Analysis of Androgens and Their Derivatives

  • D. B. GowerEmail author


In view of the enormous increase in the field of androgens during the past decade, an important decision had to be made concerning this present revised chapter. Some of the older material, prior to 1990, discussed in the first edition has been either omitted or, at least, summarised and presented in tabular form. This decision is not meant to detract from the importance of earlier studies. Interested readers can refer to earlier work in the first edition of ‘Steroid Analysis’ which is still available.


High Performance Liquid Chromatography High Performance Liquid Chromatography Androgen Receptor Benign Prostatic Hyperplasia Steroid Sulphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations for Steroid Names


















3β-hydroxy-5α-androstan-17-one 5-androstenediol5-androstene-3α17β-diol


Acknowledgements First, and most important, ‘Where does my help come from? My help has come, and still comes, from The LORD, maker of heaven and earth’ Psalm 121: 1–2 (slightly altered by DBG), The Bible.My sincere thanks also go to Dr. C.J. Baxter and Mrs. D.M. Gower for the many hours spent in searching the literature and typing the drafts of the present chapter, and to Mr. R. Dobb for help in general word-processing and in preparing the figures. Mr. A. Evans and Mr. R. Knight gave me invaluable advice in sorting out computer problems. I am most grateful to my friends and colleagues, Professor H.L.J. Makin, Drs. A.T. Kicman and M.J. Wheeler, who took the trouble to read parts of the manuscript, offering helpful criticism and pointing out references that I would otherwise have missed. Finally, I wish to acknowledge the kindness of many colleagues and publishers worldwide in giving permission for me to reproduce research results from various copyright journals and books. The literature survey for this chapter was completed in November 2008. D.B. Gower is Emeritus Professor of Steroid Biochemistry in the University of London and, formerly, Visiting Professor to the Drug Control Centre, King’s College London, 150, Stamford Street, London SE1 9NN.


  1. Akwa, Y., Morfin, R.F. and Baulieu, E.E. (1992). Neurosteroid metabolism, 7α-hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem. J. 288, 959–964.Google Scholar
  2. Alomary, A.A., Fitzgerald, R.L. and Purdy, R.H. (2001). Neurosteroid analysis. Int. Rev. Neurobiol. 46, 97–115.Google Scholar
  3. Altria, K. (2000). Capillary electrophoresis. Chem. Brit. 36, 38–41.Google Scholar
  4. Amin, M., Harrington, K. and von Wandruska, R. (1993). Determination of steroids in urine by micellar HPLC with detection by sensitized terbium fluorescence. Analyt. Chem. 65, 2346–2351.Google Scholar
  5. Amory, J.K., Scriba, G.K., Amory, D.W. and Bremner, W.J. (2003). Oral testosterone-triglyceride conjugate in rabbits: single-dose pharmacokinetics and comparison with oral testosterone undecanoate. J. Androl. 24, 716–720.Google Scholar
  6. Andersson, S. and Russell, D.A. (1990). Structural and biochemical properties of cloned and expressed human and rat steroid 5α–reductases. Biochemistry 87, 3640–3644.Google Scholar
  7. Andersson, S., Berman, D.M., Jenkins, E.P. and Russell, D.W. (1991). Deletion of steroid 5α -reductase 2 gene in male pseudohermaphroditism. Nature 354, 159–161.Google Scholar
  8. Andrew, R. (2001). Clinical measurement of steroid metabolism. Best Practice Res. Clin. Endocrinol. Metabolism 15, 1–16.Google Scholar
  9. Armanini, D., Vecchio, F., Basso, A., Milone, F.F., Simoncini, M., Fiore, C., Mattarello, M.J., Sartorato, P. and Karbowiak, I. (2003). Alzheimer’s disease: pathophysiological implications of measurement of plasma cortisol, plasma dehydroepiandrosterone sulfate, and lymphocytic corticosteroid receptors. Edocrine 22, 113–118.Google Scholar
  10. Baltes, M.R.H., Dubois, J.G. and Hanocq, M. (1998). Ethyl acetate extraction procedure and isocratic high-performance liquid chromatographic assay for testosterone metabolites in cell microsomes. J. Chromatogr. B. 706, 201–207.Google Scholar
  11. Bang, H.J., Yang, Y.J., Lho, D.S., Lee, W.Y., Sim, W.Y. and Chung, B.C. (2004). Comparative studies on level of androgens in hair and plasma with premature male-pattern baldness. J. Dermatol. Sci. 34, 11–16.Google Scholar
  12. Barbaccia, M.L., Lello, S., Sidiropoulou, T., Cocco, T., Sorge, R.P., Cocchiarale, A., Piermarini, V., Sabato, A.F., Trabucchi, M. and Romanini, C. (2000). Plasma 5α-androstane-3α,17β-diol, an endogenous steroid that positively modulates GABA(A) receptor function, and anxiety: a study in menopausal women. Psychoneuroendocrinology 25, 659–675.Google Scholar
  13. Barcellous, L.J., Wassermann, G.F., Scott, A.P., Woehl, V.M., Quevedo, R.M., Ittzes, I., Krieger, M.H. and Lulhier, F. (2001). Steroid profiles in cultured female jundia, the Siluridae Rhamdia quelen (Quoy and Gaimard, Pisces Teleostei), during the first reproductive cycle. Gen. Comp. Endocrinol. 121, 325–332.Google Scholar
  14. Barrie, S.E., Potter, G.A., Goddard, P.M., Haynes, B.P., Dowsett, M. and Jarman, M. (1994). Pharmacology of novel steroidal inhibitors of cytochrome P450 17a(17α-hydroxylase/C-17–20 lyase). J. Steroid Biochem. Mol. Biol. 50, 267–273.Google Scholar
  15. Basu, A., Shrivastav, T.G. and Kariya, K.P. (2003). Preparation of enzyme conjugate through adipic acid dihydrazide as linker and its use in immunoassays. Clin. Chem. 49, 1410–1412.Google Scholar
  16. Baulieu, E.E. (1996). Dehydroepiandrosterone (DHEA): a fountain of youth? J. Clin. Endocr. Metab. 81, 3147–3151.Google Scholar
  17. Baulieu, E.E. and Robel, P. (1998). Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Natl. Acad. Sci. 95, 4089–4091.Google Scholar
  18. Becker, A.J., Uckert, S., Stief, C.G., Truss, M.C., Machtens, S., Scheller, F., Knapp, W.H., Hartmann, U. and Jonas, U. (2000). Cavernous and systemic testosterone levels in different phases of human penile erection. Urology 56, 125–129.Google Scholar
  19. Berensztein, E., Saraco, N., Belgorosky, A. and Rivarola, M.A. (2000). Secretion of inhibin B by human prepubertal testicular cells in culture. Eur. J. Endocrinol. 142, 481–485.Google Scholar
  20. Bergada, I., Rojas, G., Ropelato, G., Ayuso, S., Bergada, C. and Campo, S. (1999). Sexual dimorphism in circulating monomeric and dimeric inhibins in normal boys and girls from birth to puberty. Clin. Endocrinol. 51, 455–460.Google Scholar
  21. Bicikova, M., Ripova, D., Hill, M., Jirak, R., Havlikova, H., Tallova, J. and Hampl, R. (2004). Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer’s disease and vascular dementia. Clin. Chem. Lab. Med. 42, 518–524.Google Scholar
  22. Billitti, J.E., Lasley, B.L. and Wilson, B.W. (1998). Development and validation of a fecal testosterone biomarker in Mus musculus and Peromyscus maniculatus. Biol. Reprod. 59, 1023–1028.Google Scholar
  23. Bixo, M., Backstrom, T., Winblad, B. and Andersson, A. (1995). Estradiol and testosterone in specific regions of the human female brain in different endocrine states. J. Steroid Biochem. Mol. Biol. 55, 297–303.Google Scholar
  24. Blottner, S., Roelants, H., Wagener, A. and Wenzel, U.D. (1999). Testicular mitosis, meiosis and apoptosis in mink (Mustela vison) during breeding and non-breeding seasons. Anim. Reprod. Sci. 57, 237–249.Google Scholar
  25. De Boer, E., Bensink, S.N., Borggreve, A.R., Van Ooijen, R.D. and Maes, R.A.A. (1995). Profiling 19-norsteroids, I – tandem mass spectrometric characterisation of the heptafluorobutyl ester derivatives of 19-nortestosterone using collisionally-activated dissociation. J. Mass Spectrom. 30, 497–504.Google Scholar
  26. Bonser, J., Walker, J., Purohit, A., Reed, M.J., Potter, B.V.L., Willis, D.S., Franks, S. and Mason, H.D. (2000). Human granulosa cells are a site of sulphatase activity and are able to utilize dehydroepiandrosterone sulphate as a precursor for oestradiol production. J. Endocr. 167, 465–471.Google Scholar
  27. Boschi, S., De Iasio, R., Mesini, P., Bolelli, G.F., Sciajno, R., Pasquali, R. and Capelli, M. (1994). Measurement of steroid hormones in plasma by isocratic high performance liquid chromatography coupled to radioimmunoassay. Clin. Chim. Acta 231, 107–113.Google Scholar
  28. Bouchemal, K., Briancon, S., Chaumont, P., Fessi, H. and Zydowicz, N. (2003). Microencapsulation of dehydroepiandrosterone (DHEA) with poly9orthoester) polymers by interfacial polycondensation. J. Microencapsul. 20, 637–651.Google Scholar
  29. Bradlow, H.L. (1977). Modified technique for the elution of polar steroid conjugates from Amberlite-XAD-2. Steroids 30, 581–582.Google Scholar
  30. Brind, J., Borofsky, N., Chervinsky, K., Vogelman, J.H. and Orentreich, N. (1996). A simple, differential extraction method for the simultaneous direct radioimmunoassay of androgens and androgen glucuronides in human serum. Steroids 61, 429–432.Google Scholar
  31. Bryan, M.B., Scott, A.P., Cerny, I., Seon Yun, S. and Li, W. (2003).15α-Hydroxytestosterone produced in vitro and in vivo in the sea lamprey, Petromyzon marinus. Gen. Comp. Endocrinol. 132, 418–426.Google Scholar
  32. Brzezowska, E., Dmochowska-Gladysz, J. and Kolek, T. (1996). Biotransformation XXXIX. Metabolism of testosterone, androstenedione, progesterone and testosterone derivatives in Absidia coerulea culture. J. Steroid Biochem. Mol. Biol. 57, 357–362.Google Scholar
  33. Burstein, S. and Lieberman, S. (1958). Hydrolysis of ketosteroid hydrogen sulfates by solvolysis procedures. J.Biol. Chem. 233, 331–335.Google Scholar
  34. Caballero, M.J. (1994). Metabolism of 5α-androstane-3β,17β-diol in bald and hairy areas of the scalp. Horm. Res. 42, 100–105.Google Scholar
  35. Cabeza, M.S., Gutierrez, E.B., Garcia, G.A., Avalos, A.H. and Hernandez, M.A. (1999). Microbial transformations of testosterone to 5a-dihydrotestosterone by two species of Penicillium: P. chrysogenum and P. crustosum. Steroids 64, 379–384.Google Scholar
  36. Carolon, L.E. and Sherwin, B.B. (2000). Higher levels of plasma estradiol and testosterone in healthy elderly men compared with age-matched women may protect aspects of explicit memory. Menopause 7, 168–177.Google Scholar
  37. de Catanzaro, D., Muir, C., Beaton, E., Jetha, M. and Nadella, K. (2003). Enzymeimmunoassay of oestradiol, testosterone and progesterone in urine samples from female mice before and after insemination. Reproduction 126, 407–414.Google Scholar
  38. Cawley, A.T., Kazlauskas, R., Trout, G.J. and George, A.V. (2005). Determination of urinary steroid sulfate metabolites using ion paired extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825, 1–10.Google Scholar
  39. Cawood, M.L., Field, H.P., Ford, C.G., Gillingwater, S., Kicman, A., Cowan, D. and Barth, J.H. (2005). Testosterone measurement by isotope-dilution liquid chromatography-tandem mass spectrometry: validation of a method for routine clinical practice. Clin. Chem. 51, 1472–1479.Google Scholar
  40. Chang, Y.C., Li, C.M., Li, L.A., Jong, S.B., Liao, P.C. and Chang, L.W. (2003). Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography–tandem mass spectrometry and comparison with radioimmunoassay. Analyst 128, 363–368.Google Scholar
  41. Chatman, K., Hollenbeck, T., Hagey, L., Vallee, M., Purdy, R., Weiss, F. and Siuzdak, G. (1999). Nanoelectrospray mass spectrometry and precursor ion monitoring for quantitative steroid analysis and attomole sensitivity. Analyt. Chem. 71, 2358–2363.Google Scholar
  42. Choi, M.H. and Chung, B.C. (1999). GC-MS determination of steroids related to androgen biosynthesis in human hair with pentafluorophenyldimethylsilyl-trimethylsilyl derivatisation. Analyst 124, 1297–1300.Google Scholar
  43. Choi, M.H., Kim, K.R. and Chung, B.C. (2000). Simultaneous determination of urinary androgen glucuronides by high temperature gas chromatography-mass spectrometry with selected ion monitoring. Steroids 65, 54–59.Google Scholar
  44. Choi, M.H., Yoo, Y.S. and Chung, B.C. (2001). Measurement of testosterone and pregnenolone in nails uring gas chromatography–mass spectrometry. J. Chromatogr. B. Biomed. Sci. Appl. 754, 495–501.Google Scholar
  45. Choi, M.H., Kim, J.N. and Chung, B.C. (2003). Rapid HPLC-electrospray tandem mass spectrometric assay for urinary testosterone and dihydrotestosterone glucuronides from patients with benign prostate hyperplasia. Clin. Chem. 49, 322–325.Google Scholar
  46. Christ-Crain, M., Meier, C., Huber, P., Zimmerli, L., Trummler, M. and Muller, B. (2004). Comparison of different methods for the measurement of serum testosterone in the aging male. Swiss Med. Wkly. 134, 193–197.Google Scholar
  47. Chudinov, A.V., Savitskii, A.P. and Ziobin, V.N. (1999). Luminescent ultramicroanalysis for the simultaneous determination of niological and chemical substances: the methodology and the ways for solution. Vestn. Ross. Akad. Med. Nauk. 8, 15–20.Google Scholar
  48. Clark, J. (October 2003). Hot and cold HPLC. In: The Biochemist, The Biochemical Society, London, UK, pp. 23–26.Google Scholar
  49. Constanzer, M.L., Chavez-Eng, C.M. and Matuszewski, B.K. (1998). Determination of a novel selective inhibitor of type 1 5 alpha-reductase in human plasma by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. J. Chromatog. B. Biomed. Sci.Appl. 713, 371–378.Google Scholar
  50. Cooke, G.M. (1989). Identification and mechanism of action of phospholipids capable of modulating rat testicular microsomal 3-hydroxysteroid dehydrogenase-isomerase activity in vitro. Biol. Reprod. 41, 438–445.Google Scholar
  51. Cooke, G.M. (1992). Phospholipases modulate immature pig testicular androgen and 16-androstene biosynthetic pathways in vitro. J. Steroid Biochem. Mol. Biol. 41, 99–107.Google Scholar
  52. Cooke, G.M. and Robaire, B. (1988). Phospholipases modulate the rat testicular androgen biosynthetic pathway in vitro. Biol. Reprod. 39, 329–339.Google Scholar
  53. Corpechot, C., Synguelakis, M., Talha, S., Axelson, M., Sjovall, R., Vihko, R., Baulieu, E.E. and Robel, P. (1983). Pregnenolone and its sulfate ester in the rat brain. Brain Res. 270, 119–125.Google Scholar
  54. Cotillon, A.C., Doostzadeh, J. and Morfin, R. (1997). The inducible and cytochrome P-450-containing dehydroepiandrosterone 7α-hydroxylating enzyme system of Fusarium moniliforme. J. Steroid Biochem. Mol. Biol. 62, 467–475.Google Scholar
  55. Debnath, S., Mukherjee, D. and Bhattacharyya, S.P. (2000). Stimulation of pregnenolone metabolism and aromatase activity by luteinizing hormone in mouse uterus. Eur. J. Endocr. 143, 799–807.Google Scholar
  56. Degan, P., Podesta, A. and Montagnoli, G. (1999). Time-resolved fluoroimmunoassay. Mol. Biotechnol. 13, 215–222.Google Scholar
  57. Dehennin, L., Reiffsteck, A. and Scholler, R. (1980). Simple methods for the synthesis of twenty different, highly enriched deuterium labelled steroids, suitable as internal standards for isotope dilution mass spectrometry. Biomed. Mass Spectrom. 7, 493–499.Google Scholar
  58. Demers, L.M. (2003). Andropause: an androgen deficiency state in the ageing male. Expert Opin. Pharmacother. 4, 183–190.Google Scholar
  59. Denisov, I.G., Baas, B.J., Grinkoya, Y.V. and Sligar, S.G. (2006). The ferrous dioxygen itermediate in human P450 3A4. Substrate dependence of fomation and decay kinetics. J.Biol.Chem. 281, 23313–23318.Google Scholar
  60. Denisov, I.G., Baas, B.J., Grinkoya, Y.V. and Sligar, S.G. (2007). Cooperativity in P450 CYP3A4: linkages in substrae binding, spin state, uncoupling and product fomation. J. Biol. Chem.Google Scholar
  61. Dickson, E.F., Pollak, A. and Diamandis, E.P. (1995). Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmacol. Therapy 66, 207–235.Google Scholar
  62. Dikkeschei, L.D., Wolthers, B.G., Bos-Zuur, I., de la Riviere, G.B., Nagel, G.T., van der Kolk, D.A. and Willemse, P.H. (1996). Optimization of a classical aromatase activity assay and application in normal, adenomatous and malignant breast parenchyma. J. Steroid Biochem. Mol. Biol. 59, 305–313.Google Scholar
  63. Dioniak, S.M., French, J.A., Place, N.J., Weldele, M.L., Glickman, S.E. and Holckamp, K.E. (2004). Non invasive monitoring of fecal androgens in spotted hyenas (Crocuta crocuta). Gen. Comp. Endocrinol. 135, 51–61.Google Scholar
  64. Di Silverio, F., Monti, S., Sciarra, A., Varasano, P.A., Martini, C., Lanzara, S., D’Eramo, G., di Nicola, S. and Toscano, V. (1998). Effects of long-term treatment with Serenoa repens (Permixon) on the concentrations and regional distribution of androgens and epidermal growth factor in benign prostatic hyperplasia. Prostate 37, 77–83.Google Scholar
  65. Doron, R., Fridman, L., Gispar-Herman, I., Maayan, R., Weizman, A. and Yadid, G. (2006). DHEA, a neurosteroid, decreases cocaine self-administration and re-instatement of cocaine-seeking behaviour in rats. Neuropsychopharmacology 31, 2231–2236.Google Scholar
  66. Draper, A.J., Madan, A., Smith, K. and Parkinson, A. (1998). Development of a non-high pressure liquid chromatography assay to determine testosterone hydroxylase (CYP3A) activity in human liver microsomes. Drug Metab. Dispos. 26, 299–304.Google Scholar
  67. Eden Engstrom, B., Burman, P., Johansson, A.G., Wide, L. and Karisson, F.A. (2000). Effects of short-term administration of frowth hormone in healthy young men, women and women taking oral contraceptives. J. Intern. Med. 247, 670–678.Google Scholar
  68. Edinger, K.L., Lee, B. and Frye, C.A. (2004). Mnemonic effects of testosterone and its 5a-reduced metabolites on the conditioned fear and inhibitory avoidance tasks. Pharmacol. Biochem. Behav. 78, 559–568.Google Scholar
  69. Etter, M.L., Eichhorst, J. and Lehotay, D.C. (2006). Clinical determination of 17-hydroxyprogesterone in serum by LC-MS/MS: comparison to Coat-A-Count RIA method. J.Chromatogr. B Analyt. Technol. Biomed. Life Sci. 840, 69–74.Google Scholar
  70. Fajkos, J., Cerny, I. and Pouzar, V. (1996). Synthesis of (15E)-17 beta-hydroxyandrost-4-en-3, 15-dione 15-(O-carboxymethyl)oxime, a potential hapten for testosterone immunoassays. Steroids 61, 634–638.Google Scholar
  71. Farooq, A. and Tahara, S. (2000). Biotransformation of testosterone and pregnenolone catalyzed by the fungus Botrytis cinerea. J. Nat. Proc. Acad. Sci. NY 63, 489–491.Google Scholar
  72. Fernandez, C., Egginger, G., Wainer, I.W. and Lloyd, D.K. (1996). Separation of testosterone metabolites in microsomal incubates using a new capillary electrophoresis assay. J. Chromatogr. B. 677, 363–368.Google Scholar
  73. Fiet, J., Giton, F., Fidaa, I., Valleix, A., Galons, H. and Raynaud, J.P. (2004). Development of a highly sensitive and specific new testosterone time-resolved fluoroimmunoassay in human serum. Steroids 69, 461–471.Google Scholar
  74. Fitzgerald, R.L. and Herold, D.A. (1996). Serum total testosterone: immunoassay compared with negative chemical ionization gas chromatography–mass spectrometry. Clin. Chem. 42, 749–755.Google Scholar
  75. Flores-Valverde, A.M. and Hill, E.N. (2008) Methodology for profiling the steroid metabolome in animal tissues using ultra performance liquid chromatography-electrospray-time of-flight mass spectrometry. Analyt. Chem. (in press).Google Scholar
  76. Forgacs, Z., Nemethy, Z., Revesz, C. and Lazar, P. (2001). Specific amino acids moderate the effects on Ni2+ on the testosterone production of mouse leydig cells in vitro. J. Toxicol. Environ. Health A 62, 349–358.Google Scholar
  77. Foster, S.J., Marshall, D.E., Houghton, E. and Gower, D.B. (2002). Investigations into the biosynthetic pathways for classical and ring B-unsaturated oestrogens in equine placental preparations and allantochorionic tissues. J. Steroid Biochem. Mol. Biol. 82, 401–411.Google Scholar
  78. Friedrich, G., Rose, T. and Rissler, K. (2003). Determination of testosterone metabolites in human hepatocytes. I. Development of an on-line sample preparation liquid chromatography technique and mass spectroscopic detection of 6β-hydroxytestosterone. J. Chromatogr. B Analyt. Tech. Biomed. Life Sci. 784, 49–61.Google Scholar
  79. Frye, C.A. and Edinger, K.L. (2004). Testosterone’s metabolism in the hippocampus may mediate its anti-anxiety effects in male rats. Pharmacol. Biochem. Behav. 78, 473–481.Google Scholar
  80. Frye, C.A., Van Keuren, K.R. and Erskine, M.S. (1996). Behavioral effects of 3α-androstanediol. I: modulation of sexual receptivity and promotion of GABΑ-stimulated chloride flux. Behav. Brain Res. 79, 109–118.Google Scholar
  81. Frye, C.A., Edinger, K.L., Seliga, A.M. and Wawrzycki, J.M. (2004). 5α-reduced androgens may have actions in the hippocampus to enhance cognitive performance of male rats. Pschoneuroendocrinology 29, 1019–1027.Google Scholar
  82. Fuqua, J.S., Sher, E.S., Migeon, C.J. and Berkovitz, G.D. (1995). Assay of plasma testosterone during the first six months of life: importance of chromatographic purification of steroids. Clin. Chem. 41, 1146–1149.Google Scholar
  83. Furuta, R., Suzuki, S., Matsuzawa, M., Shibasaki, H. and Kasuya, Y. (2003). Syntheses of stable isotope-labeled 6β-hydroxycortisol, 6β-hydroxycortisone, and 6β–hydroxytestosterone. Steroids 68, 693–703.Google Scholar
  84. Gaillard, O., Kapel, N., Galli, J., Delattre, J. and Meillet, D. (1994). Time-resolved fluormetry: principles and applications in clinical biology. Ann. Biol. Clin. (Paris) 52, 751–755.Google Scholar
  85. Garciα-Campana, A.M., Baeyens, W.R., Zhang, X.R., Smet, E., Van Der Weken, G., Nakashima, K. and Calokerinos, A.C. (2000). Detection in the liquid phase applying chemiluminescence. Biomed. Chromatogr. 14, 166–172.Google Scholar
  86. Garde, A.H., Hansen, A.M., Skovgaard, L.T. and Christensen, J.M. (2000). Seasonal and biological variation of blood concentrations of total cholesterol dehydroepiandrosterone sulfate, hemoglobin A(1c), lgA, prolactin, and free testosterone in healthy women. Clin. Chem. 46, 551–559.Google Scholar
  87. Gazola, R., Borella, M.l., Donaldson, E.M., Val-Sella, M.V., Sukumasavin, N., Favα-de-Moraes, F. and Bernardino, G. (1996). Plasma steroid and corticosteroid levels in female pacu Piaractus mesopotamicus, Teleostei-Characidae. Braz. J. Med. Biol. Res. 29, 659–664.Google Scholar
  88. Gebre-Medhin, G., Husebye, E.S., Mallmin, H., Helstrom, L.,Berne, C., Karlsson, F.A. and Kampe, O. (2000). Oral dehydroepiandrosterone (DHEA) replacement therapy in women with Addison’s disease. Clin. Endocr. 52, 775–780.Google Scholar
  89. Geldof, A.A., Dijkstra, I., Newling, D.W. and Rao, B.R. (1995). Inhibition of 3 betα-hydroxysteroid-dehydrogenase: an approach for prostate cancer treatment? Anticancer Res. 15, 1349–1354.Google Scholar
  90. Gibbs, T.T., Russek, S.J. and Farb, D.H. (2006). Sulphated steroids as endogenous neuromodulators. Pharmacol. Biochem. Behav. 84, 55–67.Google Scholar
  91. Gill-Sharma, M.K., Balasinor, N. and Parte, P. (2001). Effect of intermittent treatment with tamoxifen on reproduction in male rats. Asian J. Androl. 3, 115–119.Google Scholar
  92. Giraudi, G. and Baggiani, C. (1996). Strategy for fractionating high-affinity antibodies to steroid hormones by affinity chromatography. Analyst 121, 939–944.Google Scholar
  93. Glass, I.A., Lam, R.C., Chang, T., Roitman, E., Shapiro, L.J. and Shackleton, C.H. (1998). Steroid sulphatase deficiency is the major cause of extremely low oestriol production at mid-pregnancy: a urinary steroid assay for the discrimination of steroid sulphatase deficiency from other causes. Prenat. Diagn. 18, 789–800.Google Scholar
  94. Godin, C., Provost, P.R., Poirier, D., Blomquist, C.H. and Tremblay, Y. (1999). Separation by thin-layer chromatography of the most common androgen-derived C19 steroids formed by mammalian cells. Steroids 64, 767–769.Google Scholar
  95. Goeritz, F., Quest, M., Wagener, A., Fassbender, M., Broich, A., Hildebrandt, T.B., Hofmann, R.R. and Blottner, S. (2003). Seasonal timing of sperm production in roe deer: interrelationship among changes in ejaculate parameters, morphology and function of testis and accessory glands. Theriogenology 59, 1487–1502.Google Scholar
  96. Gonzalez-Sagrado, M., Martin Gil, F.J., Lopez-Hernandez, S., Fernandez-Garcia, N., Olmos-Linares, A. and Arranz-Pena, M.L. (2000). Reference values and methods comparison of a new testosterone assay on the AxSYM system. Clin. Biochem. 33, 175–179.Google Scholar
  97. Gonzalo-Lumbreras, R., Pimentel-Trapero, D. and Izquierdo-Hornillos, R. (2003). Development and method validation for testosterone and epitestosterone in human urine samples by liquid chromatography applications. J. Chromatogr. Sci. 41, 261–265.Google Scholar
  98. Goodman-Gruen, D. and Barrett-Connor, E. (2000). Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diab Care 23, 912–918.Google Scholar
  99. Gottreich, A., Zuri, I., Barel, S., Hammer, I. and Terkel, J. (2000). Urinary testosterone levels in the male blind mole rat (Spalax ehrenbergi) affect female preference. Physiol. Behav. 69, 309–315.Google Scholar
  100. Gower, D.B. (1984a). Biosynthesis of androgens and other C19 steroids. In: The Biochemistry of Steroid Hormones, 2nd edn., Ed. H.L.J. Makin, Blackwell, Oxford, London/Edinburgh, Boston/Paloa Alto, Melbourne, pp. 170–206.Google Scholar
  101. Gower, D.B. (1984b). The role of cytochrome P-450 in steroidgenesis and properties of some of the steroid-transforming enzymes. In: The Biochemistry of Steroid Hormones, 2nd edn., Ed. H.L.J. Makin, Blackwell, Oxford, London/Edinburgh, Boston/Paloa Alto, Melbourne, pp. 230–292.Google Scholar
  102. Gower, D.B. (1984c). Part 1. Steroid catabolism and urinary excretion. In The Biochemistry of Steroid Hormones, 2nd edn., Ed. H.L.J. Makin, Blackwell, Oxford, London/Edinburgh, Boston/Paloa Alto, Melbourne, pp. 349–408.Google Scholar
  103. Gower, D.B. (1995). Extraction, purification and estimation of the androgens and their derivatives. In: Steroid Analysis, Eds. H.L.J. Makin, D.B. Gower and D.N. Kirk, Blackie, Academic and Professional, London/Glasgow/Weinheim/New York/Tokyo/Melbourne/Madras, pp. 268–368.Google Scholar
  104. Gower, D.B., Mallett, A.I., Watkins, W.J., Wallace, L.M. and Calame, J.-P. (1997). Capillary gas chromatography with chemical ionization negative ion mass spectrometry in the identification of odorous steroids formed in metabolic studies of the sulphates of androsterone, DHA and 5α-androst-16-en-3β-ol with human axillary bacterial isolates. J. Steroid Biochem. Mol. Biol. 63, 81–89.Google Scholar
  105. Granger, D.A., Schwartz, E.B., Booth, A., Curran, M. and Zakaria, D. (1999). Assessing dehydroepiandrosterone in saliva: a simple radioimmunoassay for use in studies of children, adolescents and adults. Psychoneuroendocrinology 24, 567–579.Google Scholar
  106. Gravell, M.G., Hitti, J., Hess, D.L. and Eschenbach, D.A. (2000). Intrauterine infection and preterm delivery: evidence for activation of the fetal hypothalamic-pituitary-adrenal axis. Am. J. Obstet. Gynecol. 182, 1404–1413.Google Scholar
  107. Griffiths, W.J., Liu, S., Yang, Y., Purdy, R.H. and Sjovall, J. (1999). Nano-electrospray tandem mass spectrometry for the analysis of neurosteroid sulphates. Rapid Commun. Mass Spectrom. 13, 1595–1610.Google Scholar
  108. Griffiths, W.J., Jonsson, A.P., Liu, S., Rai, D.K. and Wang, Y. (2001). Electrospray and tandem mass spectrometry in biochemistry. Biochem. J. 355, 545–561.Google Scholar
  109. Griffiths, W.J., Alvellus, G., Liu, S. and Sjovall, J. (2004). High-energy collision-induced dissociation of oxosteroids derivatised Girard hydrazones. Eur. J. Mass Spectrom. 10, 63–88.Google Scholar
  110. Guarneri, P., Guarneri, R., Cascio, C., Pavasant, P., Piccoli, R. and Papadopoulos, V. (1994). Neurosteroidogenesis in rat retinas. J. Neurochem. 63, 86–96.Google Scholar
  111. Guillemette, C., Hum, D.W. and Belanger, A. (1996). Levels of plasma C19 steroids and 5α-reduced C19 steroid glucuronides in primates, rodents, and domestic animals. Am. J. Physiol. 271, E348–E353.Google Scholar
  112. Gunnarsson, D., Svensson, M., Selstam, G. and Nordberg, G. (2004). Pronounced induction of testicularPGF(2α) and suppression of testosterone by cadmuum-prevention by zinc. Toxicology 200, 49–58.Google Scholar
  113. Haden, S.T., Glowacki, J., Hurwitz, S., Rosen, C. and LeBoff, M.S. (2000). Effects of age on serum dehydroepiandrosterone sulfate, IGF-I, and IL-6 levels in women. Calcif. Tissue Int. 66, 414–418.Google Scholar
  114. Hagey, L.R. and Czekala, N.M. (2003). Comparative urinary androstanes in the great apes. Gen. Comp. Endocrinol. 130, 64–69.Google Scholar
  115. Hamilton, R.A., Stanton, P.G., O’Donnell, L., Steele, V.R., Taggart, D.A. and Temple-Smith, P.D. (2000). Determination of seasonality in southern hairy-nosed wombats (Lasiorhinus latifrons) by analysis of fecal androgens. Biol. Reprod. 63, 526–531.Google Scholar
  116. Hampl, R., Pohanka, M., Hill, M. and Starka, L. (2003). The content of four immunomodulatory steroids and major androgens in human semen. J. Steroid Biochem. Mol. Biol. 84, 307–316.Google Scholar
  117. Harma, H., Soukka, T. and Lovgren, T. (2001). Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem. 47, 561–568.Google Scholar
  118. Hashemi, S.J., Sarasgani, M.R. and Zomorodian, K. (2004). A comparative survey of serum androgenic hormones levels between male patients with dermatophytosis and normal subjects. Jpn. J. Infect. Dis. 57, 60–62.Google Scholar
  119. Hauptmann, H., Paulus, B., Kaiser, T., Herdtweck, E., Huber, E. and Luppa, P.B. (2000). Concepts for the syntheses of biotinylated steroids. Part 1: Testosterone derivatives as immunochemical probes. Bioconjug. Chem. 11, 239–252.Google Scholar
  120. Herold, D.A. and Fitzgerald, R.L. (2003). Immunoassays for testosterone in women: better than a guess? Clin. Chem. 49, 1250–1251.Google Scholar
  121. Higashi, T. (2006). Trace determination of steroids causing age-related diseases using LC/MS combined with detection-oriented derivatisation. Chem. Pharm. Bull. (Tokyo) 54, 479–485.Google Scholar
  122. Higashi, T. and Shimada, K. (2003). Derivatization of neutral steroids to enhace their detection characteristics in liquid chromatography-mass spectrometry. Analyt. Bioanalyt. Chem. 378, 875–882.Google Scholar
  123. Higashi, T., Sugitani, H., Yagi, T. and Shimada, K. (2003). Studies on neurosteroids XVI. Levels of pregnenolone sulfate in rat brains determined by enzyme-linked immunosorbent assay not requiring solvolysis. Biol. Pharm. Bull. 26, 709–711.Google Scholar
  124. Higashi, T., Takido, N. and Shimada, K. (2005a). Studies on neurosteroids XVII. Analysis of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids 70, 1–11.Google Scholar
  125. Higashi, T., Yamauchi, A., Shimada, K., Koh, E., Mizokami, A. and Namiki, M. (2005b). Determination of prostatic androgens in 10 mg of tissue using liquid chromatography–tandem mass spectrometry with charged derivatization. Analyt. Bioanalyt. Chem. 382, 1035–1043.Google Scholar
  126. Higashi, T., Nimomiya, Y., Iwaki, N., Yamauchi, A., Takayama, N. and Shimada, K. (2006). Studies on neurosteroids XVIII LC-MS analysis of changes in rat brain and serum testosterone levels induced by immobilization stress and ethanol administration. Steroids 71, 609–617.Google Scholar
  127. Higashi, T., Ninomiya, Y. and Shimana, K. (2008) Studies on neurosteroids XX. Liquid chromatography–tandem mass spectrometric method for simultaneous determination of testosterone and 5 alphα-dihydrotestosterone in rat brain and serum. J. Chromatogr. Sci. 46, 653–658.Google Scholar
  128. Hines, G.A., Boots, L.R., Wibbels, T. and Watts, S.A. (1999). Steroid levels and steroid metabolism in relation to early gonadal development in the tilapia Oreochromis niloticus (Teleostei: cyprinoidel). Gen. Comp. Endocrinol. 114, 235–248.Google Scholar
  129. Hirschenhauser, K., Mosti, E., Peczely, P., Wallner, B., Dittami, J. and Kotrschal, K. (2000). Seasonal relationships between plasma and fecal testosterone in response to GnRH in domestic ganders. Gen. Comp. Endocrinol. 118, 262–272.Google Scholar
  130. Homma, K., Hasegawa, T., Masumoto, M., Takeshita, E., Watanabe, K., Chiba, H., Kurosawa, T., Takahashi, T. and Matsuo, N. (2003). Reference values for urinary steroids in Japanese new-born infacts: gas chromatography/mass spectrometry in selected ion monitoring. Endocr. J. 50, 783–792.Google Scholar
  131. Honour, J.W. (2003). Benchtop mass spectrometry in clinical biochemistry. Ann. Clin. Biochem. 40, 628–638.Google Scholar
  132. Houghton, E., Dumasia, M.C., Teale, P., et al. (1990). The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine. Steroids 55, 433–439.Google Scholar
  133. Houghton, E., Teale, P., Dumasia, M.C., et al. (1991). Some applications of mass spectrometry in drug detection and metabolic studies in the horse. In: Analysis of Drugs and Metabolites Including Anti-Infective Agents, Eds. E.R. Eid and I.D. Wilson, The Royal Society of Chemistry, Cambridge, UK, pp. 291–302.Google Scholar
  134. Hu, S., Genain, G. and Azerad, R. (1995). Microbial transformation of steroids: contribution to 14 alphα-hydroxylations. Steroids 60, 337–352.Google Scholar
  135. Huang, W.J., Yeh, J.Y., Kan, S.F., Chang, L.S. and Wang, P.S. (2003). Role of testicular interstitial macrophages in regulating testosterone release in hyperprolactinemia. J. Cell Biochem. 88, 766–773.Google Scholar
  136. Hum, D.W., Belanger, A., Levesque, E., Barbier, O., Beaulieu, M., Albert, C., Vallee, M., Guillemette, C., Tchernof, A., Turgeon, D. and Dubois, S. (1999). Characterization of UDP-glucuronosyltransferases active on steroid hormones. J. Steroid Biochem. Mol. Biol. 69, 413–423.Google Scholar
  137. Ijiri, Y., Hayashi, T., Kamegai, H., Ohi, K., Suzuki, K., Kitaura, T. and Takenaka, H. (2003). Digitalis-like immunoreactive substances in maternal and umbilical cord plasma: a comparative sensitivity study of fluorescence polarization immunoassay and microparticle enzyme immunoassay. Ther. Drug. Monit. 25, 234–239.Google Scholar
  138. Illera, J.C., Silvan, G., Munro, C.J., Lorenzo, P.L., Illera, M.J., Liu, I.K. and Illera, M. (2003). Amplified androstenedione enzyme immunoassay for the diagnosis of cryptorchidism in the male horse: comparison with testosterone and estrone sulphate methods. J. Steroid Biochem. Mol. Biol. 84, 377–382.Google Scholar
  139. Iwata, T., Hirose, T., Nakamura, M. and Yamaguchi, M. (1994). Determination of urinary glucuronide conjugates hy high-performance liquid chromatography with pre-column fluorescence derivatization. J. Chromatogr. B. 654, 171–176.Google Scholar
  140. Jana, C.K. and Ali, E. (1999a). Antibody binding characteristics of geometrical isomers of testosterone 3-(O-carboxymethyl)oxime. Steroids 64, 228–232.Google Scholar
  141. Jana, C.K. and Ali, E. (1999b). High resolution affinity chromatography of an anti-steroid antiserum by gradient elution with propionic acid. J. Immunol. Methods 27, 95–103.Google Scholar
  142. Jellinck, P.H., Croft, G., McEwen, B.S., Gottfried-Blackmore, A., Jones, G., Byford, V. and Bulloch, K. (2005). Metabolism of dehydroepiandrosterone by rodent brain cell lines: relationship between 7-hydroxylation and aromatization. J. Steroid Biochem. Mol. Biol. 93, 81–86.Google Scholar
  143. Jellinck, P. K., Kaufmann, M., Gottfried-Blackmore, A., Byford, V., McEwen, B.S., Jones, G, and Bulloch, K. (2006). Dehydroepiandrosterone (DHEA) metabolism in the brain: Identification by liquid chromatography/mass spectrometry of the deltα-4-isomer of DHEA and related steroids formed from androstenedione by mouse BN2 microglia. J. Steroid Biochem. Mol. Biol. 98, 41–47.Google Scholar
  144. Jenkins, R.L., Wilson, E.M., Angus, R.A., Howell, W.M. and Kirk, M. (2003). Androstenedione and progesterone in the sedimant of a river receiving paper mill effluent. Toxicol. Sci. 73, 53–59.Google Scholar
  145. Josephs, J.L. and Sanders, M. (2004). Creation and comparison of MS/MS spectral libraries using quadruple ion trap and triple-quadrupole mass spectrometers. Rapid Commun. Mass Spectrom. 18, 743–759.Google Scholar
  146. Joss, J.M., Edwards, A. and Kime, D.E. (1996). In vitro biosynthesis of androgens in the Australian lungfish, Neoceratodus forsteri. Gen. Comp. Endocrinol. 101, 256–263.Google Scholar
  147. Jung, B.H., Bai, S.W. and Chung, B.C. (2004). Endogenous urinary steroids in premenopausal women with uterine leiomyomas. Int. J. Gynaecol. Obstet. 84, 55–60.Google Scholar
  148. Kaiser, T., Guday, P., Stock, W., Pappert, G., Grol, M., Neumeier, D. and Luppa, P.B. (2000). Biotinylated steroid derivatives as ligands for biospecific interaction analysis with monoclonal antibodies using immunosensor devices. Analyt. Biochem. 282, 173–185.Google Scholar
  149. Kastelic-Suhadolc, T., Piemenitas, A. and Zigon, D. (1994). Isolation and identification of testosterone and androstenedione in the fungus Cochlibolus lunatus. Steroids 59, 357–361.Google Scholar
  150. Kazihnitkova, H., Tejkalova, H., Benesova, O., Bicikova, M., Hill, M. and Hampl, R. (2004). Simultaneous determination of dehydroepiandrosterone, its 7-hydroxylated metabolites, and their sulfates in rat brain tissues. Steroids 69, 667–674.Google Scholar
  151. Khalkhali-Ellis, Z., Moore, T.L. and Hendrix, M.J. (1998). Reduced levels of testosterone and dehydroepiandrosterone sulphate in the serum and synovial fluid of juvenile rheumatoid arthritis patients correlates with disease severity. Clin. Exp. Rheumatol. 16, 753–756.Google Scholar
  152. Kicman, A.T. and Gower, D.B. (2003). Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann. Clin. Biochem. 40, 321–356.Google Scholar
  153. Kime, D.E. and Singh, P.B. (1996). In vitro effects of gammα-hexachiorocyclohexane an in vitro biosynthesis and metabolism of steroids in goldfish Carassium auratus. Ecotoxicol Environ. Saf. 34, 165–173.Google Scholar
  154. Kintz, P., Cirimele, V., Jeanneau, T. and Ludes, B. (1999a). Identification of testosterone and testosterone esters in human hair. J. Analyt. Toxicol. 23, 352–356.Google Scholar
  155. Kintz, P., Cirimele, V. and Ludes, B. (1999b). Physiological concentrations of DHEA in human hair. J. Analyt. Toxicol. 23, 424–428.Google Scholar
  156. Kleeman, D. and Kunkel, S. (1996). Serum dihydrotestosterone versus total testosterone values of patients with laryngeal carcinomas and chronic laryngitis. Laryngorhinootologie 75, 351–355.Google Scholar
  157. Koh, E., Kanaya, J., and Namiki, M. (2001). Adrenal steroids in human prostatic cancer cell lines. Arch. Androl. 46, 117–125.Google Scholar
  158. Kolek, T. (1999). Biotransformation XLVII: transformations of 5-ene steroids in Fusarium culmorum culture. J. Steroid Biochem. Mol. Biol. 71, 83–90.Google Scholar
  159. Koshy, K.T. (1975). O-2,3,4,5,6-pentafluorobenzyl)hydroxylamine as sensitive derivatizing agent for the electron capture gas liquid chromatographic analysis of ketosteroids. J.Chromatogr. Sci. 13, 97–104.Google Scholar
  160. Kronvist, K., Lovgren, U., Svenson, J., Edholm, L.E. and Johansson, G. (1997). Competitive flow injection enzyme immunoassay for steroids using a post-column reaction technique. J. Immunol. Methods 200, 145–153.Google Scholar
  161. Kroon, F.J. and Liley, N.R. (2000). The role of steroid hormones in protogynous sex change in the Blackeye goby, Coryphopterus nicholsii (teleostei: Godiidae). Gen. Comp. Endocrinol. 118, 273–283.Google Scholar
  162. Kus, I., Akpolat, N., Oner, H., Ayar, A., Pekmez, H., Ozen, O.A. and Sarsilmaz, M. (2003). The effects of photoperiod on testes in rat: a morphometric and immunohistochemical study. Neuroendocrinol. Lett. 24, 209–214.Google Scholar
  163. Kuwada, M., Takizawa, N. and Sone, Y. (1996). The relation between two molecular species of P-450 in adult testis and 17 alphα-hydroxylase and 17,20 lyase activities. Biochem. Biophys. Res. Commun. 17, 524–529.Google Scholar
  164. Kuwahara, S., Mizukami, T., Omura, M., Hadihara, M., Linuma, Y., Shimizu, Y., Tamada, H., Tsukamoto, Y., Nishida, T. and Sasaki, F. (2000). Seasonal changes in the hypothalamo-pituitary-testes axis of the japanese wood mouse. Anat. Rec. 260.Google Scholar
  165. Kwan, T.K., Trafford, D.J.H., Makin, H.L.J., Mallet, A.I. and Gower, D.B. (1992). GC-MS studies of 16-androstenes and other C19 steroids in human semen. J. Steroid Biochem. Mol. Biol. 43, 366–372, 549–556.Google Scholar
  166. Kwan, T.K., Kraevskaya, M.A., Makin, H.L., Trafford, D.J. and Gower, D.B. (1997). Use of gas chromatographic–mass spectrometric techniques in studies of androst-16-ene and androgen biosynthesis in human testis; cytosolic specific binding of 5α-androst-16-en-3-one. J. Steroid Biochem. Mol. Biol. 60, 137–146.Google Scholar
  167. Labrie, F. (1991). Intracrinology. Mol. Cell Endocrinol. 78, C113–C118.Google Scholar
  168. Labrie, R., Belanger, A., Belanger, P., Berube, R., Martel, C., Cusan, L., Gomez, J., Candas, B., Castiel, I., Chaussade, V., Deloche, C. and Leclaire, J. (2006). Androgen glucuronides, instead of testosterone, as the new markers of androgenic activity in women. J. Steroid Biochem. Mol. Biol. 99, 182–188.Google Scholar
  169. Lacey, J.M., Minutti, C.Z., Magera, M.J., Tauscher, A.L., Casetta, B., McCann, M., Lymp, J., Hahn, S.H., Rinaldo, P. and Matern, D. (2004). Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin. Chem. 50, 621–625.Google Scholar
  170. Lampe, J.N. and Atkins, W.N. (2006). Time-resolved fluorescence studies of heterotropic ligand binding to Cytochrome P-450 3A4. Biochemistry 45, 12204–12215.Google Scholar
  171. Lamph, S., Wheeler, M. and Halloran, S. (2003). Eight testosterone assays. Evaluation Report, MHRA 03127, Crown Copyright.Google Scholar
  172. Lapcik, O., Hampl, R., Hill, M., Bicikova, M. and Starka, L. (1998). Immunoassay of 7-hydroxysteroids: 1. Radioimmunoassay of 7α-hydroxy dehydroepiandrosterone. J. Steroid Biochem. Mol. Biol. 67, 439–445.Google Scholar
  173. Lapcik, O., Hampl, R., Hill, M. and Starka, L. (1999). Immunoassay of 7-hydroxysteroids: 2. Radioimmunoassay of 7β-hydroxy-dehydroepiandrosterone. J. Mol. Biol. 71, 231–237.Google Scholar
  174. Lauritsen, F.R., Mendes, M.A. and Aggerholm, T. (2000). Direct detection of large fat-soluble biomolecules in solution using membrane inlet mass spectrometry and desorption chemical ionization. Analyst 125, 211–215.Google Scholar
  175. Lavallee, B., Provost, P.R. and Belanger, A. (1996a). Formation of pregnenolone- and dehydroepiandrosterone-fatty acid esters by lecithin-cholesterol acyltransferase in human plasma high density lipoproteins. Biochim. Biophys. Acta 16, 306–312.Google Scholar
  176. Lavallee, B., Provost, P.R., Roy, R., Gauthier, M.C. and Belanger, A. (1996b). Dehydroepiandrosterone-fatty acid esters in human plasma: formation, transport and delivery to steroid target tissues. J. Endocrinol. 150, 119–124.Google Scholar
  177. Leake, R. (1996). Steroid hormones and receptors. In Encyclopedia of Molecular Biology and Molecular Medicine, Vol. 5, Ed. R.A. Meyers, VCH, Weinheim/ Basel, NY/CA/Tokyo, pp.478–484.Google Scholar
  178. Lee, S.H., Kim, S.O., Kwon, S.W. and Chung, B.C. (1999). Androgen imbalance in premenopausal women with benign breast disease and breast cancer. Clin. Biochem. 32, 375–380.Google Scholar
  179. Lefebvre, J. (1997). The protein of fibrocyctic breast disease-methods of measurement and clinical implications. Bull. Acad. Natl. Acad. Med. 181, 1487–1501.Google Scholar
  180. Legrand, C., Dousset, B., Tronel, H., Belleville, F. and Nabet, P. (1995). Measurement of plasma testosterone by gas chromatography-negative-ion mass spectrometry using pentafluoropropionic derivatives. J. Chromatogr. B. Biomed. Appl. 20, 187–192.Google Scholar
  181. Lerch, O. and Zinn, P. (2003). Derivatisation and gas chromatography-chemical ionisation mass spectrometry of selected synthetic and natural endocrine disruptive chemicals. J. Chromatogr. A 28, 77–97.Google Scholar
  182. Leslie, K.K., Reznikov, L., Simon, F.R., Fennessey, P.V., Reyes, H. and Ribalta, J. (2000). Estrogens in intrahepatic cholestasis of pregnancy. J. Obstet. Gynecol. 95, 372–376.Google Scholar
  183. Lewis, D.E.V. (1996). Molecular modelling of mammalian cytochromes P.450. In: Cytochromes P.450. Metabolic and Toxicological Aspects, Ed. C. Ionnides, CRC, Boca Raton, FL/New York/London/Tokyo, pp. 355–398.Google Scholar
  184. Lewis, J.G. and Elder, P.A. (2000). Abbreviated direct and indirect ELISAs: a new and simple format. Clin. Chem. 46, 137–139.Google Scholar
  185. Lewis, J.G., Bason, L.M. and Elder, P.A. (1996). Production and characterization of monoclonal antibodies to dehydroepiandrosterone sulfate: application to direct enzyme-linked immunosorbent assays of dehydroepiandrosterone sulfate and androsterone epiandrosterone sulfates in plasma. Steroids 61, 682–687.Google Scholar
  186. Li, X., Chen, C., Singh, S.M. and Labrie, F. (1995). The enzyme and inhibitors of 4-ene-3-oxosteroid 5α-oxidoreductase. Steroids 60, 430–441.Google Scholar
  187. Liao, S. and Hippaka, R.A. (1984). Mechanism of action of steroid hormones at the subcellular level. In: Biochemistry of Steroid Hormones, 2nd edn., Ed. H.L.J. Makin, Blackwell, Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne, pp. 633–680.Google Scholar
  188. Liceα-Perez, H., Wang, S., Szapacs, M.E. and Yang, E. (2008). Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5alphα-dehydrotestosterone in human serum to support testosterone replacement therapy. Steroids 73, 601–610.Google Scholar
  189. Liere, P., Adwa, Y., Weill-Engerer, S., Eychenne, B., Pianos, A., Robel, P., Sjovall, J., Schumacher, M. and Baulieu, E.E. (2000). Validation of an analytical procedure to measure trace amounts of newuosteroids in brain tissue by gas chromatography-mass spectrometry. J. Chromatogr. B. Biomed. Sci. Appl. 10, 301–312.Google Scholar
  190. Liere, P., Pianos, A., Eychenne, B., Cambourg, A., Liu, S, Griffiths, W., Schumacher, M., Sjovall, J. and Baulieu, E.E. (2004). Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J. Lipid Res. 45, 2287–2301.Google Scholar
  191. Lin, H., Wang, S.W., Wang, R.Y. and Wang, P.S. (2001). Stimulatory effect of lactate on testosterone production by rat Leydig cells. J. Cell Biochem. 83, 147–154.Google Scholar
  192. Lindstrom, S., Wilklund, F., Adami, H.O., Balter, K.A., Adolfsson, J. and Gronberg, H. (2006). Germ-line genetic variation in the key androgen-regulating androgen receptor, cytochrome P-450, and steroid 5α-reductase type 2 is important for prostate cancer development. Cancer Res. 66, 1077–1083.Google Scholar
  193. Liu, S., Sjovall, J. and Griffiths, W.J. (2000). Analysis of oxosteroids by nano-electrospray mass spectrometry of their oximes. Rapid Commun. Mass Spectrom. 14, 390–400.Google Scholar
  194. Liu, S., Griffiths, W.J. and Sjovall, J. (2003a). On-column electrochemical reactions accompanying the electrospray process. Analyt. Chem. 75, 1022–1030.Google Scholar
  195. Liu, S., Sjovall, J. and Griffiths, W.J. (2003b). Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography–electrospray mass spectrometry. Analyt. Chem. 75, 5835–5846.Google Scholar
  196. Lizio, R., Klenner, T., Sarlikiotis, A.W., Romels, P., Marx, D., Nolte, T., Jahn, W., Borchard, G. and Lehr, C.M. (2001). Systemic delivery of cetrorelix to rats by a new aerosol delivery system. Pharm. Res. 16, 771–779.Google Scholar
  197. Logie, A., Boudou, P., Boccon-Gibod, L., Baudin, E., Vassal, G., Schlumberger, M., Le Bouc, T. and Gicquel, C. (2000). Establishment and characterization of a human adrenocortical carcinoma xenograft model. Endocrinology 141, 3165–3171.Google Scholar
  198. Lowartz, S., Petkam, R., Renaud, R., Beamish, F.W., Kime, D.E., Raeside, J. and Leatherland, J.F. (2003). Blood steroid profile and in vitro steroidogenesis by ovarian follicles and testis fragments of adult sea lamprey, Petromyzon marinus. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 134, 365–376.Google Scholar
  199. Lu, S.F., Mo, Q., Hu, S., Garippa, C. and Simon, N.G. (2003). Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity. J. Neurobiol. 57, 163–171.Google Scholar
  200. Luppa, P., Hauck, S., Schwab, I., Birkmayer, C. and Hauptmann, H. (1995). 6β-Biotinylated estrone: novel tracer in competitive chemiluminescence immunoassay of estrone in serum. Clin. Chem. 41, 564–570.Google Scholar
  201. Luppa, P., Hauck, S., Schwab, I., Birkmayer, C. and Hauptmann, H. (1996). Synthesis of 17β-hydroxyandrost-4-en-3-one-7α-(biotinyl-6-N-hexylamide), a conjugate useful for affinity chromatography and for testosterone immunoassays. Bioconjug. Chem. 7, 332–337.Google Scholar
  202. Luppa, P., Bruckner, C., Schwab, I., Hauck, S., Schmidmayr, S., Birkmayer, C., Paulus, B. and Hauptmann, H. (1997). 7α-Biotinylated testosterone derivatives as tracers for a competitive chemiluminescence immunoassay of testosterone in serum. Clin. Chem. 43, 2345–2352.Google Scholar
  203. Ly, L.P. and Handelsman, D.J. (2005). Empirical estimation of free testosterone from testosterone and sex hormone-binding globulin immunoassays. Eur. J. Endocrin. 152, 471–478.Google Scholar
  204. Maccario, M., Mazza, E., Ramunni, J., Oleandri, S.E., Savio, P., Grottoli, S., Procopio, M., Gauna, C. and Ghigo, E. (1999). Relationships between dehydroepiandrosterone sulphate and anthropometric, metabolic and hormonal variables in a large cohort of obese women. Clin. Endocrinol (Oxf). 50, 595–600.Google Scholar
  205. Magnusson, M.O. and Sandstrom, R. (2004). Quantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18, 1089–1094.Google Scholar
  206. Mahendroo, M., Wilson, J.D., Richardson, J.A. and Auchus, R.J. (2004). Steroid 5α-reductase 1 promotes 5α-androstane-3α,17β-diol synthesis in immature mouse testes by two pathways. Mol. Cell Endocrinol. 222, 113–120.Google Scholar
  207. Makin, H.L.J. and Gower, D.B. (1996). Steroid Analysis. In: Encyclopedia of Molecular Biology and Molecular Medecine, Vol. 5, Ed. R.A. Myers, VCH, Weinheim, New York, Basel, Cambridge, Tokyo, pp. 466–478.Google Scholar
  208. Makin, H.L.J. and Heftmann, E. (1988). High-pefmormance liquid chromatography of steroid hormones. In: High Performance Liquid Chromatography in Endocrinology, Eds. H.L.J. Makin and R. Newton, Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, pp. 183–234.Google Scholar
  209. Mallet, A.I., Holland, K.T., Rennie, P.J., Watkins, W.J. and Gower, D.B. (1991). Applications of gas chromatography-mass spectrometry in the study of androgen and odorous 16-androstene metabolism by human axillary bacteria. J. Chromatogr. 562,647–658.Google Scholar
  210. Manire, C.A., Rasmussen, L.E. and Gross, T.S. (1999). Serum steroid hormones including 11-ketotestosterone, 11-ketoandrostenedione, and dihydroprogesterone in juvenile and adult bonnethead sharks, Sphyrna tiburo. J. Exp. Zool. 284, 595–603.Google Scholar
  211. Maran, R.R., Ravichandran, K., Arunakaran, J. and Aruldhas, M.M. (2001). Impact of neonatal hypothyroidism on Leydig cell number, plasma, and testicular interstitial fluid sex steroids concentration. Endocr. Res. 27, 119–141.Google Scholar
  212. Marcos, J., Guo, L.W., Wilson, W.K., Porter, F.D. and Shackleton, C. (2004). The implications of 7-dehydrosterol-7-reductase deficiency (Smith-Lemi-Opitz syndrome) to neurosteroid production. Steroids 69, 51–60.Google Scholar
  213. Marwah, A., Marwah, P. and Lardy, H. (1999). Development and validation of a high-performance liquid chromatography assay for the quantitative determination of 7-oxo-dehydroepiandrosterone-3-sulphate in human plasma. J.Chromatogr. B. 721, 197–205.Google Scholar
  214. Masi, A.T., Feigenbaum, S.L. and Chatterton, R.T. (1995). Hormonal and pregnancy relationships to rheumatoid arthritis: convergent effects with immunologic and microvascular systems. Semin. Arthritis Rheum. 25, 1–27.Google Scholar
  215. Masse, R. and Wright, L.A. (1996). Proposed definitive methods for measurement of plasma testosterone and 17α-hydroxyydroxyprogesterone. Clin. Biochem. 29, 321–331.Google Scholar
  216. Medina, M.F., Ramos, I., Crespo, C.A., Gonzalez-Calvar, S. and Fernandez, S.N. (2004). Changes in serum sex steroid levels throughout the reproductive cycle Bufo arenarum females. Gen. Comp. Endocrinol. 136, 143–151.Google Scholar
  217. Mensah-Nyagan, A.G., Do-Rego, J.L., Feuilloley, M., Marcual, A., Lange, C., Pelletier, G. and Vaudry, H. (1996a). In vivo and in vitro evidence for the biosynthesis of testosterone in the telecephalon of the female frog. J. Neurochem. 67, 413–422.Google Scholar
  218. Mensah-Nyagan, A.M., Feuilloley, M., Do-Rego, J.L., Marcual, A., Lange, C., Tonon, M.C., Pelletier, G. and Vaudry, H. (1996b). Localization of 17β-hydroxysteroid dehydrogenase and characterization of testosterone in the brain of the male frog. Proc. Natl. Acad. Sci. USA 93, 1423–1428.Google Scholar
  219. Mensah-Nyagan, A.G., Beaujean, D., Do-Rego, J.L., Mathieu, M., Vallarino, M., Luu-The, V., Pelletier, G. and Vaudry, H. (2000). In vivo evidence for the production of sulfated steroids in the frog brain. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 126, 213–219.Google Scholar
  220. Merio, L., Pettersson, K. and Lovgren, T. (1996). Monoclonal antibody-based dual-label time-resolved fluorometric assays in a simplified one-step format. Clin. Chem. 42, 1513–1517.Google Scholar
  221. Micallef, J.V., Hayes, M.M., Latif, A., Ahsan, R. and Sufi, S.B. (1995). Serum binding of steroid tracers and its possible effects on direct steroid immunoassay. Ann. Clin. Biochem. 32, 566–574.Google Scholar
  222. Mikola, H., Sandell, Α-C. and Hanninen, E. (1993). Labelling of estradiol and testosterone alkyl oxime derivatives with a europium chelate for time-resolved fluorimmunoassays. Steroids 58, 330–334.Google Scholar
  223. Miller, K.K., Rosner, W., Lee, H., Hier, J., Sesmilo, G., Schoenfeld, D., Neubauer, G. and Kliba, A. (2004). Measurement of free testosterone in normal women and women with androgen deficiency: comparison of methods. J. Clin. Endocrinol. Metab. 89, 525–533.Google Scholar
  224. Minut, G.J., Cambie, M., Lanzoni, M., Marubini, E. and Secreto, G. (1999). Urinary 5α-androstanediol and 5β-androstanediol measurement by gas chromatography after solid-phase extraction and high-performance liquid chromatography. Int. J. Biol. Markers 14, 154–159.Google Scholar
  225. Mitamura, K. and Shimada, K. (2001). Derivatization in liquid chromatography/mass spectrometric analysis of neurosteroids. Se Pu. 19, 508–512.Google Scholar
  226. Mitamura, K., Nagaoka, Y., Shimada, K., Honma, S., Namiki, M., Koh, E. and Mizokami, A. (2003). Simultaneous determination of androstenediol 3-sulfate and dehydroepiandrosterone sulfate in human serum using isotope diluted liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 796, 121–130.Google Scholar
  227. Mitchell, R., Bauerfeld, C., Schaefer, F., Scharer, K. and Robertson, W.R. (1994). Less acidic forms of luteinizing hormone are associated with lower testosterone secretion in men on haemodialysis treatment. Clin. Endocrinol (Oxf) 41, 65–73.Google Scholar
  228. Miyamoto, H., Yeh, S., Lardy, H., Messing, E. and Chang, C. (1998). Delta 5-androstenediol is a natural hormone with androgenic activity in human prostate cancer. Proc. Natl. Acad. Sci. USA 95, 11083–11088.Google Scholar
  229. Mo, Q., Lu, S.F., Hu, S. and Simon, N.G. (2004). DHEA and DHEA sulphate differentially regulate neural androgen receptor and its transcriptional activities. Brain Res. Mol. Brain Res. 126, 165–172.Google Scholar
  230. Moffat, S.D., Zonderman, A.B., Harman, S.M., Blackman, M.R., Kawas, C. and Resnick, S.M. (2000). The relationship between longitudinal declines in dehydroepiandrosterone sulfate concentrations and cognitive performance in older men. Arch. Intern. Med. 160, 2193–2198.Google Scholar
  231. Mohler, J.L., Gregory, C.W., Ford, O.H. III, Kim, D., Weaver, C.M., Petrusz, P., Wilson, E. and French, F.S. (2004). The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10, 440–448.Google Scholar
  232. Moilanen, A.M., Hakkola, J., Vaarala, M.H., Kaupilla, S., Hirvikoski, P. and Vuoristo, J. T. (2007). Characterisation of androgen-regulated expression of CYP 3A5 in human prostate. Carcinogenesis 28, 916–921.Google Scholar
  233. Monti, S., Sciarra, F., Adamo, M.V., Toscano, V., Trotta, M.C., Martini, C., Lanzara, S. and Silverio, F.D. (1997). Prevalent decrease of the EGF content in the periurethral zone of BPH tissue induced by treatment with finasteride or flutamide. J. Androl. 18, 488–494.Google Scholar
  234. Monti, S., Di Silverio, F., Lanzara, S., Varasano, P., Martini, C., Tosti-croce, C. and Sciarra, F. (1998a). Insulin-growth factor-I and -II in human benign prostatic hyperplasia: relationship with binding proteins 2 and 3 and androgens. Steroids 63, 362–366.Google Scholar
  235. Monti, S., Di Silverio, F., Toscano, V., Martini, C., Lanzara, S., Varasano, P.A. and Sciarra, P. (1998b). Androgen concentrations and their receptors in the periurethral region are higher than those of the subcapsular zone in benign prostatic hyperplasia (BPH). J. Androl. 19, 428–433.Google Scholar
  236. Monti, S., De Silverio, F., Iraci, R., Martini, C., Lanzara, S., Poggi, M., Stigliano, A., Sciarra, F. and Toscano, V. (2001). Regional variations of insulin-like growth factor I (IGF-I), IGF-II, and receptor type I in benign prostatic hyperplasia tissue and their correlation with intraprostatic androgens. J. Clin. Endocrinol. Metab. 86, 1700–1706.Google Scholar
  237. Morris, P.D., Malkin, C.J., Channer, K.S. and Jones, T.H. (2004). A mathematical comparison of techniques to predict biologically available testosterone in a cohort of 1072 men. Eur. J. Endocrinol. 151, 241–249.Google Scholar
  238. Mueller, A., Dittrich, R., Cupisti, S., Beckmann, M.W. and Binder, H. (2006). Is it necessary to measure free testosterone to assess hyperandrogenemia in women? The role of calculated free and bioavailable testosterone. Exp. Clin. Endocrinol. Diab. 114, 182–187.Google Scholar
  239. Muller, C., Pompon, D., Urban, P. and Morfin, R. (2006). Inter-conversion of 7α- and 7β-hydroxy-dehydroepiandrosterone by the human 11β-hydroxysteroid dehydrogenase type 1. J. Steroid Biochem. Mol. Biol. 99, 215–222.Google Scholar
  240. Munster, U., Hammer, S., Blume-Peytavi, U. and Schafer-Korting, M. (2003). Testosterone metabolism in human skin cells in vitro and its interaction with estradiol and dutasteride. Skin Pharmacol. Appl. Skin. Physiol. 16, 356–366.Google Scholar
  241. Nakajima, M., Yamato, S. and Shimada, K. (1998). Determination of dehydroepiandrosterone sulphate in biological samples by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry using [7,7,16,16-2H4]-dehydroepiandrosterone sulphate as an internal standard. Biomed. Chromatogr. 12, 211–216.Google Scholar
  242. Nanjee, M.N. and Wheeler, M.J. (1985). Plasma free testosterone – is an index sufficient? Ann. Clin. Biochem. 22, 87–90.Google Scholar
  243. Narayanan, R., LeDuc, B. and Williams, D.A. (2000). Determination of the kinetics of rat UDP-glucuronosyltransferases (UGTs) in liver and intestine using HPLC. J. Pharm. Biomed. Anal. 22, 527–540.Google Scholar
  244. Navajas, R., Imaz, C., Carreras, D., Garcia, M., Perez, M., Rodriguez, C., Rodriguez, A.F. and Corest, R. (1995). Determination of epitestosterone and testosterone in urine by high-performance liquid chromatography. J. Chromatogr. B. Biomed. Appl. 17, 159–164.Google Scholar
  245. Navarro, M.A., Alia, P., Ruiz, R., Valles, A. and Orozco, P. (1996). Relationship between blood levels of sex hormone binding globulin, testosterone levels in blood and saliva and body morphology in premenopausal women. Med. Clin (Barc) 106, 405–408.Google Scholar
  246. Nishimua, K., Matsumiya, K., Tsujimura, A., Koga, M., Kitamura, M. and Okuyama, A. (2001). Association of selenoprotein P with testosterone production in cultured Leydig cells. Arch. Androl. 47, 67–76.Google Scholar
  247. Nubbemayer, R. (1999). Progesterone and testosterone concentrations during oestrous cycle and pregnancy in the common vole (microtus arvalis Pallas). Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 122, 437–444.Google Scholar
  248. Obminski, Z. (1998). Changes in the free (unbound) fraction of testosterone in serum in vitro as affected by pH and temperature. Exp. Clin. Endocrinol. Diab. 106, 85–88.Google Scholar
  249. Oefelein, M.G., Feng, A., Scolieri, M.J., Ricchiutti, D. and Tesnick, M.I. (2000). Reassessment of the definition of castrate levels of testosterone: implications for clinical decision making. Urology 56, 1021–1024.Google Scholar
  250. Ognibene, A., Drake, C.J., Jeng, K.Y., Pascucci, T.E., Hsu, S., Luceri, F. and Messeri, G. (2000). A new modular chemiluminescence immunoassay analyser evaluated. Clin. Chem. Lab. Med. 38, 251–260.Google Scholar
  251. Oliveira, R.F., Almada, V.C. and Canario, A.V. (1996). Social modulation of sex steroid concentrations in the urine of male cichlid fish Oreochromis mossambicus. Horm. Behav. 30, 2–12.Google Scholar
  252. Ortiz de Montellano, P.R. (1995). Cytochrome P 450. Structures, Mechanism and Biochemistry, 2nd edn., Plenum, New York.Google Scholar
  253. Panesar, N.S., Chan, K.W. and Ho, C.S. (2003). Mouse Leydig tumor cells produce C-19 steroids, including testosterone. Steroids 68, 245–251.Google Scholar
  254. Parks, L.G. and LeBlanc, G.A. (1998). Involvement of multiple biotransformation processes in the metabolic elimination of testosterone by juvenile and adult fathead minnows (Pimephales promelas). Gen. Comp. Endocrinol. 112, 69–79.Google Scholar
  255. Patte-Mensah, C., Penning, T.M. and Mensah-Nyagan, A.G. (2004). Anatomical and cellular localization of neuroactive 5α/3α-reduced steroid-synthesizing enzymes in the spinal cord. J. Comp. Neurol. 477, 286–299.Google Scholar
  256. Pavlidis, M., Greenwood, L., Mourot, B., Kokkari, C., Le Menn, F., Divanach, P. and Scott, A.P. (2000). Seasonal variations and maturity stages in relation to differences in serum levels of gonadal steroids, vitellogenin, and thyroid hormones in the common dentex (Dentex dentex). Gen. Comp. Endocrinol. 118, 14–25.Google Scholar
  257. Payne, A. H. and O’shaunessy, P.J. (1996). Structure, function and regulation of steroidogenic enzymes in the Leydig cell. In: The Leydig Cell, Eds. A.H. Payne, M.P. Hardy and L.D. Russell, Cache River Press, Vienna, IL, pp. 259–285.Google Scholar
  258. Payne, D.W., Holtzclaw, W.D. and Adashi, E.Y. (1989). A convenient, unified scheme for the differential extraction of conjugated and unconjugated serum C19 steroids on Sep-pak C18-cartridges. J. Steroid Biochem. 33, 289–295.Google Scholar
  259. Pazzagli, M., Messeri, G., Caldini, A.L., et al.. (1983). Preparation and evaluation of steroid chimiluminescent tracers. J. Steroid Biochem. 19, 407–412.Google Scholar
  260. Pearce, S., Dowsett, M. and Jeffcoate, S.L. (1989). Three methods compared for estimating the fraction of testosterone and estradiol not bound to sex hormone binding glodulin. Clin. Chem. 35, 632–635.Google Scholar
  261. Pechstein, B., Nagaraje, N.V., Hermann, R., Romeis, P., Locher, M. and Derendorf, H. (2000). Pharmacokienetic-pharmacodynamic modeling of testosterone and luteinizing hormone suppression by centrorelix in healthy volunteers. J. Clin. Pharmacol. 40, 266–274.Google Scholar
  262. Peng, S.H., Segura, J., Farre, M. and De la Torre, X. (2000). Oral testosterone administration detected by testosterone glucuronidation measured in blood spots dried on filter paper. Clin. Chem. 46, 515–522.Google Scholar
  263. Pertiwi, A.K.D., Kwan, T.K. and Gower, D.B. (2002). Pregnenolone metabolites in rat testis: endogenous concentrations, and intracellular distribution in whole testes during incubation in vitro. J. Steroid Biochem. Mol. Biol. 81, 363–367.Google Scholar
  264. Pinckard, K.L., Stellflug, J. and Stormshak, F. (2000). Influence of castration and estrogen replacement on sexual behavior of female-oriented male-oriented, and asexual rams. J. Anim. Sci. 78, 1947–1953.Google Scholar
  265. Poblano, A., Rothenberg, S.J., Fonseca, M.E., Cruz, M.L., Flores, T. and Zarco, I. (2003). Salivary testosterone and EEG spectra of 9- to 11-year-old male children. Dev. Neuropsychol. 23, 375–384.Google Scholar
  266. Ponthier, J.L., Shackleton, C.H. and Trant, J.M. (1998). Seasonal changes in the production of two novel and abundant ovarian steroids in the channel catfish (Ictalurus punctatus). Gen. Comp. Endocrinol. 111, 141–155.Google Scholar
  267. Porakishvili, N., Fordham, J.L., Charrel, M., Delves, P.J., Lund, T. and Roitt, I.M. (2000). A low budget luminometer for sensitive chemiluminescent immunoassays. J. Immunol. Methods 234, 35–42.Google Scholar
  268. Pouzar, V., Slavikova, T. and Cerny, I. (1998). Synthesis of (19E)-3b,7α-dihydroxy-17-oxoandrost-5-en-19-al 19-(O-carboxymethyl)oxime, a new hapten for 7α-hydroxydehydroepiandrosterone (3β,7α-dihdroxyandrost-5-en-17-one). Steroids 63, 454–458.Google Scholar
  269. Price, C.P. and Newman, D.J. (Eds) (1997). Principles and Practice of Immunoassay, 2nd ed. Macmillan, London and Basingstoke.Google Scholar
  270. Qian, Y., Yin, D., Li, Y., Wang, J., Zhang, M. and Hu, S. (2004). Effects of four chlorobenzenes on serum sex steroids and hepatic microsome enzyme activities in crucian carp, Carassius auratus. Chemosphere 57, 127–133.Google Scholar
  271. Raeside, J.I., Friendship, R.M. and Vrablic, O.E. (1997a). Effects of castration on early postnatal development of male accessory sex glands in the domestic pig. Eur. J. Endocrinol. 137, 287–292.Google Scholar
  272. Raeside, J.I., Renaud, R.L. and Christie, H.L. (1997b). Postnatal decline in gonadal secretion of dehydroepiandrosterone and 3β-hydroxyandrostα-5,7-dien-17-one in the newborn foal. J. Endocrinol. 155, 277–282.Google Scholar
  273. Raeside, J.I., Christie, H.L. and Renaud, R.L. (1999a). Androgen and estrogen metabolism in the reproductive tract and accessory sex glands of the domestic boar (Sus scrofa). Biol. Reprod. 61, 1242–1248.Google Scholar
  274. Raeside, J.I., Christie, H.L. and Renaud, R.L. (1999b). Androgen and estrogen metabolism in the reproductive tract and accessory sex glands of the domestic boar (Sus scrofa). Biol. Reprod. 61, 1242–1248.Google Scholar
  275. Raffaelli, A. and Saba, A. (2003). Atmospheric pressure photoionization mass spectrometry. Mass Spectrom. Rev. 22, 318–331.Google Scholar
  276. Rassaie, M.J., Kumari, L.G., Pandey, P.K., Gupta, N., Kochupillai, N. and Grover, P.K. (1992). A highly specific heterologous enzyme-linked immunosorbent assay for measuring testosterone in plasma using antibody-coated immunoassay plates or polypropylene tubes. Steroids 57, 288–294.Google Scholar
  277. Rauh, M., Groschi, M., Rascher, W. and Dorr, H.G. (2006). Automated, fast and sensitive quantification of 17α -hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line extraction. Steroids 71, 450–458.Google Scholar
  278. Rennie, P.J., Gower, D.B., Holland, K.T., Mallet, A.I. and Watkins, W.J. (1990). The skin microflora and the formation of human axillary odour. Int. J. Cosmet. Sci. 12, 197–207.Google Scholar
  279. Rheault, P., Charbonneau, A. and Luu-The, V. (1999). Structure and activity of the murine type 5 17betα-hydroxysteroid dehydrogenase gene(1). Biochim. Biophys. Acta 1447, 17–24.Google Scholar
  280. Rinaldi, S., Moret, C.N., Kaaks, R., Biessy, C., Kurzer, M.S., Dechaud, H., Peeters, P.H. and van Noord, P.A. (2003). Reproducibility over time of measurements of androgens, estrogens and hydroxy estrogens in urine samples from post-menopausal women. Eur. J. Epidemiol. 18, 417–424.Google Scholar
  281. Rittmaster, R.S. (1993). Androgen conjugates: physiology and clinical significance. Endocrine Rev. 14, 121–132.Google Scholar
  282. Rittmaster, R.S., Leopold, C.A. and Thompson, D.L. (1988). Preferential metabolism of dihydrotestosterone to androstanediol-17-glucuronide in rat prostate. Endocrinology 123, 2788–2792.Google Scholar
  283. Rittner, H.L., Lee, P.D., Blum, W.F., Doerr, H.G., Steiss, J., Kreuder, J., Rascher, W. and Kiess, W. (1997). Developmental patterns of serum 3α-androstanediol glucuronide. J. Endocrinol. Invest. 20, 245–250.Google Scholar
  284. Rizner, T.L., Adamski, J. and Stojan, J. (2000). 17β-hydroxysteroid dehydrogenase from Cochliobolus lunatus: model structure and substrate specificity. Arch. Biochem. Biophys. 15, 384–362.Google Scholar
  285. Robel, P., Young, J., Corpechot, C., Mayo, W., Perche, F., Haug, M., Simon, H. and Baulieu, E.E. (1995). Biosynthesis and assay of neurosteroids in rats and mice: functional correlates. J. Steroid Biochem. Mol. Biol. 53, 355–360.Google Scholar
  286. Rocha, M.J. and Reis-Henriques, M.A. (1996). Plasma and urine levels of C18, C19 and C21 steroids in an asynchronous fish, the tilapia Oreochromis mossambicus (Teleostei, Cichlidae). Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 115, 257–264.Google Scholar
  287. Roda, A., Manetta, A.C., Portanti, O., Mirasoli, M., Guardigli, M., Pasini, P. and Lelli, R. (2003). A rapid and sensitive 384-well microtitre format chemiluminescent enzyme immunoassay for 19-nortestosterone. Luminescence 18, 72–78.Google Scholar
  288. Rose, K.A., Stapleton, G., Dott, K., Kieny, M.P., Best, R., Schwarz, M., Russell, D.W., Bjorkhem, I., Secki, J. and Lathe, R. (1997). Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7α-hydroxy dehydroepiandrosterone and 7α-hydroxy pregnenolone. Proc. Natl. Acad. Sci. USA 94, 4925–4930.Google Scholar
  289. Rosenbrock, H., Hagemeyer, C.E., Singec, I., Knoth, R. and Volk, B. (1999). Testosterone metabolism in rat brain is differentially enhanced by phenytoin-inducible cytochrome P450 isoforms. J. Neuroendocrinol. 11, 597–604.Google Scholar
  290. Sanwald, P., Blankson, E.A., Dulery, B.D., Schoun, J., Huebert, N.D. and Dow, J. (1995). Isocratic high-performance liquid chromatographic method for the separation of testosterone metabolites. J.Chromatog. B 672, 207–215.Google Scholar
  291. Sarkar, R., Mohanakumar, K.P. and Chowdhury, M. (2000). Effects of an organophosphate pesticide, quinalphos, on the hypothalamo-pituitary-gonadal axis in adult male rats. J. Reprod. Fertil. 118, 29–38.Google Scholar
  292. Schaaf, O. and Dettner, K. (1998). Transformation of steroids by Bacillus strains isolated from the foregut of water beetles (Coleoptera:Dytiscidae): 1. Metabolism of androst-4-en-3,17-dione (AD). J. Steroid Biochem. Mol. Biol. 67, 451–465.Google Scholar
  293. Scherer, C., Wachter, U. and Wudy, S.A. (1998). Determination of testosterone in human hair by gas chromatography-selected ion monitoring mass spectrometry. Analyst 123, 2661–2663.Google Scholar
  294. Schifitto, G., McDermott, M.P., Evans, T., Fitzgerald, T., Schwimmer, J., Demeter, L. and Kieburtz, K. (2000). Autonomic performance and dehydroepiandrosterone sulfate levels in HIV-1-infected individuals: relationship to TH1 and TH2 cytokine profile. Arch. Neurol. 57, 1027–1032.Google Scholar
  295. Schmidt, M., Kreutz, M., Loffler, G., Scholmerich, J. and Straub, R.H. (2000). Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J. Endocrinol. 164, 161–169.Google Scholar
  296. Sciarra, F., Monti, S., Adamo, M.V., Palma, E., Toscano, V., d’Eramo, G. and di Silverio, F. (1995). Regional distribution of epidermal growth factor, testosterone and dihydrotestosterone in benign prostatic hyperplasia tissue. Urol. Res. 23, 387–390.Google Scholar
  297. Scorilas, A., Bjartell, A., Lilja, H., Moller, C. and Diamandis, E.P. (2000). Streptavidin-polyvinylamine conjugates labeled with a europium chelate: applications in immunoassay, immunohistochemistry, and microarrays. Clin. Chem. 46, 1450–1455.Google Scholar
  298. Shackleton, C.H.L. and Honour, J.W. (1976). Simultaneous estimation of urinary steroids by semi-automated gas chromatography. Investigation of neonatal infants and children with abnormal steroid synthesis. Clin. Chim. Acta 69, 267–283.Google Scholar
  299. Shackleton, C.H., Roitman, E., Phillips, A. and Chang, T. (1997). Androstanediol and 5-androstenediol profiling for detecting exogenously administered dihydrotestosterone, epitestosterone, and dehydroepiandrosterone: potential use in gas chromatography isotope ratio mass spectrometry. Steroids 62, 665–673.Google Scholar
  300. Shackleton, C.H.L. and Whitney, J.O. (1980). Use of Sep-Pak cartridges for urinary steroid extraction. Evaluation of the method for use prior to gas chromatographic analysis. Clin. Chim. Acta 107, 231–243.Google Scholar
  301. Shen, Z.J., Lu, Y.L., Chen, Z.D., Chen, F. and Chen, Z. (2000). Effects of androgen and ageing on gene expression of vasoactive intestinal polypeptide in rat corpus cavernosum. BJU Int. 86, 133–137.Google Scholar
  302. Shimada, K. and Yago, K. (2000). Studies on neurosteroids X. Determination of pregnenolone and dehydroepiandrosterone in rat brains using gas chromatography-mass spectrometry-mass spectrometry. J. Chromatogr. Sci. 38, 6–10.Google Scholar
  303. Shimada, K., Mitamura, K. and Higashi, T. (2001). Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A 935, 141–172.Google Scholar
  304. Shishkin, I.L., Zherdev, A.V., Dzantiev, B.B. and Zolotov, I.A. (2000). A portable photometer-reflectometer for quantitative recording of results of immunoenzyme analysis. Priki. Biokhim. Mikrobiol. 36, 497–502 (in Russian).Google Scholar
  305. Shrivastav, T.G., Basu, A. and Kariya, K.P. (2003). One step enzyme linked immunosorbent assay for direct estimation of serum testosterone. J. Immunoassay Immunochem. 24, 205–217.Google Scholar
  306. Shrivastava, A.K. and Grover, P.K. (1997). Specificity of antisera to sex steroid 11-effect of unsaturation in ring-B of testosterone. Indian J. Biochem. Biophys. 34, 336–340.Google Scholar
  307. Silver, H., Knoll, G., Isakov, V., Goodman, C. and Finklestein, Y. (2005). Blood DHEAS concentrations correlate with cognitive function in chronic schizophrenic patients: a pilot study. J. Psychiatr. Res. 31, 2231–2236.Google Scholar
  308. Di Silverio, F., Monti, S., Sciarra, A., Varasano, P.A., Martini, C., Lanzara, S., D’Eramo, G., Di Nicola, S. and Toscano, V. (1998). Effects of long-term treatment with Serenoa repens (Permixon) on the concentrations and regional distribution of androgens and epidermal growth factor in benign prostatic hyperplasia. Prostate 37, 77–83.Google Scholar
  309. Simmons, B.R. and Stewart, J.T. (1997). Supercritical fluid extraction of selected pharmaceuticals from water and serum. J. Chromatog. B. 688, 291–302.Google Scholar
  310. Sinhα-Hikim, I., Arver, S., Beall, G., Shen, R., Guerrero, M., Sattler, F., Shikuma, C., Nelson, J.C., Landgren, B.M., Mazer, N.A. and Bhasin, S. (1998). The use of a sensitive equilibrium dialysis method for the measurement of free testosterone levels in healthy, cycling women and in human immunodeficiency virus-infected women. J. Clin. Endocrinol. Metab. 83, 1312–1318.Google Scholar
  311. Sivapathasundaram, S., Magnisali, P., Coldham, N.G., Howells, L.C., Sauer, M.J. and Ioannides, C. (2003). Cytochrome P450 expression and testosterone metabolism in the liver of deer. Toxicology 187, 49–65.Google Scholar
  312. Skalba, P., Dabkowskα-Huc, A., Kazimierczak, W., Samojedny, A., Samojedny, M.P. and Chelmicki, Z. (2006). Content of 5α-reductase (type 1 and type 2) mRNA in dermal papillae from the lower abdominal region in women with hirsutism. Clin. Exp. Dermatol. 31, 564–570.Google Scholar
  313. Smith, C.M., Ballard, S.A., Wyllie, M.G. and Master, J.R. (1994). Comparison of testosterone metabolism in benign prostatic hyperplasia and human prostate cancer cell lines in vitro. J. Steroid Biochem. Mol. Biol. 50, 151–159.Google Scholar
  314. Sonderfan, A.J., Arlott, M.P. and Parkinson, A. (1989). Identification of the cytochrome P-450 isozyme responsible for testosterone oxidation in rat lung, kidney and testis: evidence that cytochrome P-450 a (P450 IIA1) is the physiologically important testosterone 7-hydroxylase in rat testis. Endocrinology 125, 857–866.Google Scholar
  315. Song, J., Wadhwa, L., Bejjani, B.A. and O’Brien, W.E. (2003). Determination of 3-keto-4-ene steroids and their hydroxylated metabolites catalyzed by recombinant human cytochrome P450 1B1 enzyme using gas chromatography-mass spectrometry with trimethylsilyl derivatization. J. Chromatog. B 791, 127–135.Google Scholar
  316. Soory, M. and Tilakaratne, A. (2000). The effect of minocycline on the metabolism of androgens by human oral periosteal fibroblasts and its inhibition by finasteride. Arch. Oral Biol. 45, 257–265.Google Scholar
  317. Soory, M. and Tilakaratne, A. (2003). Modulation of androgen metabolism by phenytoin, oestradiol and tamoxifen in human gingival fibroblasts. J. Clin. Periodontol. 30, 556–561.Google Scholar
  318. Staines, A.G., Burchell, B., Banhegyi, G., Mandl, J. and Csala, M. (2005). Application of high-performance liquid chromatography-electrospray ionization-mass spectrometry to measure microsomal membrance transport of glucuronides. Analyt. Biochem. 342, 45–52.Google Scholar
  319. Stanczyk, F.Z., Cho, M.M., Endres, D.B., Morrison, J.L., Patel, S. and Paulson, R.J. (2003). Limitations of direct estradiol and testosterone immunoassay kits. Steroids 68, 1173–1178.Google Scholar
  320. Steckelbroech, S., Stoffel-Wagner, B., Reichelt, R., Schramm, J., Bidlingmaier, F., Siekmann, L. and Klingmuller, D. (1999). Characterization of 17β-hydroxysteroid dehydrogenase activity in brain tissue: testosterone formation in the human temporal lobe. J. Neuroendocrinol. 11, 457–464.Google Scholar
  321. Strahm, E., Kohler I., Rudaz, E., Martel, C.S., Carrupt, P.A., Venthay, J.L. and Sanh, M. (2008). Isolation and quantification by high performance liquid chromatography-ion-trap mass spectrometry of androgen sulphoconjugates in human urine. J. Chromatog. A 196–197, 153–160.Google Scholar
  322. Straub, R.H., Vogl, D., Gross, V., Lang, B., Scholmerich, J. and Andus, T. (1998). Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. Am. J. Gastroenterol. 93, 2197–2202.Google Scholar
  323. Straub, R.H., Gluck, T., Cutolo, M., Georgi, J., Helmke, K., Scholmerich, J., Vaith, P. and Lang, B. (2000). The adrenal steroid status in relation to inflammatory cytokines (interleukin-6 and tumour necrosis factor) in polymyalgia rheumatica. Rheumatology 39, 624–631.Google Scholar
  324. Strous, R.D. (2005). Dehydroepiandrosterone (DHEA) augmentation in the management of schizophrenia symptomatology. Essent. Psychpharmacol. 6, 141–147.Google Scholar
  325. Sullivan, D.A., Belanger, A., Cermak, J.M., Berube, R., Papas, A.S., Sullivan, R.M., Yamagami, H., Dana, M.R. and Labrie, F. (2003). Are women with Sjogren’s syndrome androgen-deficient? J. Rheumatol. 30, 2413–2419.Google Scholar
  326. Sundaram, K. and Kuman, M. (1996). Metabolism of testosterone in Leydigs cells and peripheral tissues. In: The Leydig Cell, Eds. A.H. Payne, M.P. Hardy, L.D. Russell, Cache River Press, Vienna, IL, pp. 287–305.Google Scholar
  327. Svechnikov, K.V., Busygina, T.V. and Osadchuk, A.V. (1994). Determination of metabolism of steroid hormones and activity of their synthetic enzymes in murine Leydig cells by high performance liquid chromatography. Vopr. Med. Khim. 40, 14–17 (in Russian).Google Scholar
  328. Swart, P., Lombard, N., Swart, A.C., vander Merwe, T., Murry, B.A., Nicol, M. and Mason, J. (2003). Ovine steroid 17α-hydroxylase cytochrome P450: characteristics of the hydroxylase and lyase activities of the adrenal cortex enzyme. Arch. Biochem. Biophys. 409, 145–152.Google Scholar
  329. Szymczak, J., Milewicz, A., Thijssen, J.H., Blankenstein, M.A. and Daroszewski, J. (1998). Concentration of sex steroids in adipose tissue after menopause. Steroids 63, 319–321.Google Scholar
  330. Tagawa, N., Kusuda, S. and Kobayashi, Y. (1997). C-16 hydroxylation of 3β-hydroxy-D5-steroids during the early neonatal period. Biol. Pharm. Bull. 20, 1295–1299.Google Scholar
  331. Tagawa, N., Tsuruta, H., Fujinami, A. and Kobayashi, Y. (1998). Prevention of co-elution of steroid sulfates with serum proteins from pre-column in column-switching HPLC system. Biol. Pharm. Bull. 21, 1211–1214.Google Scholar
  332. Tagawa, N., Tamanaka, J., Fujinami, A., Kobayashi, Y., Takano, T., Fukata, S., Kuma, K., Tada, H. and Amino, N. (2000). Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone sulfate concentrations in patients with hyperthyroidism and hypothyroidism. Clin. Chem. 46, 523–528.Google Scholar
  333. Tagawa, N., Hidaka, Y., Takano, T., Shimaoka, Y., Kobayashi, Y. and Amino, N. (2004). Serum concentrations of dehydroepiandrosterone and dehydroepiandrosterone sulfate and their relation to cytokine produced during and after normal pregnancy. Clin. Chim. Acta. 340, 187–193.Google Scholar
  334. Taherianfard, M. and Shariaty, M. (2004). Evaluation of serum steroid hormones in schizophrenic patients. Indian J. Med. Sci. 58, 3–9.Google Scholar
  335. Taieb, J., Mathian, B., Millot, F., Patricot, M.-C., Mathieu, E., Queyrel, N., Lacroix, I., Sommα-Delpero, C. and Boudou, P. (2003). Clin. Chem. 49, 1381–1395.Google Scholar
  336. Tarrant, A.M., Blomquist, C.H., Lima, P.H., Atkinson, M.J. and Atkinson, S. (2003). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 136, 473–485.Google Scholar
  337. Tchernof, A., Despres, J.P., Belanger, A., Dupont, A., Prudhomme, D., Moorjani, S., Lupien, P.J. and Labrie, F. (1995a). Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 44, 513–519.Google Scholar
  338. Tchernof, A., Despres, J.P., Dupont, A., Belanger, A., Nadeau, A., Prudhomme, D., Moorjani, S., Lupien, P.J. and Labrie, F. (1995b). Relation of steroid hormones to glucose tolerance and plasma insulin levels in men. Importance of visceral adipose tissue. Diab. Care 18, 292–299.Google Scholar
  339. Tejada, F., Cremades, A., Monserrat, F. and Penafiel, R. (1998). Interference of the antihormone RU486 in the determination of testosterone and estradiol by enzyme-immunoassay. Clin. Chim. Acta 275, 63–69.Google Scholar
  340. Testino, S.A.Jr., Ozarowski, J., Thurston, A.W., Arrendale, R.F. and Patonay, G. (1999). Determination of testosterone and 6β-hydroxytestosterone by gas chromatography-selected ion monitoring-mass spectrometry for the characterization of cytochrome P450 3A activity. J. Chromatogr. B, Biomed. Sci. Appl. 734, 73–81.Google Scholar
  341. Thienpont, L.M., De Brabandere, V.I., Stocki, D. and De Leenheer, A.P. (1994). Use of cyclodextrins for prepurification of progesterone and testosterone from human serum prior to determination with isotope dilution gas chromatography/mass spectrometry. Analyt. Chem. 66, 4116–4119.Google Scholar
  342. Tilakaratne, A. and Soory, M. (1999). Modulation of androgen metabolism by estradiol-17b and progesterone, alone and in combination, in human gingival fibroblasts in culture. J. Periodontol. 70, 1017–1025.Google Scholar
  343. Tohyama, O., Imura, A., Iwano, A., Freund, J.A., Henrissat, B., Fujimori, T. and Nabeshima, Y. (2004). Klotho is a novel betα-glucuronidase capable of hydrolyzing steroid glucuronides. J. Biol. Chem. 279, 9777–9784.Google Scholar
  344. Tomlinson, C., Macintye, H., Dorrian, C.A., Ahmed, S.F. and Wallace, A.M. (2004). Testosterone measurements in early infancy. Arch. Dis. Child Fetal Neonatal Ed. 89, F558–F559.Google Scholar
  345. Torma, A., Jaatinen, T.A., Kaihola, H.L., Koskinen, P. and Irjala, K. (1995). A method for measurement of free testosterone in premenopausal women involving equilibrium dialysis, chromatography, and radioimmunoassay. Steroids 60, 285–289.Google Scholar
  346. Torres, J.M. and Ortega, E. (2006). Steroid 5α-reductase isozymes in the adult female rat brain: central role of dihydrotestosterone. J. Mol. Endocrinol. 36, 239–245.Google Scholar
  347. Tschop, M., Behre, H.M., Nieschlag, E., Dressendorfer, R.A. and Strasburger, C.J. (1998). A time-resolved fluorescence immunoassay for the measurement of testosterone in saliva: monitoring of testosterone replacement therapy with testosterone buciclate. Clin. Chem. Lab. Med. 36, 223–230.Google Scholar
  348. Tsutsui, K., Matsunaga, M., Miyabara, H. and Ukena, K. (2006). Neurosteroid biosynthesis in the quail brains: a review. J. Exp. Zoolog. A. Comp. Exp. Biol. 305, 733–742.Google Scholar
  349. Ubels, J.L., Veenstra, E., Ditlev, J. and Ingersoll, K. (2003). Interactions of testosterone and all-trans retinoic acid in regulation of androgen receptor expression in rat lacrimal gland. Exp. Eye Res. 77, 741–748.Google Scholar
  350. testosterone. Journal of Steroid Biochemistry. 22, 639–648.Google Scholar
  351. Uemura, M., Tamura, K., Chung, S., Honma, S., Okuyama, A. and Nakamura, Y. (2008). Novel 5alphα-steroid reductase (SRD5A3), type-3 is overexpressed in refractory prostate cancer. Cancer Sci. 99, 81–86.Google Scholar
  352. Umstot, E.S., Baxter, J.E. and Andersen, R.N. (1985). A theoretically sound and practicable equilibrium dialysis method for measuring percentages of free testosterone. J. Steroid Biochem. 22, 639–648.Google Scholar
  353. Usmani, K.A., Rose, R.L. and Hodgson, E. (2003). Inhibition and activation of the human liver microsomal and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals. Drug Metab. Dispos. 31, 384–391.Google Scholar
  354. Vakina, T.N., Shutov, A.M., Shalina, S.V., Zinov’eva, E.G. and Kiselev, I.P. (2003). Dehydroepiandrosterone and sexual function in men with chronic prostatitis. Urologiia 1, 49–52.Google Scholar
  355. Valigora, S.D., Lib, P.K., Dunphy, G., Turner, M. and Ely, D.L. (2000). Steroid sulfatase inhibitor alters blood pressure and steroid profiles in hypertensive rats. J. Steroid Biochem. Mol. Biol. 73, 113–122.Google Scholar
  356. Vannuchi, P.L., Messeri, G., Bolelli, G.F., et al. (1983). A solid phase chemiluminescent immunoassaty (CIA) for testosterone glucuronide in diluted urines. J. Steroid Biochem. 18, 625–629.Google Scholar
  357. Vanson, A., Arnold, A.P. and Schlinger, B.A. (1996). 3β-Hydroxysteroid dehydrogenase/isomerase and aromatase activity in primary cultures of developing zebra finch telencephalon: dehydroepiandrosterone as substrate for synthesis of androstenedione and estrogens. Gen. Comp. Endocrinol. 102, 342–350.Google Scholar
  358. Veldhuis, J.D., Pincus, S.M., Mitamura, R., Yano, K., Suzuki, N., Ito, Y., Makita, Y. and Okuno, A. (2001). Developmentally delimited emergence of more orderly luteinizing hormone and testosterone secretion during late prepuberty in boys. J. Clin. Endocrinol. Metab. 86, 80–89.Google Scholar
  359. Venturelli, E., Cavalleri, A. and Secreto, G. (1995). Methods for urinary testosterone analysis. J. Chromatog. 671, 363–380.Google Scholar
  360. Vermeulen, A., Verdonck, L. and Kaufman, J.M. (1999). A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84, 3666–3672.Google Scholar
  361. Vicente, F.B., Smith, F.A., Sierra, R. and Wang, S. (2006). Measurement of serum testosterone using high-performance liquid chromatography/tandem mass spectrometry. Clin. Chem. Lab. Med. 44, 70–75.Google Scholar
  362. Vierhapper, H., Nowotny, P. and Waldhausl, W. (2000). Production rates of testosterone in patients with Cushing’s syndrome. Metabolism 49, 229–231.Google Scholar
  363. Vierhapper, H., Maier, H., Nowotny, P. and Waldhausl, W. (2003a). Production rates of testosterone and of dihydrotestosterone in female pattern hair loss. Metabolism 52, 927–929.Google Scholar
  364. Vierhapper, H., Nowotny, P. and Waldhausl, W. (2003b). Reduced production rates of testosterone and dihydrotestosterone in healthy men treated with rosiglitazone. Metabolism 52, 230–232.Google Scholar
  365. Viveiros, M.M. and Liptrap, R.M. ACTH treatment disrupts ovarian IGF-1 and steroid hormone production. J. Endocrinol. 164, 255–264.Google Scholar
  366. Wadhwa, L. and Smith, K.E. (2000). Progesterone side-chain cleavage by Bacillus sphaericus. FEMS Microbiol. Lett. 192, 179–183.Google Scholar
  367. Walker, J., Hughes, I.A. and Wood, P.J. (1999). Bloodspot testosterone assay suitable for study of neonates and monitoring of children with congenital adrenal hyperplasia. Ann. Clin. Biochem. 36, 477–482.Google Scholar
  368. Walker, V.R., Dombi, G.W., Gutai, J.P., Wade, D.D., Swartz, K.H., Liu, H. and Schroeder, R.R. (1996). Semiautomated method for the quantitation of plasma or sera androstenedione, testosterone, and dihydrotestosterone in population studies. Analyt. Biochem. 234, 194–203.Google Scholar
  369. Wallner, B., Mosti, E., Dittami, J. and Prossinger, H. (1999). Fecal glucocorticoids document stress in female Barbary macaques (Macaca sylvanus). Gen. Comp. Endocrinol. 113, 80–86.Google Scholar
  370. Wang, C., Catlin, D.H., Demers, L.M., Starcevic, B. and Swerdloff, R.S. (2004a). J. Clin. Endocrinol. Metab. 89, 534–543.Google Scholar
  371. Wang, C., Catlin, D.H., Starcevic, B., Leung, A., DiStefano, E., Lucas, G., Hull, L. and Swerdloff, R.S. (2004b). Testosterone metabolic clearance and production rates determined by stable isotope dilution/tandem mass spectrometry in normal men: influence of ethnicity and age. J.Clin. Endocrinol. Metab. 89, 2936–2941.Google Scholar
  372. Wang, Y., Karu, K. and Griffiths, W.J. (2007). Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie 89, 182–191.Google Scholar
  373. Warner, M.H., Kane, J.W., Atkin, S.L. and Kilpatrick, E.S. (2006). Dehydroepiandrosterone sulphate interferes with the Abbott Architect direct immunoassay for testosterone. Ann. Clin. Biochem. 43, 196–199.Google Scholar
  374. Waxman, D.J. and Chang, T.K. (2006). Thin-layer chromatography analysis of human CYP3Α-catalyzed testosterone 6α-hydroxylation. Methods Mol. Biol. 320, 133–141.Google Scholar
  375. Wheeler, M.J. (1994). Steroid and thyroid hormones, Vol. 2, Part 2 of the Immunoassay Kit Directory, Series A. Clinical Chemistry, Ed. J. Seth, Kluwer, Lancaster, UK.Google Scholar
  376. Wheeler, M.J. (1995). The determination of bio-available testosterone. Ann. Clin. Biochem. 32, 345–357.Google Scholar
  377. Wheeler, M.J. (2006). Measurement of androgens. In: Hormone Assays in Biological Fluids, Eds. M.J. Wheeler and J.S.M. Hutchison, Humana Press, Totowa, NJ, pp. 197–211.Google Scholar
  378. Wheeler, M.J. and Luther, F. (1983). Development of testosterone assays for routine use. In Immunoassays for Clinical Chemistry, Eds. W.M. Hunter and J.E.T. Corrie, Churchill Livingstone, Edinburgh, pp. 113–116.Google Scholar
  379. Wheeler, M.J., D’souza, A., Matadeen, J. and Croos, P. (1996). Ciba Corning ACS: 180 testosterone assay evaluated. Clin. Chem. 42, 1445–1449.Google Scholar
  380. Wheeler, M.J., Zhong, Y.-B., Kicman, A.T. and Coutts, S.B. (1998). The measurement of testosterone in hair. J. Endocrinol. 159, R5–R8.Google Scholar
  381. Wheeler, M.J. and Barnard, G.F.(in press), This volume.Google Scholar
  382. Wheeler, M. J. and Hutchinson, J.S.M. (Eds.) (2006). Hormone Assays in Biological Fluids, Humana Press, Totowa, NJ.Google Scholar
  383. Wild, D. (Ed.) (2001). The Immunoassay Handbook, 2nd edn., Nature Publishing Group, London and Basingstoke.Google Scholar
  384. Williams, T.M., Kind, A.J., Houghton, E. and Hill, D.W. (1999). Electrospray collision-induced dissociation of testosterone and testosterone hydroxy analogs. J. Mass. Spectrom. 34, 206–216.Google Scholar
  385. Wilson, J.D., Auchus, R.J., Leihy, M.W., Guryev, O.L., Estabrook, R.W., Osborn, S.M., Shaw, G. and Renfree, M.B. (2003). 5α-Androstane-3,17-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3,17-diol-20-one as a key intermediate. Endocrinology 144, 575–580.Google Scholar
  386. Wudy, S.A. (1990). Synthetic procedures for the preparation of deuterium-labeled analogs of naturally occurring steroids. Steroids 55, 463–471.Google Scholar
  387. Wudy, S.A., Wachter, U.A., Homoki, J. and Teller, W.M. (1995). 17α-hydroxyprogesteronem, 4-androstenedione, and testosterone profiled by routine stable isotope dilution/gas chromatography-mass spectrometry in plasma of children. Pediatr. Res. 38, 76–80.Google Scholar
  388. Wudy, S.A., Dor, H.G., Solleder, C., Djalali, M. and Homoki, J. (1999). Profiling steroid hormones in aminiotic fluid of midpregnancy by routine stable isotope dilution gas chromatography-mass spectrometry: reference values and concentrations in fetuses at risk for 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 84, 2724–2728.Google Scholar
  389. Yamada, H., Satohm, R., Yamashita, T., Kambegawa, A. and Iwata, M. (1997). Development of a time-resolved fluoroimmunoassay (TR-FIA) for testosterone: measurement of serum testosterone concentrations after testosterone treatment in the rainbow trout (Oncorhynchum mykiss). Gen. Comp. Endocrinol. 106, 181–188.Google Scholar
  390. Yau, J.L., Noble, J., Graham, M. and Seckl, J.R. (2006). Central administration of a cytochrome P-450–7B product 7α-hydroxypregnenolone, that improves spatial memory retention in cognitive impaired rats. J. Neurosci. 26, 11034–11040.Google Scholar
  391. Yeoh, C.G., Schreck, C.B., Fitzpatrick, M.S. and Feist, G.W. (1996). In vivo steroid metabolism in embryonic and newly hatched steelhead trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 102, 197–209.Google Scholar
  392. Yimaz, B., Kutiu, S., Canpolat, S., Sandal, S., Ayar, A., Mogulkoc, R. and Kelestimlur, H. (2001). Effects of paint thinner exposure on serum LH, FSH and testosterone levels and hypothalamic catecholamine contents in the male rat. Biol. Pharm. Bull. 24, 163–166.Google Scholar
  393. Zemaitis, M.A. and Kroboth, P.D. (1998). Simplified procedure for measurement of serum dehydroepiandrosterone and its sulfate with gas chromatography-ion trap spectrometry and selected reaction monitoring. J. Chromatog. B. 716, 19–26.Google Scholar
  394. Zhao, M., Baker, S.D., Yan, X., Zhao, Y., Wright, W.W., Zirkin, B.R. and Jarow, J.P. (2004). Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids 69, 721–726.Google Scholar
  395. Zherdev, A.V., Byzova, N.A., Izumrudov, V.A. and Dzantiev, B.B. (2003). Rapid polyelectrolyte-based immunofiltration technique for testosterone detection in serum samples. Analyst 128, 1275–1280.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Forensic Science and Drug Monitoring (Drug Control Centre)Kings College LondonLondonUK

Personalised recommendations