani BA, O’Brien WE (2003) Determination of 3-keto-4-ene steroids and their hydroxylated metabolites catalysed by recombinant human cytochrome P450 1B1 enzyme using gas chromatography-mass spectrometry with trimethylsilyl derivatisation. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 791(1–2); 127–135.Google Scholar
  168. Stanley CJ, Paris F, Webb AE, et al. (1986) Use of a new and rapid milk progesterone assay to monitor reproductive activity in the cow. Vet. Rec. 118(24); 664–667.Google Scholar
  169. Strous RD, Maayan R, Weizman S (2006) The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bed-side. Eur. Neuropsychopharmacol. 16; 155–169.Google Scholar
  170. Tai SS, Xu B, Welch MJ (2006) Development and evaluation of a candidate reference procedure for the determination of progesterone in human serum using isotope-dilution liquid chromatography/tandem mass spectrometry. Analyt. Chem. 78(18); 6628–6633.Google Scholar
  171. Tallon DF, Gosling JP, Buckley PM, et al. (1984) Direct solid phase enzyme immunoassay of progesterone in saliva. Clin. Chem. 30(9); 1507–1511.Google Scholar
  172. Theron HB, Coetzee C, Sutherland FC, et al. (2004) Selective and sensitive liquid chromatography–tandem mass spectrometry method for the determination of levonorgestrel in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 813(1–2); 331–336.Google Scholar
  173. Thorneycroft IM, Stone SC (1972) Radioimmunoassay of serum progesterone in women receiving oral contraceptive steroids. Contraception. 5; 129–146.Google Scholar
  174. Tieming H, Chifang P, Xiaogang C, Chuanlai X (2006) Rapid determination of time-resolved fluoroimmunoassay for medroxyprogesterone acetate residues in pork tissues and comparison with liquid chromatography and tandem mass spectrometry. J. Fluoresc. 16(6); 743–747.Google Scholar
  175. Turkes A, Read GF, Riad-Fahmy D (1982) A simple high-throughput enzyme immunoassay for norethisterone (norethindrone). Contraception. 25; 505–514.Google Scholar
  176. Turkmen S, Lundgren P, Birzniece V, Zingmark E, Backstrom T, Johansson LM (2004) 3α,20β-dihydroxy-5α-pregnane (UC1011) antagonism of the GABA potentiation and the learning impairment induced in rats by allopregnalonone. Eur. J. Neurosci. 20; 1604–1612.Google Scholar
  177. Uzu S, Imai K, Nakashima K, Akiyama S (1992) Determination of medroxyprogesterone acetate in serum by HPLC with perborate chemiluminescence detection using a fluorogenic reagent, 4-(N,N-dimethylaminosulphonyl)-7-hydrazino-2,1,3-benzoxadiazole. J. Pharm. Biomed. Anal. 10(10–12); 79–984.Google Scholar
  178. Vallee M, MayoW, Koob GF, Le Moal M (2001) Neurosteroids in learning and memory processes. Rev. Neurobiol. 46; 273–320.Google Scholar
  179. van Broekhoven F, Verkes RJ (2003) Neurosteroids in depression: a review. Psychopharmacology (Berlin). 165(2); 97–110.Google Scholar
  180. van Broekhoven F, Backstrom T, van Luijtelaar G, et al. (2007) Effects of allopregnanolone on sedation in men, and in women on oral contraceptives. Psychoneuroendocrinology. 32(5); 555–564.Google Scholar
  181. van der Molen HJ (1963) Determination of plasma progesterone during pregnancy. Clin. Chim. Acta. 8; 943–953.Google Scholar
  182. Vienravi V, Amatayakul K, Kanluan T, et al. (1994) A direct radioimmunoassay for progesterone in saliva. J. Med. Assoc. Thail. 77(3); 138–147.Google Scholar
  183. Vining RF, McGinley RA, Symons RG (1983) Hormones in saliva: mode of entry and consequent implications for clinical interpretation. Clin. Chem. 29(10); 1752–1756.Google Scholar
  184. Visser SA, Smulders CJ, Gladdines WW, et al. (2000) High-performance liquid chromatography of the neuroactive steroids alphaxalone and pregnanolone in plasma using dansyl hydrazine as fluorescent label: application to a pharmacokinetic-pharmacodynamic study in rats. J. Chromatogr. B Biomed. Sci. Appl. 745(2); 357–363.Google Scholar
  185. Walker RF, Read GF, Riad-Fahmy D (1979) Radioimmunoassay of progesterone in saliva: application to the assessment of ovarian function. Clin. Chem. 25; 2030–2033.Google Scholar
  186. Wang C, Marx CE, Morrow AL, Wilson WA, Moore SD (2007) Neurosteroid modulation of GABAergic neurotransmission in the central amygdala: a role for NMDA receptors. Neurosci. Lett. 415; 18–23.Google Scholar
  187. Wang MD, Backstrom T, Landgren S (2000) The inhibitory effects of allopregnanolone and pregnanolone on the population spike evoked in the rat hippocampal CA1 stratum pyramidale in vitro, can be blocked effectively by epiallopregnanolone. Acta Physiol. Scand. 169; 333–341.Google Scholar
  188. Warner M, Gustafsson JA (1995) Cytochrome P-450 in the brain: neuroendocrine functions. Front. Endocrinol. 16; 224–236.Google Scholar
  189. Weeks I (1997) Chemiluminescence immunoassay. In Principles and Practice of Immunoassay (eds Price CP, Newman DJ), 2nd edn. Macmillan Reference, London. pp. 425–442.Google Scholar
  190. Warren RJ, Fotherby K (1975) Iodine labelled ligands in the radioimmunoassay of synthetic progestins. J. Steroid Biochem. 6; 1151–1155.Google Scholar
  191. Weiler PJ, Wiebe JP (2000) Plasma membrane receptors for the cancer-regulating progesterone metabolites, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-4-pregnen-20-one in MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun. 272(3); 731–737.Google Scholar
  192. Wiest WJ, Kerenyi T, Csapo AI (1966) A double isotope derivative dilution assay for progesteronfe in biological fluids and tissues. In Exerpta Medica International Congress Series III. Exerpta Medica Foundation, New York. p. 114.Google Scholar
  193. Willcox DL, Yovich JL, McColm SC, Phillips JM (1985) Progesterone, cortisol and oestradiol-17β in the initiation of human parturition: partitioning between free and bound hormone in plasma. Br. J. Obstet. Gynaecol. 92; 65–71.Google Scholar
  194. Wood PJ, Barnard G (1997) Fluoroimmunoassay. In Principles and Practice of Immunoassay (eds Price CP, Newman DJ), 2nd edn. Macmillan Reference, London. pp. 389–424.Google Scholar
  195. Woolever CA, Goldfien A (1963) A double isotope derivative method for plasma progesterone assay. Int. J. Appl. Radiat. Isot. 14; 163–171.Google Scholar
  196. Wu Y, Mitchell J, Cook C, Main L (2002) Evaluation of progesterone-ovalbumin conjugates with different length linkers in enzyme-linked immunosorbent assay and surface plasmon resonance-based immunoassay. Steroids. 67(7); 565–572.Google Scholar
  197. Wu Z, Khang C, Yang C, Zhang X, Wu E. (2000) Simultaneous quantitative determination of norgestrel and progesterone in human serum by high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionisation. Analyst. 125(12); 2201–2205.Google Scholar
  198. Xu CL, Chu XG, Peng CF, et al. (2006) Development of a faster determination of 10 anabolic steroids residues in animal muscle tissues by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 41(2); 616–621.Google Scholar
  199. Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in men. J. Clin. Invest. 39; 1157–1175.Google Scholar
  200. Yannone ME, Mueller JR, Osborn RH (1969) Protein binding of progesterone in the peripheral plasma during pregnancy and labor. Steroids. 13; 773–781.Google Scholar
  201. Yoshimi T, Lipsett MB (1968) The measurement of plasma progesterone. Steroids. 11; 527–540.Google Scholar
  202. Yuan J, Oliver R, Li J, et al. (2007) Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles. Biosens. Bioelectron. 23(1); 144–148.Google Scholar
  203. Zander J, Forbes TR, von Munstermann AM, Neher R. (1958) Δ4-3-ketopregnene-20α-ol and Δ4-3-ketopregnene-20β-ol, two naturally occurring metabolites of progesterone. Isolation, identification, biologic activity and concentration in human tissues. J. Clin. Endocrinol. Metab. 18; 377–383.Google Scholar
  204. Zinder O, Dar DE (1999) Neuroactive steroids: their mechanism of action and their function in the stress response. Acta Physiol. Scand. 167; 181–188.Google Scholar
  205. Zwirner M, Fawzy MM, Bopp FC, et al. (1983) Radioimmunoassay of 5 alpha-pregnane-3,20-dione. A metabolite of placental progesterone. Arch. Gynecol. 233(4); 229–240.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Regional Endocrine Unit, Department of Chemical PathologySouthampton General HospitalSouthamptonUK
  2. 2.Department of Forensic Science and Drug Monitoring (Drug Control Centre)Kings College LondonLondonUK

Personalised recommendations