Advertisement

General Methods for the Extraction, Purification, and Measurement of Steroids by Chromatography and Mass Spectrometry

  • Hugh L. J. MakinEmail author
  • John W. Honour
  • Cedric H. L. Shackleton
  • William J. Griffiths
Chapter

Abstract

Steroids consist of an essentially lipophilic (or hydrophobic, non-polar) cyclopentanoperhydrophenanthrene nucleus modified on the periphery of the nucleus or on the side chain by the addition of hydrophilic (or lipophobic, polar) groups. Although steroids are widely distributed in nature and many thousands have been synthesised in the laboratories of pharmaceutical and chemical organisations, this chapter concentrates primarily on the methodology for the analysis of steroids of biological importance to human subjects and in particular on the methods for the analysis of the very low concentrations of steroids found in human biological tissues or formed during in vitro or in vivo studies. This does not, however, imply that the techniques discussed here may not find applicability in other areas of steroid analysis. This chapter neither discusses specifically the saturation analysis techniques including immunoassay-radioimmunoassay (RIA), enzymeimmunoassay (EIA), which are explained in Chapter 4, nor the analysis of cardenolides, sapogenins, alkaloids, brassinosteroids or ecdysteroids, which present their own analytical challenges but are of less interest in a clinical context. Further details on basic principles of mass spectrometry (MS) are discussed in Chapter 2.

Notes

Acknowledgements

The support of the NIH to CHLS (recent grants 1S10 RR017854, R03 HD045302, R03 HD39707, R01HD38940) is acknowledged. WJG acknowledges the UK Biotechnology and Biological Science Research Council for financial support (grant no. BB/C511356/1 and BB/C515771/1). CHLS is grateful to Drs. Nigel Clarke and Mike Caulfield of Quest Diagnostics for describing their progress in developing MS/MS methods for routine commercial hormone measurement. The authors acknowledge the encouragement offered to them in this field by Professor Jan Sjövall at Karolinska Institute.

References

  1. Abian J, Oosterkamp AJ, Gelpi E (1999) Comparison of conventional, narrow-bore, and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations. J. Mass. Spectrom. 34; 244–254.Google Scholar
  2. AbuRuz S, Millership J, Heaney L, McElnay J (2003) Simple liquid chromatography method for the rapid simultaneous determination of prednisolone and cortisol in plasma and urine using hydrophilic lipophilic balanced solid phase extraction cartridges. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 798; 193–201.Google Scholar
  3. Adlercreutz H, Kiuru P, Rasku S, Wahala K, Fotsis T (2004) An isotope dilution gas chromatographic-mass spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine. J. Steroid Biochem. Mol. Biol. 92; 399–411.Google Scholar
  4. Agnus B, Sebille B, Gosselet N-M (1991) Effects of P-cyclodextrin in the mobile phase on the retention and indirect detection of non-electrolytes in reversed-phase liquid chromatography. II. Steroids. J. Chromatogr. 552; 583–592.Google Scholar
  5. Agnus B, Gosselet N-M, Sebille B (1994) Indirect photodetection of pregnanolone on a Cyclobond column by high-performance liquid chromatography. J. Chromatogr. 663; 27–33.Google Scholar
  6. Agrawal AK, Pampori NA, Shapiro BH (1995) Thin-layer chromatographic separation of regioselective and stereospecific androgen metabolites. Anal. Biochem. 224; 455–57.Google Scholar
  7. Al-Alousi LM, Anderson RA (2002) A relatively simple and rapid multi-component method for. analysis of steroid profiles in blood, fecal and liver samples. Steroids. 67; 269–275.Google Scholar
  8. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recogn. 19; 106–180.Google Scholar
  9. Alkharfy KM, Frye RF (2002) Sensitive liquid chromatographic method using fluorescence detection for the determination of estradiol 3- and 17-glucuronides in rat and human liver microsomal incubations: formation kinetics. J. Chromatogr. B 774; 33–38.Google Scholar
  10. Al Sharef O, Feely J, Kavanagh PV, Scott KR, Sharma SC (2007) An HPLC method for the determination of the free cortisol/cortisone ratio in human urine. Biomed. Chromatogr. 21; 1201–1206.Google Scholar
  11. Amin M, Harrington K, Vonwandruszka R (1993) Determination of steroids in urine by micellar HPLC with detection by sensitized terbium fluorescence. Anal. Chem. 65; 2346–2351.Google Scholar
  12. Amundsen LK, Nevanen TK, Takkinen K, Rovio S, Siren H (2007) Microscale immunoaffinity SPE and MEKC in fast determination of testosterone in male urine. Electrophoresis. 28; 3232–3241.Google Scholar
  13. Anari MR, Bakhtiar R, Zhu B, Huskey S, Franklin RB, Evans DC (2002) Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: application in trace analysis of ethinylestradiol in rhesus monkey plasma. Anal. Chem. 74; 4136–4144.Google Scholar
  14. Andersson SHG, Sjövall J (1985) Analysis of profiles of unconjugated steroids in rat testicular. tissue by gas chromatography-mass spectrometry. J. Steroid Biochem. 23; 469–475.Google Scholar
  15. Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, Hishinuma T, Mano N, Goto J (2006) High sensitive analysis of rat serum bile acids Iw liqWd chromatography/electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 40; 1179–1180.Google Scholar
  16. Ando T, Koshika S, Komura K, Nakayama Y, Hara S (1986) Characterization of packing columns for the liquid chromatographic determination of corticosteroids in human plasma. J. Liquid Chromatogr. 9; 2601–2608.Google Scholar
  17. Andreohni F, Borra C, Caccamo F, et al. (1987) Estrogen conjugates in late-pregnancy fluids – extraction and group separation by a graphitized carbon black cartridge and quantification by high-performance liquid chromatography. Anal. Chem. 59; 1720–1725.Google Scholar
  18. Andreolini F, Beade SC, Novotny M (1988) Determination of serum metabolic profiles of bile acids by microcolumn liquid chromatography/laser-induced fluorescence. J. High Res. Chromatogr. 11; 20–24.Google Scholar
  19. Antignac J-P, Brosseaud I, Gaudin-Hirret FA, Le Bizec B (2005) Analytical strategies for the direct mass spectrometric analysis of steroid and corticosteroid phase II metabolites. Steroids. 70; 205–216.Google Scholar
  20. Appelblad P, Irgum K (2002) Separation and detection of neuroactive steroids from biological matrices. J. Chromatogr. A. 955; 151–182.Google Scholar
  21. Appelblad P, Jonsson T, Backstrom T, Irgum K (1998) Determination of C-21 ketosteroids in serum using trifluoromethanesulfonic acid catalyzed precolumn dansylation and 1, 1’-oxalyldiimidazole postcolumn peroxyoxalate chemiluminescence detection. Anal. Chem. 70; 5002–5009.Google Scholar
  22. Archambault A, Begue R-J, Faure Z. et al. (1984) Chromatography of C, C, and C steroids on Sephadex LH-20. J. Chromatogr. 284; 261–268.Google Scholar
  23. Arroyo D, Ortiz MC, Sarabia LA (2007) Multiresponse optimization and parallel factor analysis, useful tools in the determination of estrogens by gas chromatography-mass spectrometry. J. Chromatogr. A.1157; 358–368.Google Scholar
  24. Axelson M (1985) Liquid-solid extraction of vitamin D3 metabolites from plasma for analysis by HPLC, GC/MS and protein binding techniques. Anal. Lett. 18; 1607–1622.Google Scholar
  25. Axelson M, Sahlberg B-L (1983) Group separation and gas chromatography-mass spectrometry of conjugated steroids in plasma. J. Steroid Biochem. 18; 313–321.Google Scholar
  26. Balthazart J, Cornil CA, Taziaux M, Charlier TD, Baillien M, Ball GF (2006) Rapid changes in production and behavioral action of estrogens. Neuroscience. 138; 783–91.Google Scholar
  27. Barrett YC, Akinsanya B, Chang SY, Vesterqvist O (2005) Automated on-line SPE LC-MS/MS method to quantitate 6beta-hydroxycortisol and cortisol in human urine: use of the 6beta-hydroxycortisol to cortisol ratio as an indicator of CYP3A4 activity. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 821; 159–165.Google Scholar
  28. Batta AK, Salen G (1999) Gas chromatography of bile acids. J. Chromatogr. B Biomed. Sci. Appl. 723; 1–16.Google Scholar
  29. Batta AK, Aggarwal SK, Tint GS, Batta M, Salen G (1995) Capillary gas-liquid chromatography of 6-hydroxylated bile acids. J. Chromatogr. A. 704; 228–233.Google Scholar
  30. Batta AK, Salen G, Rapole KR, Batta M, Earnest D, Alberts D (1998) Capillary gas chromatographic analysis of serum bile acids as the n-butyl ester-trimethylsilyl ether derivatives. J. Chromatogr. B Biomed. Sci. Appl. 706; 337–341.Google Scholar
  31. Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL (2002) Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas-liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 775; 153–261.Google Scholar
  32. Bicikova M, Lapcik O, Hampl R, Starka L, Knuppen R, Haupt O, Dibbelt L (1995) A novel radioimmunoassay of allopregnanolone. Steroids. 60; 210–213.Google Scholar
  33. Biddle S, Teale P, Robinson A, Bowman J, Houghton E (2007) Gas chromatography-mass spectrometry/mass spectrometry analysis to determine natural and post-administration levels of oestrogens in bovine serum and urine. Anal. Chim. Acta. 586; 115–121.Google Scholar
  34. Bixo M, Andersson A, Winblad B, Purdy RH, Backstrom T (1997) Progesterone, 5alpha-pregnane-3, 20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 764; 173–178.Google Scholar
  35. Bligh EG, Dyer WJ (1957) A rapid method for total lipid extraction and purification. Can. J. Biochem. 37; 911–917.Google Scholar
  36. Borges CR, Miller N, Shelby M, Hansen M, White C, Slawson MH, Monti K, Crouch DJ (2007) Analysis of a challenging subset of World Anti-Doping Agency-banned steroids and antiestrogens by LC-MS-MS. J. Anal. Toxicol. 31; 125–131.Google Scholar
  37. Borts DJ, Bowers LD (2000) Direct measurement of urinary testosterone and epitestosterone conjugates using high-performance liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 35; 50–61.Google Scholar
  38. Bove KE, Heubi JE, Balistreri WF, Setchell KD (2004) Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr. Dev. Pathol. 7; 315–134.Google Scholar
  39. Bowers LD, Sanaullah (1996) Direct measurement of steroid sulphate and glucuronide conjugates with high-performance liquid chromatography-mass spectrometry. J. Chromatogr. B 687; 61–68.Google Scholar
  40. Bradlow HL (1968) Extraction of steroid conjugates with a neutral resin. Steroids. 11; 265–272.Google Scholar
  41. Bradlow HL (1977) Modified technique for the elution of polar steroid conjugates from Amberlite-XAD2. Steroids. 30; 581–582.Google Scholar
  42. Brandon DD, Isabelle LM, Samuels MH, Kendall JW, Loriaux DL (1999) Cortisol production rate measurement by stable isotope dilution using gas chromatography-negative ion chemical ionization mass spectrometry. Steroids. 64; 372–378.Google Scholar
  43. Bratoeff E, Sainz T, Cabeza M, Heuze I, Recillas S, Perez V, Rodriguez C, Segura T, Gonzales J, Ramirez E (2007) Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5alpha-reductase. J. Steroid Biochem. Mol. Biol. 107; 48–56.Google Scholar
  44. Bravo JC, Fernandez P, Durand JS (2005) Flow injection fluorimetric determination of beta-estradiol using a molecularly imprinted polymer. Analyst. 130; 1404–1409.Google Scholar
  45. Brooks CJ, Harvey DJ (1969) Comparison of various alkylboronic acids for the characterization of corticosteroids by gas-liquid chromatography-mass spectrometry. Biochem. J. 114; 15 p.Google Scholar
  46. Brooks CJ, Cole WJ, Lawrie TD, MacLachlan J, Borthwick JH, Barrett GM (1983) Selective reactions in the analytical characterisation of steroids by gas chromatography-mass spectrometry. J. Steroid Biochem. 19; 189–201.Google Scholar
  47. Brown HJB (1955) A chemical method for the determination of oestriol, oestrone and oestradiol in human urine. Biochem. J. 60; 185–193.Google Scholar
  48. Burgess C (1978) Rapid reversed-phase high-performance liquid chromatographic analysis of steroid products. J. Chromatogr. 149; 233–240.Google Scholar
  49. Burkard I, Rentsch KM, von Eckardstein A (2004) Determination of 24S-and 27-hydroxycholesterol in plasma by high-performance liquid chromatography-mass spectrometry. J. Lipid Res. 45; 776–781.Google Scholar
  50. Bush I (1961) The Chromatography of Steroids. Pergamon, Oxford.Google Scholar
  51. Cannell GR, Mortimer RH, Maguire DJ, Addison RS (1991) Liquid chromatographic analysis of prednisolone, prednisone and their 20-reduced metabolites in perfusion media. J. Chromatogr. Biomed. Appl. 563; 341–347.Google Scholar
  52. Capp MW, Simonian MH (1985) Separation of the major adrenal steroids by reversed-phase high-performance liquid chromatography. Anal. Biochem. 147; 374–381.Google Scholar
  53. Carey MP, Aniszewski CA, Fry JP (1994) Metabolism of progesterone in mouse brain. J. Steroid Biochem. Mol. Biol. 50; 213–217.Google Scholar
  54. Caron P, Trottier J, Verrault M, Belanger J, Kaeding J, Barbier O (2006) Enzymatic production of bile acid glucuronides as analytical standards for liquid chromatography-mass spectrometry analyses. Mol. Pharm. 3; 293–302.Google Scholar
  55. Cawley AT, Kazlauskas R, Trout GJ, George AV (2005) Determination of urinary steroid sulfate metabolites using ion paired extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 825; 1–10.Google Scholar
  56. Chabraoui L, Mathian B, Patricot MC, Revol A (1991) Specific assay for unconjugated dehydroepiandrosterone in human plasma by capillary gas chromatography with electron-capture detection. J. Chromatogr. Biomed. Appl. 567; 299–307.Google Scholar
  57. Chang YC, Li CM, Li LA, Jong SB, Liao PC, Chang LW (2003) Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay. Analyst. 128; 363–368.Google Scholar
  58. Chatman K, Hollenbeck T, Hagey L, Vallee M, Purdy R, Weiss F, Siuzdak G (1999) Nanoelectrospray mass spectrometry and precursor ion monitoring for quantitative steroid analysis and attomole sensitivity. Anal. Chem. 71; 2358–2363.Google Scholar
  59. Chen MC, Chou SH, Lin CH (2004) Determination of corticosterone and 17-hydroxycorticosterone in plasma and urine samples by sweeping techniques using micellar electrokinetic chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 801; 347–353.Google Scholar
  60. Cheng ZN, Huang SL, Tan ZR, Wang W, Zhou HH (2001) Determination of estradiol metabolites in human liver microsome by high performance liquid chromatography-electrochemistry detector. Acta. Pharmacol. Sin. 22; 369–374.Google Scholar
  61. Chetrite GS, Cortes-Prieto JC, Philippe JC, Pasqualini JR (2007) Estradiol inhibits the estrone sulfatase activity in normal and cancerous human breast tissues. J. Steroid Biochem. Mol. Biol. 104; 289–292.Google Scholar
  62. Chichila TM, Edlund PO, Henion JD, Epstein RL (1989) Determination of melengestrol acetate in bovine tissues by automated coupled-column normal-phase high-performance liquid chromatography. J. Chromatogr. 488; 389–406.Google Scholar
  63. Cho SH, Jung BH, Lee WY, Chung BC (2006) Rapid column-switching liquid chromatography-mass spectrometric assay for DHEA-sulfate in the plasma of patients with Alzheinmer’s disease. Biomed. Chromatogr. 20; 1093–1097.Google Scholar
  64. Choi MH, Chung BC (1999) GC-MS determination of steroids related to androgen biosynthesis in human hair with pentafluorophenyldimethylsilyl-trimethylsilyl derivatisation. Analyst. 124; 1297–1300.Google Scholar
  65. Choi MH, Yoo YS, Chung BC (2001) Measurement of testosterone and pregnenolone in nails using gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2754; 495–501.Google Scholar
  66. Choi MH, Hahm JR, Jung BH, Chung BC (2002) Measurement of corticoids in the patients with clinical features indicative of mineralocorticoid excess. Clin. Chim. Acta. 320; 95–99.Google Scholar
  67. Christiaens B, Chiap P, Rbeida O, Cello D, Crommen J, Hubert P (2003) Fully automated method for the liquid chromatographic determination of cyproterone acetate in plasma using restricted access material for sample pre-treatment. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 795; 73–82.Google Scholar
  68. Christiaens B, Fillet M, Chiap P, Rbeida O, Ceccato A, Streel B, De Graeve J, Crommen J, Hubert P (2004) Fully automated method for the liquid chromatographic-tandem mass spectrometric determination of cyproterone acetate in human plasma using restricted access material for on-line sample clean-up. J. Chromatogr. A. 1056; 105–110.Google Scholar
  69. Chrousos GP, O’Dowd L, Uryniak T, Simpson B, Casty F, Goldman M (2007) Basal and cosyntropin-stimulated plasma cortisol concentrations, as measured by high-performance liquid chromatography, in children aged 5 months to younger than 6 years. J. Clin. Endocrinol. Metab. 92; 2125–2129.Google Scholar
  70. Cimpoiu C, Hosu A, Hodisan S (2006) Analysis of some steroids by thin-layer chromatography using optimum mobile phases. J. Pharm. Biomed. Anal. 41; 633–637.Google Scholar
  71. Ciotti PM, Franceschetti F, Bulletti C, Jasonni VM, Bolelli GF (1989) Rapid and specific RIA of serum estrone sulfate with selective solid phase extraction. J. Steroid Biochem. 32; 473–474.Google Scholar
  72. Cirimele V, Kintz P, Dumestre V, Goulle JP, Ludes B (2000) Identification of ten corticosteroids in human hair by liquid chromatography ionspray mass spectrometry. Forensic Sci. Int. 107; 381–388.Google Scholar
  73. Clarke N, Goldman M (2005) Clinical applications of HTLC-MS/MS in the very high throughput diagnostic environment: LC-MS/MS on steroids. Proceedings of 53rd ASMS Conference on Mass Spectrometry and Allied Topics, June 5–9, San Antonio, TX.Google Scholar
  74. Clayton PT, Leonard JV, Lawson AM, Setchell KDR, Andersson S, Egestad B, Sjövall J (1987) Familial giant cell hepatitis associated with synthesis of 3|3, 7a-dihydroxy-and 3|3, 7a, 12a-trihydroxy-5-cholenoic acids. J. Clin. Invest. 79; 1031–1038.Google Scholar
  75. Clifton VL, Bisits A, Zarzycki PK (2007) Characterization of human fetal cord blood steroid profiles in relation to fetal sex and mode of delivery using temperature-dependent inclusion chromatography and principal component analysis (PCA). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 855; 249–254.Google Scholar
  76. Coldwell RD, Trafford DJ, Varley MJ, Kirk DN, Makin HLJ (1990) Stable isotope-labeled vitamin D, metabolites and chemical analogs: synthesis and use in mass spectrometric studies. Steroids. 55; 418–432.Google Scholar
  77. Coldwell RD, Trafford DJ, Makin HLJ, Varley MJ, Kirk DN (1984) Specific estimation of 24, 25-dihydroxyvitamin D in plasma by gas chromatography-mass spectrometry. Clin. Chem. 30; 1193–1198.Google Scholar
  78. Conley AJ, Elf P, Corbin CJ, Dubowsky S, Fivizzani A, Lang JW (1997) Yolk steroids decline during sexual differentiation in the alligator. Gen. Comp. Endocrinol. 197; 191–200.Google Scholar
  79. Courant F, Antignac JP, Maume D, Monteau F, Andersson AM, Skakkebaek N, Andre F, Le Bizec B (2007) Exposure assessment of prepubertal children to steroid endocrine disrupters 1. Analytical strategy for estrogens measurement in plasma at ultra-trace level. Anal. Chim. Acta. 586; 105–114.Google Scholar
  80. Cristoni S, Cuccato D, Sciannamblo M, Bernardi LR, Biunno I, Gerthoux P, Russo G, Weber G, Mora S (2004) Analysis of 21-deoxycortisol, a marker of congenital adrenal hyperplasia, in blood by atmospheric pressure chemical ionization and electrospray ionization using multiple reaction monitoring. Rapid Commun. Mass Spectrom. 18; 77–82.Google Scholar
  81. Cristoni S, Sciannamblo M, Bernardi LR, Biunno I, Gerthoux P, Russo G, Chiumello G, Mora S (2004) Surface-activated chemical ionization ion trap mass spectrometry in the analysis of 21-deoxycortisol in blood. Rapid Commun. Mass Spectrom. 18; 1392–1396.Google Scholar
  82. Culbreth PH, Sampson EJ (1981) Liquid chromatography measurement of cortisol in methylene chloride extracts of aqueous solutions. J. Chromatogr. 212; 221–228.Google Scholar
  83. Daeseleire EAI, De Guesquière A, Van Peteghem CH (1992) Multiresidue analysis of anabolic agents in muscle tissues and urines of cattle by GC-MS. J. Chromatogr. Sci. 30; 409–414.Google Scholar
  84. D’Agostino G, Castagnetta L, Mitchell F, O’Hare MJ (1985) Computer aided mobile-phase optimization and chromatogram simulation in HPLC: a review. J. Chromatogr. 338; 1–23.Google Scholar
  85. Dalla Valle L, Toffolo V, Vianello S, Belvedere P, Colombo L (2004) Expression of cytochrome P450c17 and other steroid-converting enzymes in the rat kidney throughout the life-span. J. Steroid Biochem. Mol. Biol. 91; 49–58.Google Scholar
  86. Davison SL, Bell R, Montalto JG, Sikaris K, Donath S, Stanczyk FZ, Davis SR (2005) Measurement of total testosterone in women: comparison of a direct radioimmunoassay versus radioimmunoassay after organic solvent extraction and celite column partition chromatography. Fertil. Steril. 84; 1698–1704.Google Scholar
  87. DeBrabandere V, Thienpont L, DeLeenheer A (1993) The use of cyclodextrins as a novel approach for the prepurification of steroids from human serum prior to their determination with an ID-GC/MS reference method. Abstract presented at 10th IFCC European Congress of Clinical Chemistry, Nice. Ann. Biol. Clin. 51; 517.Google Scholar
  88. De Cock KJ, Delbeke FT, Van Eenoo P, Desmet N, Roels K, De Backer P (2001) Detection and determination of anabolic steroids in nutritional supplements. J. Pharm. Biomed. Anal. 25; 843–852.Google Scholar
  89. Decreau RA, Marson CM, Smith KE, Behan JM (2003) Production of malodorous steroids from androsta-5, 16-dienes and androsta-4, 16-dienes by Corynebacteria and other human axillary bacteria. J. Steroid Biochem. Mol. Biol. 87; 327–336.Google Scholar
  90. Dekker R, Vandermeer R, Olieman C (1991) Sensitive pulsed amperometric detection of free and conjugated bile acids in combination with gradient reversed-phase HPLC. Chromatographia. 31; 549–553.Google Scholar
  91. Delvoux B, Husen B, Aldenhoff Y, Koole L, Dunselman G, Thole H, Groothuis P (2007) A sensitive HPLC method for the assessment of metabolic conversion of estrogens. J. Steroid Biochem. Mol. Biol. 104; 246–251.Google Scholar
  92. Derks HLGM, Drayer NM (1978) Improved methods for isolating cortisol metabolites from neonatal urine. Clin. Chem. 24; 1158–1162.Google Scholar
  93. Derks HJGM, Drayer NM (1978) The identification and quantification of three new 6 hydroxylated corticosteroids in human neonatal urine. Steroids. 31; 289–305.Google Scholar
  94. Di Marco MP, Felix G, Descorps V, Ducharme MP, Wainer IW (1998) On-line deconjugation of glucuronides using an immobilized enzyme reactor based upon beta-glucuronidase. J. Chromatogr. B Biomed. Sci. Appl. 715; 379–386.Google Scholar
  95. Dolan JW (2002) Temperature selectivity in reversed-phase high performance liquid chromatography. J. Chromatogr. A. 965; 195–205.Google Scholar
  96. Dolan JW, Snyder LR, Blanc T (2000) Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. II. Minimizing column reproducibility problems. J. Chromatogr. A. 897; 51–63.Google Scholar
  97. Dolan JW, Snyder LR, Blanc T, Van Heukelem L (2000) Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. I. Optimizing selectivity and resolution. J. Chromatogr. A. 897; 37–50. Erratum in: J. Chromatogr. A. 2001 March 2;910(2):385.Google Scholar
  98. Dong H, Tong AJ, Li LD (2003) Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 59; 279–284.Google Scholar
  99. Dong J, Chen W, Wang S, Zhang J, Li H, Guo H, Man Y, Chen B (2007) Jones oxidation and high performance liquid chromatographic analysis of cholesterol in biological samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 858; 239–246.Google Scholar
  100. Doostzadeh J, Morfin R (1997) Effects of cytochrome P450 inhibitors and of steroid hormones on the formation f 7-hydroxylated metabolites of pregnenolone in mouse brain microsomes. J. Endocrinol. 155; 343–350.Google Scholar
  101. Dumestre-Toulet V, Cirimele V, Ludes B, Gromb S, Kintz P (2002) Hair analysis of seven bodybuilders for anabolic steroids, ephedrine, and clenbuterol. J. Forensic Sci. 47; 211–214.Google Scholar
  102. Ebner MJ, Corol DI, Havlikova H, Honour JW, Fry JP (2006) Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 147; 179–190.Google Scholar
  103. Edwards RWH (1969a) Column chromatographic techniques. In Chromatographic and Electrophoretic Techniques (ed Smith I), 3rd edn., Vol 1. William Heinemann Medical Books, London, pp. 940–967.Google Scholar
  104. Edwards RWH (1969) Steroids. Chapter 21. Methods for the detection of biochemical compounds on paper and thin-layer chromatograms. In Data for Biochemical Research (eds Dawson RMC,. Elliott DC, Eliott WH, Jones KM), 2nd edn. Clarendon, Oxford, pp. 567–578.Google Scholar
  105. Edwards RWH, Kellie AE, Wade AP (1953) The extraction and oxidation Cambridge University Press of urinary steroid conjugates. Memoirs of the Society for Endocrinology, Part 2, pp. 53–63.Google Scholar
  106. Egawa Y, Shimura Y, Nowatari Y, Aiba D, Juni K (2005) Preparation of molecularly imprinted cyclodextrin microspheres. Int J. Pharm. 293; 1651–1670.Google Scholar
  107. Embree L, McErlane KM (1990) Electrochemical detection of the 3, 5-dinitrobenzoyl derivative of digoxin by high-performance liquid chromatography. J. Chromatogr. Biomed. Appl. 526; 439–446.Google Scholar
  108. Engelbrecht Y, Swart P (2000) Adrenal function in Angora goats: a comparative study of adrenal steroidogenesis in Angora goats, Boer goats and Merino sheep. J. Anim. Sci. 78; 1036–1046.Google Scholar
  109. Epstein EH, Han A, Shackleton CHL (1983) Failure of steroid sulfatase to desulfate vitamin D3 sulfate. J. Invest. Dermatol. 80; 514–516.Google Scholar
  110. Etter ML, Eichhorst J, Lehotay DC (2006) Clinical determination of 17-hydroxyprogesterone in serum by LC-MS/MS: comparison to Coat-A-Count RIA method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 840; 69–74.Google Scholar
  111. Evans RL, Rushing LG, Billedeau SM, Holder CL, Siitonen PH (2005) Trace analysis of ethinyl estradiol in casein diet using gas chromatography with electron capture detection. J. Chromatogr. Sci. 43; 76–80.Google Scholar
  112. Fell AF, Scott HP, Gill R, Moffat AC (1983) Novel techniques for peak recognition and deconvolution by computer-aided photodiode array detection in high-performance liquid chromatography. J. Chromatogr. 282; 123–140.Google Scholar
  113. Fenske M (2008) Determination of cortisol in human plasma by thin-layer chromatography and fluorescence derivatization with isonicotinic acid hydrazide. J. Chromatogr. Sci. 46; 1–3.Google Scholar
  114. Fenton M (1992) Chromatographic separation of cholesterol in foods. J. Chromatogr. 624; 369–388.Google Scholar
  115. Ferchaud V, Courcoux P, Le Bizec B, Monteau F, Andre F (2000) Enzymatic hydrolysis of conjugated steroid metabolites: search for optimum conditions using response surface methodology. Analyst. 125; 2255–2259.Google Scholar
  116. Fernandes VT, Ribeiro-Neto LM, Lima SB, Vieira JG, Verreschi IT, Kater CE (2003) Reversed-phase high-performance liquid chromatography separation of adrenal steroids prior to radio-immunoassay: application in congenital adrenal hyperplasia. J. Chromatogr. Sci. 41; 251–254.Google Scholar
  117. Fernandez N, Garcia JJ, Diez MJ, et al., (1993) Rapid high-performance liquid chromatographic assay of ethynyloestradiol in rabbit plasma. J. Chromatogr. Biomed. Appl. 619; 143–147.Google Scholar
  118. Ferreira HECS, Elliott WH (1991) Pre-column derivatization of free bile acids for ­high-performance liquid chromatographic and gas chromatographic mass spectrometric analysis. J. Chromatogr. Biomed. Appl. 562; 697–712.Google Scholar
  119. Few JD (1968) A simple method for the separate estimation of 11-deoxy and 11-oxygenated 17-hydroxycorticosteroids in human urine. J. Endocrinol. 41; 213–222.Google Scholar
  120. Fiet J, Giton F, Fidaa I, Valleix A, Galons H, Raynaud JP (2004) Development of a highly sensitive and specific new testosterone time-resolved fluoroimmunoassay in human serum. Steroids. 69; 461–471.Google Scholar
  121. Finlay EM, Gaskell SJ (1981) Determination of testosterone in plasma from men by gas chromatography/mass spectrometry, with high-resolution selected-ion monitoring and metastable peak monitoring. Clin. Chem. 27; 1165–1170.Google Scholar
  122. Fiorelli G, Picariello L, Martineti V, Tognarini I, Tonelli F, Brandi ML (2002) Estrogen metabolism in human colorectal cancer cells. J. Steroid Biochem. Mol. Biol. 81; 281–289.Google Scholar
  123. Foster AB, Jarman M, Mann J, Parr IB (1986) Metabolism of 4-hydroxyandrost-4-ene-3, 17-dione by rat hepatocytes. J. Steroid Biochem. 24; 607–617.Google Scholar
  124. Fredline VF, Taylor PJ, Dodds HM, Johnson AG (1997) A reference method for the analysis of aldosterone in blood by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal. Biochem. 252; 308–313.Google Scholar
  125. Fuqua JS, Sher ES, Migeon CJ, Berkovitz GD (1995) Assay of plasma testosterone during the first six months of life: importance of chromatographic purification of steroids. Clin. Chem. 41; 1146–1149.Google Scholar
  126. Furuta T, Namekawa T, Shibasaki H, Kasuya Y (1999) Synthesis of deuterium-labeled tetrahy-drocortisol and tetrahydrocortisone for study of cortisol metabolism in humans. Steroids. 64; 805–811.Google Scholar
  127. Furuta T, Eguchi N, Shibasaki H, Kasuya Y (2000) Simultaneous determination of endogenous and 13C-labelled cortisols and cortisones in human plasma by stable isotope dilution mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 738; 119–127.Google Scholar
  128. Furuta T, Eguchi N, Yokokawa A, Shibasaki H, Kasuya Y (2000) Synthesis of multi-labeled cortisols and cortisones with (2)H and (13)C for study of cortisol metabolism in humans. Steroids. 65; 180–189.Google Scholar
  129. Furuta T, Suzuki A, Matsuzawa M, Shibasaki H, Kasuya Y (2003) Syntheses of stable isotope-labeled 6 beta-hydroxycortisol, 6 beta-hydroxycortisone, and 6 beta-hydroxytestosterone. Steroids. 68; 693–703.Google Scholar
  130. Furuta T, Mori C, Suzuki A, Shibasaki H, Yokokawa A, Kasuya Y (2004) Simultaneous determination of 6 beta-hydroxycortisol and cortisol in human urine by liquid chromatography with ultraviolet absorbance detection for phenotyping the CYP3A activity determined by the cortisol 6 beta-hydroxylation clearance. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 801; 165–71.Google Scholar
  131. Gaertner P, Bica K, Felzmann W, Forsdahl G, Gmeiner G (2007) Synthesis and analytics of 2, 2, 3, 4, 4-d5–19-nor-5alpha-androsterone – an internal standard in doping analysis. Steroids. 72; 429–436.Google Scholar
  132. Gall WE, Zawada G, Mojarrabi B, Tephly TR, Green MD, Coffman BL, Mackenzie PI, Radominska-Pandya A (1999) Differential glucuronidation of bile acids, androgens and estrogens by human UGT1A3 and 2B7. J. Steroid Biochem. Mol. Biol. 70; 101–108.Google Scholar
  133. Gambelunghe C, Sommavilla M, Ferranti C, Rossi R, Aroni K, Manes N, Bacci M (2007) Analysis of anabolic steroids in hair by GC/MS/MS. Biomed. Chromatogr. 21; 369–375.Google Scholar
  134. Garg V, Jusko WJ (1991) Simultaneous analysis of prednisone, prednisolone and their major hydroxylated metabolites in urine by high-performance liquid chromatography. J. Chromatogr. Biomed. Appl. 567; 39–47.Google Scholar
  135. Gartner P, Novak C, Einzinger C, Felzmann W, Knollmuller M, Gmeiner G, Schanzer W (2003) A facile and high yielding synthesis of 2, 2, 3, 4, 4-d5-androsterone-beta-D-glucuronide – an internal standard in dope. Steroids. 68; 85–96.Google Scholar
  136. Gaskell SJ (1990) Quantification of steroid conjugates using fast atom bombardment mass spectrometry. Steroids. 55; 458–462.Google Scholar
  137. Gaskell SJ, Brownsey BG (1983) Immunoadsorption to improve gas chromatography/high resolution mass spectrometry of estradiol-17beta in plasma. Clin. Chem. 29; 677–680.Google Scholar
  138. Gaskell SJ, Brownsey BG, Brooks PW, Green BN (1983) Fast atom bombardment mass spectrometry of steroid sulphates: qualitative and quantitative analysis. Biomed. Mass Spectrom. 10; 215–219.Google Scholar
  139. Gatti R, Roda A, Cerre C, Bonazzi D, Cavrini V (1997) HPLC-fluorescence determination of free and conjugated bile acids in human serum. Biomed. Chromatogr. 11; 11–15.Google Scholar
  140. Gatti R, Cappellin E, Zecchin B, Antonelli G, Spinella P, Mantero F, De Palo EF (2005) Urinary high performance reverse phase chromatography cortisol and cortisone analyses before and at the end of a race in elite cyclists. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 824; 51–56.Google Scholar
  141. Gavrilova-Jordan LP, Price TM (2007) Actions of steroids in mitochondria. Semin. Reprod. Med. 25; 154–164.Google Scholar
  142. Geisler J, Berntsen H, Lonning PE (2000) A novel HPLC-RIA method for the simultaneous detection of estrone, estradiol and estrone sulphate levels in breast cancer tissue. J. Steroid Biochem. Mol. Biol. 72; 259–264.Google Scholar
  143. Gergely A, Szasz G, Szentesi A, Gyimesi-Forras K, Kokosi J, Szegvari D, Veress G (2006) Evaluation of CD detection in an HPLC system for analysis of DHEA and related steroids. Anal. Bioanal. Chem. 384; 1506–1510.Google Scholar
  144. Geyer H, Parr MK, Mareck U, Reinhart U, Schrader Y, Schanzer W (2004) Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids – results of an international study. Int. J. Sports Med. 25; 124–129.Google Scholar
  145. Ghulam A, Kouach M, Racadot A, Boersma A, Vantyghem MC, Briand G (1999) Quantitative analysis of human serum corticosterone by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 727; 227–233.Google Scholar
  146. Glencross RG, Abeywardere SA, Corney SJ, et al. (1981) The use of oestradiol-17|3 antiserum covalently coupled to Sepharose to extract oestradiol-17|3 from biological fluids. J. Chromatogr. Biomed. Appl. 223; 193–197.Google Scholar
  147. Godin C, Provost PR, Poirier D, Blomquist CH, Tremblay Y (1999) Separation by thin-layer chromatography of the most common androgen-derived C19 steroids formed by mammalian cells. Steroids. 64; 767–769.Google Scholar
  148. Gomez-Sanchez CE, Foecking MF, Gomez-Sanchez EP (2001) Aldosterone esters and the heart. Am. J. Hypertens. 14; 200S–205S.Google Scholar
  149. Gonzalo-Lumbreras R, Izquierdo-Hornillos R (2000) High-performance liquid chromatographic optimization study for the separation of natural and synthetic anabolic steroids. Application to urine and pharmaceutical samples. J. Chromatogr. B Biomed. Sci. Appl. 742; 1–11.Google Scholar
  150. Gonzalo-Lumbreras R, Izquierdo-Hornillos R (2003) Method development for corticosteroids and anabolic steroids by micellar liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 794; 215–225.Google Scholar
  151. Gonzalo-Lumbreras R, Pimentel-Trapero D, Izquierdo-Hornillos R (2003) Development and method validation for testosterone and epitestosterone in human urine samples by liquid chromatography applications. J. Chromatogr. Sci. 41; 261–265.Google Scholar
  152. Gonzalo-Lumbreras R, Muniz-Valencia R, Santos-Montes A, Izquierdo-Hornillos R (2007) Liquid chromatographic method development for steroids determination (corticoids and anabolics: application to animal feed samples. J. Chromatogr. A. 1156; 321–330.Google Scholar
  153. Gorog S (2004) Recent advances in the analysis of steroid hormones and related drugs. Anal. Sci. 20; 767–782.Google Scholar
  154. Gorog S (2005) The sacred cow: the questionable role of assay methods in characterising the quality of bulk pharmaceuticals. J. Pharm. Biomed. Anal. 36; 931–937.Google Scholar
  155. Goto J, Saisho Y, Nambara T (1991) Studies on steroids. 252. Separation and characterization of 3-oxo bile acids in serum by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. Biomed. Appl. 567; 343–349.Google Scholar
  156. Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K (2008) Brain microglia express steroid-converting enzymes in the mouse. J. Steroid Biochem. Mol. Biol. 109; 96–107.Google Scholar
  157. Granger DA, Shirtcliff EA, Booth A, Kivlighan KT, Schwartz EB (2004) The “trouble” with salivary testosterone. Psychoneuroendocrinology. 29; 1229–1240.Google Scholar
  158. Grant JK, Beastall GH (1983) The Clinical Biochemistry of Steroid Hormones. Croom Helm, London/Canberra.Google Scholar
  159. Gray G, Shakerdi L, Wallace AM (2003) Poor specificity and recovery of urinary free cortisol as determined by the Bayer AD VIA Centaur extraction method. Ann. Clin. Biochem. 40; 563–565.Google Scholar
  160. Griffiths WJ, Liu S, Yang Y, Purdy RH, Sjövall J (1999) Nano-electrospray tandem mass spectrometry for the analysis of neurosteroid sulphates. Rapid Commun. Mass Spectrom. 13; 1595–1610.Google Scholar
  161. Griffiths WJ, Liu S, Alvelius G, Sjövall J (2003) Derivatisation for the characterisation of neutral oxosteroids by electrospray and matrix-assisted laser desorption/ionisation tandem mass spectrometry: the Girard P derivative. Rapid Commun. Mass Spectrom. 17; 924–935.Google Scholar
  162. Guo T, Gu J, Soldin OP, Singh RJ, Soldin SJ (2008) Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization. Clin. Biochem. 41; 736–741.Google Scholar
  163. Griffiths WJ, Shackleton CH, Sjövall J (2005) Steroid analysis. In The Encylopedia of Mass Spectrometry (ed Capriolli RM) Vol. 5. Elsevier, Oxford, pp. 447–472.Google Scholar
  164. Griffiths WJ, Wang Y, Alvelius G, Liu S, Bodin K, Sjövall J (2006) Analysis of oxysterols by electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 17; 341–362.Google Scholar
  165. Guldutuna S, You T, Kurts W, Leuschner U (1993) High-performance liquid chromatographic determination of free and conjugated bile acids in serum, liver biopsies, bile, gastric juice and feces by fluorescence labeling. Clin. Chim. Acta. 214; 195–207.Google Scholar
  166. Guo T, Chan M, Soldin SJ (2004) Steroid profiles using liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization source. Arch. Pathol. Lab. Med. 128; 469–475.Google Scholar
  167. Guo T, Taylor RL, Singh RJ, Soldin SJ (2006) Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin. Chim. Acta. 372; 76–82.Google Scholar
  168. Gupta MK, Geller DH, Auchus RJ (2001) Pitfalls in characterizing P450c17 mutations associated with isolated 17, 20-lyase deficiency. J. Clin. Endocrinol. Metab. 86; 4416–4423.Google Scholar
  169. Haber E, Munoz-Guerra JA, Soriano C, Carreras D, Rodriguez C, Rodriguez FA (2001) Automated sample preparation and gas chromatographic-mass spectrometric analysis of urinary androgenic anabolic steroids. J. Chromatogr. B Biomed. Sci. Appl. 755; 17–26.Google Scholar
  170. Haegele AD, Wade SE (1991) Ultrasensitive differential measurement of cortisol and cortisone in biological samples using fluorescent ester derivatives in normal phase HPLC. J. Chromatogr. 14; 1133–1148.Google Scholar
  171. Haginaka J (2001) HPLC-based bioseparations using molecularly imprinted polymers. Bioseparation. 10; 337–351.Google Scholar
  172. Haider SG (2007) Leydig cell steroidogenesis: unmasking the functional importance of mitochondria. Endocrinology. 148; 2581–2582.Google Scholar
  173. Hajkova K, Pulkrabova J, Schurek J, Hajslova J, Poustka J, Napravnakova M, Kocourek V (2007) Novel approaches to the analysis of steroid estrogens iin river’sediments. Anal. Bioanal. Chem. 387; 1351–1363.Google Scholar
  174. Halket JM, Zaikin VG (2003) Derivatization in mass spectrometry – 1. Silylation. Eur. J. Mass Spectrom. 9; 1–21.Google Scholar
  175. Halket JM, Zaikin VG (2004) Derivatization in mass spectrometry – 3. Alkylation (arylation). Eur. J. Mass Spectrom. (Chichester, England). 10; 1–19.Google Scholar
  176. Halket JM, Zaikin VG (2005) Review: derivatization in mass spectrometry – 5. Specific derivatization of monofunctional compounds. Eur. J. Mass Spectrom. 11; 127–160.Google Scholar
  177. Halket JM, Zaikin VG (2006) Derivatization in mass spectrometry – 7. On-line derivatisation/ degradation. Eur. J. Mass Spectrom. 12; 1–13.Google Scholar
  178. Hämäläinen E, Fotsis T, Adlercreutz H (1991) A gas chromatographic method for the determination of neutral steroid profiles in urine, including studies on the effect of oxytetracycline administration on these profiles in men. Clin. Chim. Acta. 199; 205–220.Google Scholar
  179. Hara S (1977) Use of thin-layer chromatographic systems in high-performance liquid chromatographic separations. Procedure for systematization and design of the separatory process in synthetic chemistry. J. Chromatogr. 137; 41–52.Google Scholar
  180. Hara S, Hayashi S (1977) Correlation of retention behaviour of steroidal pharmaceuticals in polar and bonded reversed-phase liquid column chromatography. J. Chromatogr. 142; 689–703.Google Scholar
  181. Hara S, Fujii Y, Hirasawa M, et al. (1978) Systematic design of binary solvent systems for liquid-solid chromatography via retention behaviour of mono-and di-functional steroids on silia gel columns. J. Chromatogr. 149; 143–159.Google Scholar
  182. Hariharan M, Naga S, VanNoord T, Kindt EK (1992) Simultaneous asay of corticosterone and cortisol in plasma by reversed-phase liquid chromatography. Clin. Chem. 38; 346–352.Google Scholar
  183. Hariharan M, Naga S, VanNoord T, Kindt EK (1993) Assay of human plasma cortisone by liquid chromatography – normal plasma concentrations (between 8 and 10am) of cortisone and corticosterone. J. Chromatogr. Biomed. Appl. 613; 195–201.Google Scholar
  184. Hay M, Mormede P (1997) Improved determination of urinary cortisol and cortisone, or corticosterone and 11-dehydrocorticosterone by high-performance liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B Biomed. Sci. Appl. 702; 33–39.Google Scholar
  185. He C, Li S, Liu H, Li K, Liu F (2005) Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J. Chromatogr. A. 1082; 143–149.Google Scholar
  186. Heftmann E (1983) Chapter 14. Steroids. In Chromatography, Fundamentals and Applications of Chromatographic and Electrophoretic Methods. Part B. Applications (ed Heftmann E). Elsevier, Amsterdam, pp. B191–B222.Google Scholar
  187. Heikkinen R, Fotsis T, Adlercreutz H (1983) Use of ion exchange chromatography in steroid analysis. J. Steroid. Biochem. 19; 175–180.Google Scholar
  188. Henion J, Lee E (1990) Atmospheric pressure ionization LC/MS for the analysis of biological samples. In Mass Spectrometry in Biological Materials (ed McEwen C). Marcel Dekker, New York, pp. 469–503.Google Scholar
  189. Higashi T (2006) Trace determination of steroids causing age-related diseases using LC/MS combined with detection-oriented derivatization. Chem. Pharm. Bull. (Tokyo). 54; 1479–1485.Google Scholar
  190. Higashi T, Shimada K (2004) Derivatization of neutral steroids to enhance their detection characteristics in liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 378; 875–882.Google Scholar
  191. Higashi T, Takido N, Yamauchi A, Shimada K (2002) Electron-capturing derivatization of neutral steroids for increasing sensitivity in liquid chromatography/negative atmospheric pressure chemical ionization-mass spectrometry. Anal. Sci. 18; 1301–1307.Google Scholar
  192. Higashi T, Takido N, Shimada K (2003) Detection and characterization of 20-oxosteroids in rat brains using LC-electron capture APCI-MS after derivatization with 2-nitro-4-trifluoromethylphenylhydrazine of stress-induced changes in neurosteroid levels in rat brains using liquid chromatography-electron capture atmospheric pressure chemical ionization-mass spectrometry. Steroids. 70; 1–11.Google Scholar
  193. Higashi T, Takayama N, Shimada K (2005) Enzymic conversion of 3beta-hydroxy-5-ene-steroids and their sulfates to 3-oxo-4-ene-steroids for increasing sensitivity in LC-APCI-MS. J. Pharm. Biomed. Anal. 39; 718–723.Google Scholar
  194. Higashi T, Yamauchi A, Shimada K, Koh E, Mizokami A, Namiki M (2005) Determination of prostatic androgens in 10 mg of tissue using liquid chromatography-tandem mass spectrometry with charged derivatization. Anal. Bioanal. Chem. 382; 1035–1043.Google Scholar
  195. Higashi T, Yamauchi A, Shimada K (2005c) 2-hydrazino-1-methylpyridine: a highly sensitive derivatization reagent for oxosteroids in liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825; 214–222.Google Scholar
  196. Higashi T, Takayama N, Nishio T, Taniguchi E, Shimada K (2006a) Procedure for increasing the detection responses of estrogens in LC-MS based on introduction of a nitrobenzene moiety followed by electron capture atmospheric pressure chemical ionization. Anal. Bioanal. Chem. 386; 658–665.Google Scholar
  197. Higashi T, Ninomiya Y, Iwaki N, Yamauchi A, Takayama N, Shimada K (2006b) Studies on neurosteroids XVIII LC-MS analysis of changes in rat brain and serum testosterone levels induced by immobilization stress and ethanol administration. Steroids. 71; 609–617.Google Scholar
  198. Higashi T, Takayama N, Kyutoku M, Shimada K, Koh E, Namiki M (2006c) Liquid chromatography-mass spectrometric assay of androstenediol in prostatic tissue: influence of androgen deprivation therapy on its level. Steroids. 71; 1007–1013.Google Scholar
  199. Higashi T, Nagahama A, Otomi N, Shimada K (2007a) Studies on neurosteroids XIX. Development and validation of liquid chromatography-tandem mass spectrometric method for determination of 5alpha-reduced pregnane-type neurosteroids in rat brain and serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 848; 188–199.Google Scholar
  200. Higashi T, Shibayama Y, Kawasaki I, Shimada K (2007b) Determination of salivary 17-­ketosteroid sulfates using liquid chromatography-electrospray ionization-mass spectrometry. J. Pharm. Biomed. Anal. 43; 1782–1788.Google Scholar
  201. Higashi T, Nishio T, Hayashi N, Shimada K (2007c) Alternative procedure for charged derivatization to enhance detection responses of steroids in electrospray ionization-MS. Chem. Pharm. Bull. (Tokyo). 55; 662–665.Google Scholar
  202. Higashi T, Shibayama Y, Shimada K (2007d) Determination of salivary dehydroepiandrosterone using liquid chromatography – tandem mass spectrometry combined with charged derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 846; 195–201.Google Scholar
  203. Higashi T, Nagahama A, Mukai Y, Shimada K (2008) Studies on neurosteroids XXII. Liquid chromatography-tandem mass spectrometric method for profiling rat brain 3-oxo-4-ene-neuroactive steroids. Biomed. Chromatogr. 22; 34–43.Google Scholar
  204. Higashidate S, Hibi K, Senda M, Kanda S, Imai K (1990) Sensitive assay system for bile acids and steroids having hydroxyl groups utilizing high-performance liquid chromatography with peroxyoxalate chemiluminescence detection. J. Chromatogr. 515; 577–584.Google Scholar
  205. Hill M, Cibula D, Havlikova H, Kancheva L, Fait T, Kancheva R, Parizek A, Starka L (2007) Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 105; 166–175.Google Scholar
  206. Hochberg RB, Pahuja SL, Zielinski JE, Larner JM (1991) Steroidal fatty acid esters. J. Steroid Biochem. Mol. Biol. 40; 577–585.Google Scholar
  207. Hojo K, Hakamata H, Ito A, Kotani A, Furukawa C, Hosokawa YY, Kusu F (2007) Determination of total cholesterol in serum by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A. 1166; 135–141.Google Scholar
  208. Holder G (2006) Measurement of glucocorticoids in biological fluids. Methods Mol. Biol. 324; 141–157.Google Scholar
  209. Hollis BW (1986) Assay of circulating 1,25-dihydroxyvitamin D involving a novel single-cartridge extraction and purification procedure. Clin. Chem. 32; 2060–2063.Google Scholar
  210. Hollis BW, Frank NE (1985) Solid phase extraction system for vitamin D and its major metabolites in human plasma. J. Chromatogr. 343; 43–50.Google Scholar
  211. Holst JP, Soldin OP, Guo T, Soldin SJ (2004) Steroid hormones: relevance and measurement in the clinical laboratory. Clin. Lab. Med. 24; 105–118. I Google Scholar
  212. Holst JP, Soldin SJ, Tractenberg RE, Guo T, Kundra P, Verbalis JG, Jonklaas J (2007) Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids. 72; 71–84.Google Scholar
  213. Homma M, Beckerman K, Hayashi S, Jayewardene AL, Oka K, Gambertoglio JG, Aweeka FT (2000) Liquid chromatographic determination of urinary 6beta-hydroxycortisol to assess cytochrome p-450 3A activity in HIV positive pregnant women. J. Pharm. Biomed. Anal. 23; 629–635.Google Scholar
  214. Honour JW (2006) High-performance liquid chromatography for hormone assay. Methods Mol. Biol. 324; 25–52.Google Scholar
  215. Honour JW, Shackleton CH (1977) Mass spectrometric analysis of tetrahydroaldosterone. J. Steroid Biochem. 8; 299–305.Google Scholar
  216. Horie H, Kidowaki T, Koyama Y, Endo T, Homma K, Kambegawa A, Aoki N (2007) Specificity assessment of immunoassay kits for determination of urinary free cortisol concentrations. Clin. Chim. Acta. 378; 66–70.Google Scholar
  217. Horning EC (1968) Gas-phase analytical methods for the study of steroid hormones and their metabolites. In Gas-Phase Chromatography of Steroids (eds Eik-Nes KB, Horning EC). Springer, New York, pp. 1–71.Google Scholar
  218. Hsing AW, Stanczyk FZ, Belanger A, Schroeder P, Chang L, Falk RT, Fears TR (2007) Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer Epidemiol. Biomarkers Prev. 16; 1004–1008.Google Scholar
  219. Hu Z, Gong Q, Hu X, Wang L, Cao Y, Cao W, Yu Q, Cheng Z (2005) Simultaneous determination of 6beta-hydroxycortisol and cortisol in human urine and plasma by liquid chromatography with ultraviolet absorbance detection for phenotyping the CYP3A activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 826; 238–243.Google Scholar
  220. Hu Y, Zheng Y, Zhu F, Li G (2007) Sol-gel coated polydimethylsiloxane/beta-cyclodextrin as novel stationary phase for stir bar sorptive extraction and its application to analysis of estrogens and bisphenol A. J. Chromatogr. A. 1148; 16–22.Google Scholar
  221. Huang W, Kalhorn TF, Baillie M, Shen DD, Thummel KE (2007) Determination of free and total cortisol in plasma and urine by liquid chromatography-tandem mass spectrometry. Ther. Drug Monit. 29; 215–224.Google Scholar
  222. Huang X, Yuan D (2007) Preparation of stir bars for sorptive extraction based on monolithic material. J. Chromatogr. A. 1154; 152–157.Google Scholar
  223. Ibrahim F, Giton F, Boudou P, Villette J-M, Julien R, Galons H, Fiet J (2003) Plasma 11b-hydroxy-4-androstene-3,17-dione: comparison of a time-resolved fluoroimmnuoassay using a biotinylated tracer with a radioimmunoassay using a tritiated tracer. J. Steroid Biochem. Mol. Biol. 84; 563–568.Google Scholar
  224. Iida T, Tamaru T, Chang FC, Goto J, Nambara T (1992) Preparation of glycine-conjugated bile acids and their gas-liquid chromatographic analysis on an aluminum-clad flexible fused silica capillary column. Biomed. Chromatogr. 6; 4–8.Google Scholar
  225. Iida T, Tazawa S, Tamaru T, Goto J, Nambara T (1995) Gas chromatographic separation of bile acid 3-glucosides and 3-glucuronides without prior deconjugation on a stainless-steel capillary column. J. Chromatogr. A. 689; 77–84.Google Scholar
  226. Iida T, Hikosaka M, Goto J, Nambara T (2001) Capillary gas chromatographic behaviour of tert.-hydroxylated steroids by trialkylsilylation. J. Chromatogr. A. 937; 97–105.Google Scholar
  227. Ikegawa S, Hirabayashi N, Yoshimura T, Tohma M, Maeda M, Tsuji A (1992) Determination of conjugated bile acids in human urine by high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr.-Biomed. Appl. 577; 229–238.Google Scholar
  228. Ikegawa S, Itoh M, Goto J (1994) Separatory determination of biliary metabolites of equilin in rat by high-performance liquid chromatography. J. Liquid Chromatogr. 17; 223–239.Google Scholar
  229. Impens S, De Wasch K, De Brabander H (2001) Determination of anabolic steroids with gas chromatography-ion trap mass spectrometry using hydrogen as carrier gas. Rapid. Commun. Mass Spectrom. 15; 2409–2414.Google Scholar
  230. Iohan F, Vincze I (1991) High-performance liquid chromatographic determination of cortolic and cortolonic acids as pyrenyl ester derivatives. J. Chromatogr.-Biomed. Appl. 564; 27–41.Google Scholar
  231. Iwata T, Hirose T, Yamaguchi M (1997) Direct determination of estriol 3- and 16-glucuronides in pregnancy urine by column-switching high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 695; 201–207.Google Scholar
  232. Izquierdo-Hornillos R, Gonzalo-Lumbreras R (2003) Optimization of the separation of a complex mixture of natural and synthetic anabolic steroids by micellar liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 798; 69–77.Google Scholar
  233. Izquierdo-Hornillos R, Gonzalo-Lumbreras R, Santos-Montes A (2005) Method development for cortisol and cortisone by micellar liquid chromatography using sodium dodecyl sulphate: application to urine samples of rugby players. J. Chromatogr. Sci. 43; 235–240.Google Scholar
  234. Jang S, Lee Y, Hwang SL, Lee MH, Park SJ, Lee IH, Kang S, Roh SS, Seo YJ, Park JK, Lee JH, Kim CD (2007) Establishment of type II 5alpha-reductase over-expressing cell line as an inhibitor screening model. J. Steroid Biochem. Mol. Biol. 107; 245–252.Google Scholar
  235. Jantti SE, Kiriazis A, Reinilla RR, Kostiainen RK, Ketola RA (2007) Enzyme-assisted synthesis and characterization of glucuronide conjugates of neuroactive steroids. Steroids. 72; 287–296.Google Scholar
  236. Jawad MJ, Wilson EA, Rayburn F (1981) Effect of serum lipids on radioimmunoassays of unconjugated estriol in serum. Clin. Chem. 27; 280–285.Google Scholar
  237. Jeannot MA, Cantwell FF (1997) Solvent microextraction as a speciation tool: determination of free progesterone in a protein solution. Anal. Chem. 69; 2935–2940.Google Scholar
  238. Jellinck PH, Michnovicz JJ, Bradlow HL (1991) Influence of indole-3-carbinol on the hepatic microsomal formation of catechol estrogens. Steroids. 56; 446–450.Google Scholar
  239. Jellinck PH, Croft G, McEwen BS, Gottfried-Blackmore A, Jones G, Byford V, Bulloch K (2005) Metabolism of dehydroepiandrosterone by rodent brain cell lines: relationship between 7-hydroxylation and aromatization. J. Steroid Biochem. Mol. Biol. 93; 81–86.Google Scholar
  240. Jellinck PH, Kaufmann M, Gottfried-Blackmore A, Croft G, Byford V, McEwen BS, Jones G, Bulloch K (2006) Dehydroepiandrosterone (DHEA) metabolism in the brain: identification by liquid chromatography/mass spectrometry of the delta-4-isomer of DHEA and related steroids formed from androstenedione by mouse BV2 microglia. J. Steroid Biochem. Mol. Biol. 98; 41–47.Google Scholar
  241. Jellinck PH, Kaufmann M, Gottfried-Blackmore A, McEwen BS, Jones G, Bulloch K (2007) Selective conversion by microglia of dehydroepiandrosterone to 5-androstenediol-A steroid with inherent estrogenic properties. J. Steroid Biochem. Mol. Biol. 107; 156–162.Google Scholar
  242. Jia Q, Hong MF, Pan ZX, Orndorff S (2001) Quantitation of urine 17-ketosteroid sulfates and glucuronides by high performance liquid chromatography ion trap mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 750; 81–91.Google Scholar
  243. Johnson DW (2005) Ketosteroid profiling using Girard T derivatives and electrospray ionization tandem mass spectrometry: direct plasma analysis of androstenedione, 17-­hydroxyprogesterone and cortisol. Rapid Commun. Mass Spectrom. 19; 193–200.Google Scholar
  244. Jones AM, Honour JW (2006) Unusual results from immunoassays and the role of the clinical endocrinologist. Clin. Endocrinol. (Oxf.) 64; 234–244.Google Scholar
  245. Jones G, Makin HLJ (2000) Vitamin D: metabolites and analogs. In Modern Chromatographic Analysis of Vitamins (eds de Leenheeer AP, Lambert WE, van Bocxlaer JF) 3rd edn. Marcel Dekker, New York, pp. 75–141.Google Scholar
  246. Justova V, Starka L (1981) Separation of functional hydroxy metabolites of vitamin D 3 by thin layer chromatography. J. Chromatogr. 209; 337–340.Google Scholar
  247. Kagan MZ (2001) Normal-phase high-performance liquid chromatographic separations using ethoxynonafluorobutane as hexane alternative. I. Analytical and chiral applications. J. Chromatogr. A. 918; 292–302.Google Scholar
  248. Kakiyama G, Sadakiyo S, Iida T, Mushiake K, Goto T, Mano N, Goto J, Nambara T (2005) Chemical synthesis of 24-beta-D-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine. Chem. Phys. Lipids. 134; 141–150.Google Scholar
  249. Kamada JC, Maeda M, Tsuji A (1983) Fluorescence high-performance liquid chromatographic determination of free and conjugated bile acids in serum and bile using 1-bromoacetylpyrene as a pre-labeling reagent. J. Chromatogr. 272; 29–41.Google Scholar
  250. Kataoka H, Matsuura E, Mitani K (2007) Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 44; 160–165.Google Scholar
  251. Katayama M, Taniguchi H (1993) Determination of estrogens in plasma by high-performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5,6-dimeth-ylbenzimidazole. J. Chromatogr.-Biomed. Appl. 616; 317–322.Google Scholar
  252. Katayama M, Masuda Y, Taniguchi H (1993) Determination of corticosteroids in plasma by high-performance liquid chromatography after pre-column derivatization with 2-(4-carboxyphenyl)-5,6-dimethylbenzimidazole. J. Chromatogr.-Biomed. Appl. 612; 33–39.Google Scholar
  253. Katayama M, Nakane R, Matsuda Y, Kaneko S, Hara I, Sato H (1998) Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after ­pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionohydrazide. Analyst. 123; 2339–2342.Google Scholar
  254. Katayama M, Matsuda Y, Shimokawa K, Kaneko S (2003) Simultaneous determination of 16 estrogens, dehydroepiandrosterone and their glucuronide and sulfate conjugates in serum using sodium cholate micelle capillary electrophoresis. Biomed. Chromatogr. 17; 263–267.Google Scholar
  255. Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Inoue K, Saito K, Nakazawa H (2004) Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry in the multi-shot mode for determination of estrogens in river water samples. J. Chromatogr. A. 1049; 1–8.Google Scholar
  256. Kawaguchi M, Ito R, Saito K, Nakazawa H (2006a) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J. Pharm. Biomed. Anal. 40; 500–508.Google Scholar
  257. Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006b) Dual derivatization-stir bar sorptive extraction - thermal desorption -gas chromatography-mass spectrometry for determination of 17beta-estradiol in water sample. J. Chromatogr. A. 1105; 140–147.Google Scholar
  258. Kawai Y, Miyoshi M, Moon JH, Terao J (2007) Detection of cholesteryl ester hydroperoxide isomers using gas chromatography - mass spectrometry combined with thin-layer chromatography blotting. Anal. Biochem. 360; 130–137.Google Scholar
  259. Kazihnitkova H, Tejkalova H, Benesova O, Bicikova M, Hill M, Hampl R (2004) Simultaneous determination of dehydroepiandrosterone, its 7-hydroxylated metabolites, and their sulfates in rat brain tissues. Steroids. 69; 667–674.Google Scholar
  260. Kessler MJ (1983) Quantitation of radiolabelled biological molecules by high-performance liquid chromatography. J. Chromatogr. 225; 209–217.Google Scholar
  261. Khan MA, Wang Y, Heidelberger S, Alvelius G, Liu S, Sjövall J, Griffiths WJ (2006) Analysis of derivatised steroids by matrix-assisted laser desorption/ionisation and post-source decay mass spectrometry. Steroids. 71; 42–53.Google Scholar
  262. Kicman A, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann. Clin. Biochem. 40; 321–356.Google Scholar
  263. Kim YS, Zhang H, Kim HY (2000) Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal. Biochem. 277; 187–195.Google Scholar
  264. Kintz P (2004) Value of hair analysis in postmortem toxicology. Forensic. Sci. Int. 142; 127–134.Google Scholar
  265. Kintz P, Villain M, Cirimele V (2006) Hair analysis for drug detection. Ther. Drug Monit. 28; 442–446.Google Scholar
  266. Kiuru PS, Wahala K (2006) Microwave-assisted synthesis of deuterium labeled estrogen fatty acid esters. Steroids. 71; 54–60.Google Scholar
  267. Knust U, Strowitzki T, Spiegelhalder B, Bartsch H, Owen RW (2007) Optimization of an isotope dilution gas chromatography/mass spectrometry method for the detection ojendogenous estrogen metabolites in urine samples. Rapid Commun. Mass Spectrom. 21; 2245–2254.Google Scholar
  268. Kotiyan PN, Vavia PR (2000) Stability indicating HPTLC method for the estimation of estradiol. J. Pharm. Biomed. Anal. 22; 667–671.Google Scholar
  269. Kuronen P, Volin P, Laitalainen T (1998) Reversed-phase high-performance liquid chromatographic screening method for serum steroids using retention index and diode-array detection. J. Chromatogr. B Biomed. Sci Appl. 718; 211–224.Google Scholar
  270. Kushnir MM, Neilson R, Roberts WL, Rockwood AL (2004) Cortisol and cortisone analysis in serum and plasma by atmospheric pressure photoionization tandem mass spectrometry. Clin. Biochem. 37; 357–362.Google Scholar
  271. Kuuranne T, Vahermo M, Leinonen A, Kostiainen R (2000) Electrospray and atmospheric pressure ionization tandem mass spectrometric behaviour of eight anabolic steroid glucuronides. J. Am. Soc. Mass Spectrom. 11; 722–730.Google Scholar
  272. Kuuranne T, Aitio O, Vahermo M, Elovaara E, Kostiainen R (2002) Enzyme-assisted synthesis and structure characterization of glucuronide conjugates of methyltestosterone (17alpha-methylandrost-4-en-17beta-ol-3-|one) and nandrolone (estr-4-en-17beta-ol-3-one) metabolites. Bioconjug. Chem. 13; 194–199.Google Scholar
  273. Kuuranne T, Kurkela M, Thevis M, Schanzer W, Finel M, Kostiainen R (2003) Glucuronidation of anabolic androgenic steroids by recombinant human UDP-glucuronosyltransferases. Drug Metab. Dispos. 31; 1117–1124.Google Scholar
  274. Labrie F, Belanger A, Belanger P, Berube R, Martel C, Cusan L, Gomez J, Candas B, Castiel I, Chaussade V, Deloche C, Leclaire J (2006) Androgen glucuronides, instead of testosterone, as the new markers of androgenic activity in women. J. Steroid Biochem. Mol. Biol. 99; 182–188.Google Scholar
  275. Labrie F, Belanger A, Belanger P, Berube R, Martel C, Cusan L, Gomez J, Candas B, Chaussade V, Castiel I, Deloche C, Leclaire J (2007) Metabolism of DHEA in postmenopausal women ­following percutaneous administration. J. Steroid Biochem. Mol. Biol. 103; 178–188.Google Scholar
  276. Lacey JM, Minutti CZ, Magera MJ, Tauscher AL, Casetta B, McCann M, Lymp J, Hahn SH, Rinaldo P, Matern D (2004) Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin. Chem. 50; 621–625.Google Scholar
  277. Lagana A, Marino A (1991) General and selective isolation procedure for high-performance liquid chromatographic determination of anabolic steroids in tissues. J. Chromatogr. 588; 89–98.Google Scholar
  278. Lai CC, Tsai CH, Tsai FJ, Wu JY, Lin WD, Lee CC (2002) Rapid screening assay of congenital adrenal hyperplasia by measuring 17 alpha-hydroxyprogesterone with high-performance ­liquid chromatography/electrospray ionization tandem mass spectrometry from dried blood spots. J. Clin. Lab Anal. 16; 20–25.Google Scholar
  279. Lam S, Malikin G, Karmen A (1988) High-performance liquid chromatography of hydroxysteroids detected with post-column immobilized enzyme reactors. J. Chromatogr. 441; 81–87.Google Scholar
  280. Lamparczyk H, Zarzycki PK, Nowakowska J, Ochocka RJ (1994) Application of beta-cyclodextrin for the analysis of estrogenic steroids in human urine by high-performance liquid chromatography. Chromatographia. 38; 168–172.Google Scholar
  281. Larner JM, Shackleton CHL, Roitman E, et al. (1992) Measurement of estradiol-17-fatty acid esters in human tissues. J. Clin. Endocrinol. Metab. 75; 195–200.Google Scholar
  282. Larner JM, Pahuja SL, Shackleton CH, et al. (1993) The isolation and characterization of estradiol-fatty acid esters in human ovarian follicular fluid. Identification of an endogenous long-lived and potent family of estrogens. J. Biol. Chem. 268; 13893–13899.Google Scholar
  283. Lee KA, Volentine KK, Bahr JM (1998) Two steroidogenic pathways present in the chicken ovary: theca layer prefers delta 5 pathway and granulosa layer prefers delta 4 pathway. Domest. Anim. Endocrinol. 15; 1–8.Google Scholar
  284. Li YM, Chen LR, Qu Y (1993) Use of micellar mobile phases and an HPLC column switching system for direct injection determination of urinary free cortisol. J. Liquid Chromatogr. 16; 2583–2594.Google Scholar
  285. Li D, Dong M, Shim WJ, Kannan N (2007) Application of pressurized fluid extraction technique in the gas chromatography -mass spectrometry determination of sterols from marine sediment samples. J. Chromatogr. A. 1160; 64–70. 2007 May 16 [Epub ahead of print].Google Scholar
  286. Licea-Perez H, Wang S, Bowen CL, Yang E (2007) A semi-automated 96-well plate method for the simultaneous determination of oral contraceptives concentrations in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 852; 69–76.Google Scholar
  287. Lida T, Nakamori R, Yabuta R, Yada S, Takagi Y, Mano N, Ikegawa S, Goto J, Nambara T (2002) Potential bile acid metabolites. 24. An efficient synthesis of carboxyl-linked glucosides and their chemical properties. Lipids. 37; 101–110.Google Scholar
  288. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim. Biophys. Acta. 1761; 121–128.Google Scholar
  289. Liere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjövall J, Baulieu EE (2004) Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J. Lipid Res. 45; 2287–2302.Google Scholar
  290. Lillington JM, Trafford DJH, Makin HLJ (1981) A rapid and simple method for the esterification of fatty acids and steroid carboxylic acids prior to gas-liquid chromatography. Clin. Chim. Acta. 111; 91–98.Google Scholar
  291. Lim YJ, Yong AB, Warne GL, Montalto J (1995) Urinary 17 alpha-hydroxyprogesterone in management of 21-hydroxylase deficiency. J. Paediatr. Child Health. 31; 47–50.Google Scholar
  292. Lisboa BP, Willig RP, Halket JM (1991) Improved separation of C 21 -steroids of wide polarity range by application of Sephadex LH-20, successive solvent systems and thin-layer reflectance spectrometry. J. Liquid Chromatogr. 14; 265–270.Google Scholar
  293. Liu S, Sjövall J, Griffiths WJ (2000) Analysis of oxosteroids by nano-electrospray mass spectrometry of their oximes. Rapid Commun. Mass Spectrom. 14; 390–400.Google Scholar
  294. Liu S, Griffiths WJ, Sjövall J (2003a) Capillary liquid chromatography/electrospray mass spectrometry for analysis of steroid sulfates in biological samples. Anal. Chem. 75; 791–797.Google Scholar
  295. Liu S, Sjövall J, Griffiths WJ (2003b) Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography – electrospray mass spectrometry. Anal. Chem. 75; 5835–5846.Google Scholar
  296. Lopez de Alda MJ, Barcelo D (2001) Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and progestogens in sediment and water. J. Chromatogr. A. 938; 145–153.Google Scholar
  297. Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol. Rev. 83; 965–1016.Google Scholar
  298. Lundmo P, Sunde E (1984) Rapid analysis of C19-steroid metabolism by high-performance liquid chromatography and in-line monitoring of radioactivity. J. Chromatogr. 308; 289–294.Google Scholar
  299. Luu-The V, Ferraris C, Duche D, Belanger P, Leclaire J, Labrie F (2007) Steroid metabolism and profile of steroidogenic gene expression in Episkin TM: high similarity with human epidermis. J. Steroid Biochem. Mol. Biol. 107; 30–36.Google Scholar
  300. MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J. Steroid Biochem. Mol. Biol. 72; 169–195.Google Scholar
  301. Magnusson MO, Sandstrom R (2004) Quantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18; 1089–1094.Google Scholar
  302. Magnusson MO, Sandstrom R (2004) Quantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18; 1089–1094.Google Scholar
  303. Makin HL, Trafford DJ, Taylor NF (2002) Mass fragmentography of cortisol and cortisone: preliminary studies on the development of a reference method. Collect. Czech. Chem. Comm. 67; 1–9.Google Scholar
  304. Makin HLJ, Heftmann E (1988) High-performance liquid chromatography of steroid hormones. In High-Performance Liquid Chromatography in Endocrinology (eds Makin HLJ, Newton R). Springer, Berlin/Heidelberg, Germany, pp.183–234.Google Scholar
  305. Marchand P, le Bizec B, Gade C, Monteau F, Andre F (2000) Ultra trace detection of a wide range of anabolic steroids in meat by gas chromatography coupled to mass spectrometry. J. Chromatogr. A. 867; 219–233.Google Scholar
  306. Martello S, Felli M, Chiarotti M (2007) Survey of nutritional supplements for selected illegal anabolic steroids and ephedrine using LC-MS/MS and GC-MS methods, respectively. Food Addit. Contain. 24; 258–265.Google Scholar
  307. Marwah A, Marwah P, Lardy H (2001) High-performance liquid chromatographic analysis of dehydroepiandrosterone. J. Chromatogr. A. 935; 279–296.Google Scholar
  308. Masse R, Wright LA (1996) Proposed definitive methods for measurement of plasma testosterone and 17alpha-hydroxyprogesterone. Clin. Biochem. 29; 321–331.Google Scholar
  309. Mata-Granados JM, Luque de Castro MD, Quesada Gomez JM (2008) Inappropriate serum levels of retinol, alpha-tocopherol, 25 hydroxyvitamin D3 and 24,25 dihydroxyvitamin D3 levels in healthy Spanish adults: simultaneous assessment by HPLC. Clin. Biochem. 41; 676–680.Google Scholar
  310. Matsunaga M, Ukena K, Tsutsui K (2002) Androgen biosynthesis in the quail brain. Brain. Res. 94; 180–185.Google Scholar
  311. Matsunaga M, Okuhara K, Ukena K, Tsutsui K (2004) Identification of 3beta,5beta-tetrahydro-progesterone, a progesterone metabolite, and its stimulatory action on preoptic neurons in the avian brain. Brain Res. 1007; 160–166.Google Scholar
  312. Maughan RJ (2005) Contamination of dietary supplements and positive drug tests in sport. J. Sports Sci. 23; 883–889.Google Scholar
  313. McBride JH, Rodgerson DO, Park SS, Reyes AF (1991) Rapid liquid-chromatographic method for simultaneous determination of plasma prednisone, prednisolone, and cortisol in pediatric renal-transplant recipients. Clin. Chem. 37; 643–646.Google Scholar
  314. McDonald M, Granelli K, Sjoberg P (2007) Rapid multi-residue method for the quantitative determination and confirmation of glucocorticosteroids in bovine milk using liquid chromatography - electrospray ionization-tandem mass spectrometry. Anal. Chim. Acta. 588; 20–25. Epub Feb 7 2007.Google Scholar
  315. McLaughlin LG, Henion JD (1990) Determination of dexamethasone in bovine tissues by coupled-column normal-phase high-performance liquid chromatography and capillary gas chromatography - mass spectrometry. J. Chromatogr. 529; 1–19.Google Scholar
  316. Meffre D, Pianos A, Liere P, Eychenne B, Cambourg A, Schumacher M, Stein DG, Guennoun R (2007) Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: analysis by gas chromatography/mass spectrometry. Endocrinology. 148; 2505–2517.Google Scholar
  317. Meunier-Solere V, Maume D, Andre F, Le Bizec B (2005) Pitfalls in trimethylsilylation of anabolic steroids. New derivatisation approach for residue at ultra-trace level. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 816; 281–288.Google Scholar
  318. Miilunpohja M, Uphoff A, Somerharju P, Tiitinen A, Wahala K, Tikkanen MJ (2006) Fatty acid esterification of lipoprotein-associated estrone in human plasma and follicular fluid. J. Steroid Biochem. Mol. Biol. 100; 59–66. May 24 [Epub].Google Scholar
  319. Milewich L, Madden JD, Gomez-Sanchez CE (1992) 5-alpha-Androstane-3,17-dione in peripheral plasma of men and women. J. Steroid Biochem. Mol. Biol. 41; 185–190.Google Scholar
  320. Minami Y, Yokoi S, Setoyama M, Bando N, Takeda S, Kawai Y, Terao J (2007) Combination of TLC blotting and gas chromatography - mass spectrometry for analysis of peroxidized cholesterol. Lipids. 42; 1055–1063.Google Scholar
  321. Minutti CZ, Lacey JM, Magera MJ, Hahn SH, McCann M, Schulze A, Cheillan D, Dorche C, Chace DH, Lymp JF, Zimmerman D, Rinaldo P, Matern D (2004) Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 89; 3687–3693.Google Scholar
  322. Mishra A, Joy KP (2006) HPLC-electrochemical detection of ovarian estradiol-17beta and catecholestrogens in the catfish Heteropneustes fossilis: seasonal and periovulatory changes. Gen. Comp. Endocrinol. 145; 84–91.Google Scholar
  323. Miyamoto H, Yeh S, Lardy H, Messing E, Chang C (1998) Delta-5-androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proc. Natl. Acad. Sci. USA. 95; 11083–11088.Google Scholar
  324. Momose T, Maruyama J, Iida T, Goto J, Nambara T (1997a) Comparative abilities and optimal conditions for beta-glycosidase enzymes to hydrolyse the glucuronide, glucoside, and N-acetylglucosaminide conjugates of bile acids. Biol. Pharm. Bull. 20; 828–833.Google Scholar
  325. Momose T, Tsubaki T, Iida T, Nambara T (1997b) An improved synthesis of taurine- and glycine-conjugated bile acids. Lipids. 32; 775–778.Google Scholar
  326. Momose T, Mure M, Iida T, Goto J, Nambara T (1998) Method for the separation of the unconjugates and conjugates of chenodeoxycholic acid and deoxycholic acid by two-dimensional reversed-phase thin layer chromatography with methyl beta-cyclodextrin. J. Chromatogr. A. 811; 171–180.Google Scholar
  327. Morineau G, Gosling J, Patricot MC, Soliman H, Boudou P, al Halnak A, Le Brun G, Brerault JL, Julien R, Villette JM, Fiet J (1997) Convenient chromatographic prepurification step before measurement of urinary cortisol by radioimmunoassay. Clin. Chem. 43; 786–793.Google Scholar
  328. Muller C, Pompon D, Urban P, Morfin R (2006) Inter-conversion of 7alpha- and 7beta-hydroxy-dehydroepiandrosterone by the human 11beta-hydroxysteroid dehydrogenase type 1. J. Steroid Biochem. Mol. Biol. 99; 215–222.Google Scholar
  329. Muñiz-Valencia R, Gonzalo-Lumbreras R, Santos-Montes A, Izquierdo-Hornillos R (2008a) Quantitative screening for steroids in animal feeding water using reversed phase LC with gradient elution. J. Sep. Sci. 31; 219–228.Google Scholar
  330. Muñiz-Valencia R, Ceballos-Magaña SG, Gonzalo-Lumbreras R, Santos-Montes A, Izquierdo-Hornillos RC (2008b) Sample preparation for the determination of steroids (corticoids and anabolics) in feed using LC. J. Sep. Sci. 31; 2303–2309.Google Scholar
  331. Murphy BE, Allison CM (2000) Determination of progesterone and some of its neuroactive ring A-reduced metabolites in human serum. J. Steroid Biochem. Mol. Biol. 74; 137–142.Google Scholar
  332. Murphy BEP (1971) “Sephadex” column chromatography as an adjunct to competitive binding assays of steroids. Nature New Biol. 232; 21–24.Google Scholar
  333. Murphy VE, Fittock RJ, Zarzycki PK, Delahunty MM, Smith R, Clifton VL (2007) Metabolism of synthetic steroids by the human placenta. Placenta. 28; 39–46.Google Scholar
  334. Musey PI, Collins DC, Preedy JRK (1978) Separation of estrogen conjugates by high pressure liquid chromatography. Steroids. 31; 583–592.Google Scholar
  335. Nahoul K (1994) Plasma 17-hydroxyprogesterone determination with two commercial immuno-assays. J. Steroid Biochem. Mol. Biol. 50; 197–203.Google Scholar
  336. Nakajima Y, Yamamoto S, Wakabayashi H, Shimada K (1995) High-performance liquid chromatographic determination of cholesterol and cholestanol in human serum by precolumn derivatization with 2-[2-(isocyanate)ethyl]-3-methyl-1,4-naphthoquinone combined with platinum catalyst reduction and electrochemical detection. Biol. Pharm. Bull. 18; 1762–1764.Google Scholar
  337. Nambara T, Goto J (1988) The Bile Acids - Chemistry, Physiology and Metabolism (eds Setchell KDR, Kritchevsky D, Nair PP). Plenum, New York, pp. 43–64.Google Scholar
  338. Neher R (1964) Steroid Chromatography. Elsevier, Amsterdam/London/New York.Google Scholar
  339. Nelson RE, Grebe SK, O’Kane DJ, Singh RJ (2004) Liquid chromatography -tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin. Chem. 50; 373–384.Google Scholar
  340. Neufeld E, Chayen R, Stern N (1998) Fluorescence derivatisation of urinary corticosteroids for high-performance liquid chromatographic analysis. J. Chromatogr. B Biomed. Sci. Appl. 718; 273–277.Google Scholar
  341. Ng BH, Yuen KH (2003) Determination of plasma testosterone using a simple liquid chromatographic method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 793; 421–426.Google Scholar
  342. Nielen MW, Bovee TF, van Engelen MC, Rutgers P, Hamers AR, van Rhijn JH, Hoogenboom LR (2006) Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Anal. Chem. 78; 424–431.Google Scholar
  343. Nielen MW, Lasaroms JJ, Essers ML, Sanders MB, Heskamp HH, Bovee TF, van Rhijn JH, Groot MJ (2007) The ultimate veal calf reference experiment: hormone residue analysis data obtained by gas and liquid chromatography tandem mass spectrometry. Anal. Chim. Acta. 586; 30–34.Google Scholar
  344. Nikitas P, Pappa-Louisi A (2005) New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography. J. Chromatogr. A. 1068; 279–287.Google Scholar
  345. Nilsson B (1983) Extraction and quantitation of cortisol by use of high-performance liquid affinity chromatography. J. Chromatogr. 276; 413–417.Google Scholar
  346. Nishio T, Higashi T, Funaishi A, Tanaka J, Shimada K (2007) Development and application of electrospray-active derivatization reagents for hydroxysteroids. J. Pharm. Biomed. Anal. 44; 786–795.Google Scholar
  347. Niwa T, Koshiyama T, Goto J, et al. (1993) High-performance liquid chromatographic separation of bile acid N-acetylglucosaminides. J. Liquid Chromatogr. 16; 331–341.Google Scholar
  348. Nobilis M, Pour M, Kunes J, Kopecky J, Kvetina J, Svoboda Z, Sladkova K, Vortel J (2001) High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-orientated derivatization. J. Pharm. Biomed. Anal. 24; 937–946.Google Scholar
  349. Noggle FT, Clark CR, Deruiter J (1990) Liquid chromatographic and mass spectral analysis of the anabolic 17-hydroxysteroid esters. J. Chromatogr. Sci. 28; 263–268.Google Scholar
  350. Noma J, Hayashi N, Sekiba K (1991) Automated direct high-performance liquid chromatographic assay for estetrol, estriol, cortisone and cortisol in serum and amniotic fluid. J. Chromatogr.-Biomed. Appl. 568; 35–44.Google Scholar
  351. Noppe H, Verheyden K, Gillis W, Courtheyn D, Vanthemsche P, De Brabander HF (2007) Multi-analyte approach for the determination of ng L(-1) levels of steroid hormones in unidentified aqueous samples. Anal. Chim. Acta. 586; 22–29.Google Scholar
  352. Noppe H, Le Bizec B, Verheyden K, De Brabander HF (2008) Novel analytical methods for the determination of steroid hormones in edible matrices. Anal. Chim. Acta. 611; 1–16.Google Scholar
  353. Nozaki O (2001) Steroid analysis for medical diagnosis. J. Chromatogr. A. 935; 267–278.Google Scholar
  354. Nozaki O, Ohata T, Obha Y, Moriyama H, Kato Y (1991) Determination of serum cortisol by reversed-phase liquid chromatography using precolumn sulphuric acid-ethanol fluorescence derivatization and column switching. J. Chromatogr.-Biomed. Appl. 570; 1–11.Google Scholar
  355. Nozaki O, Ohata T, Obha Y, Moriyama H, Kato Y (1992) Determination of urinary free cortisol by high performance liquid chromatography with sulphuric acid-ethanol derivatization and column switching. Biomed. Chromatogr. 6; 109–114.Google Scholar
  356. Numazawa M, Handa W (2006) Reduction of 1,4-dien-3-one steroids with LiAl2H4 or NaB2H4: stereospecific deuterium-labeling at the c-1alpha position of a 4-en-3-one steroid. Chem. Pharm. Bull. (Tokyo). 54; 554–556.Google Scholar
  357. Numazawa M, Konno T, Furihata R, et al. (1990) Determination of aromatization of 19-oxygenated 16-alpha-hydroxyandrostenedione with human placental microsomes by high-­performance liquid chromatography coupled with coulometric detection. J. Steroid Biochem. 36; 369–375.Google Scholar
  358. Ogawa M, Saito Y, Ueta I, Jinno K (2007) Fiber-packed needle for dynamic extraction of aromatic compounds. Anal. Bioanal. Chem. 388; 619–625.Google Scholar
  359. O’Hare MJ, Nice EC (1981) Analysis of steroid hormones in adrenal and testicular cells and tissues. In Steroid Analysis by HPLC - Recent Applications (ed Kautsky KP). Marcel Dekker, New York, pp. 277–322.Google Scholar
  360. O’Hare MJ, Nice EC, Magee-Brown R, et al. (1976) High-pressure liquid chromatography of steroids secreted by human adrenal and testis cells in monolayer culture. J. Chromatogr. 125; 357–367.Google Scholar
  361. O’Hare MJ, Nice EC, Capp M (1980) Reversed- and normal-phase high-performance liquid chromatography of 18-hydroxylated steroids and their derivatives. Comparison of selectivity, efficiency and recovery from biological samples. J. Chromatogr. 198; 23–29.Google Scholar
  362. Okumura T, Nakajima Y, Takamatsu T, Matsuoka M (1995) Column-switching high-performance liquid chromatographic system with laser-induced fluorimetric detector for direct, automated assay of salivary cortisol. J. Chromatogr. B Biomed. Appl. 670; 11–20.Google Scholar
  363. Oliveira OL, Koff WJ, Muraro F, Santos EB, Gomes Soares DF, Trindade VM (2008) Steroid 5-alpha reductase type 2 activity in biopsies from malignant and normal prostatic tissues. Clin. Chim. Acta. 391; 36–40.Google Scholar
  364. O’Shannessy DJ, Renwick AGC (1983) Extraction and separation of androstenedione from products of aromatase assays on micro-columns of magnesium oxide. J. Chromatogr. 278; 151.Google Scholar
  365. Paauw JD, Van Wyk L, Davis AT (1996) Assay for taurine conjugates of bile acids in serum by reverse-phase high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 685; 171–175.Google Scholar
  366. Palermo M, Gomez-Sanchez C, Roitman E, Shackleton CH (1996) Quantitation of cortisol and related 3-oxo-4-ene steroids in urine using gas chromatography/mass spectrometry with stable isotope-labeled internal standards. Steroids. 61; 583–589.Google Scholar
  367. Parmentier G, Eyssen H (1977) Synthesis and characteristics of the specific monosulfates of chenodeoxycholate, deoxycholate and their taurine or glycine conjugates. Steroids. 30; 583–590.Google Scholar
  368. Parr MK, Geyer H, Reinhart U, Schanzer W (2004) Analytical strategies for the detection of non-labelled anabolic androgenic steroids in nutritional supplements. Food Addit. Contam. 21; 632–640.Google Scholar
  369. Parr MK, Geyer H, Hoffmann B, Kohler K, Mareck U, Schanzer W (2007) High amounts of 17-methylated anabolic-androgenic steroids in effervescent tablets on the dietary supplement market. Biomed. Chromatogr. 21; 164–168.Google Scholar
  370. Pasqualini JR, Chetrite GS (2006) Estradiol as an anti-aromatase agent in human breast cancer cells. J. Steroid Biochem. Mol. Biol. 98; 12–17.Google Scholar
  371. Pasqualini JR, Chetrite G (2008) The anti-aromatase effect of progesterone and of its natural metabolites 20alpha- and 5alpha-dihydroprogesterone in the MCF-7aro breast cancer cell line. Anticancer Res. 28; 2129–2133.Google Scholar
  372. Payne DW, Holtzclaw WD, Adashi EY (1989) A convenient, unified scheme for the differential extraction of conjugated and unconjugated serum C19 steroids on Sep-Pak C18-cartridges. J. Steroid Biochem. 33; 289–295.Google Scholar
  373. Pellett J, Lukulay P, Mao Y, Bowen W, Reed R, Ma M, Munger RC, Dolan JW, Wrisley L, Medwid K, Toltl NP, Chan CC, Skibic M, Biswas K, Wells KA, Snyder LR (2006) “Orthogonal” separations for reversed-phase liquid chromatography. J. Chromatogr. A. 1101; 122–135.Google Scholar
  374. Pena-Garcia-Brioles D, Gonzalo-Lumbreras R, Izquierdo-Hornillos R, Santos-Montes A (2004) Method development for betamethasone and dexamethasone by micellar liquid ­chromatography using cetyl trimethyl ammonium bromide and validation in tablets. Application to cocktails. J. Pharm. Biomed. Anal. 36; 65–71.Google Scholar
  375. Peng XD, Xu DH, Jin J, Mei XT, Lv JY, Xu SB (2007) Determination of a new active steroid by high performance liquid chromatography with laser-induced fluorescence detection following the pre-column derivatization. Int. J. Pharm. 337; 25–30.Google Scholar
  376. Perisic-Janjic NU, Djakovic-Sekulic TLj, Stojanovic SZ, Penov-Gasi KM (2005) HPTLC chromatography of androstene derivates. Application of normal phase thin-layer chromatographic retention data in QSAR studies. Steroids. 70; 137–144.Google Scholar
  377. Perona M, Pavan I (1993) Determination of anabolic steroid 19-nor-testosterone in bovine serum by GC-SIM-MS. J. Chromatogr. Sci. 31; 429–432.Google Scholar
  378. Petrovic M, Barcelo D (2002) Sample preparation and liquid chromatography mass spectrometry analysis of alkylphenolic compounds and steroid sex hormones in sediments. Scientific World J. 2; 1610–1616.Google Scholar
  379. Petrovic M, Tavazzi S, Barcelo D (2002) Column-switching system with restricted access pre-column packing for an integrated sample cleanup and liquid chromatographic – mass spectrometric analysis of alkylphenolic compounds and steroid sex hormones in sediment. J. Chromatogr. A. 971; 37–45.Google Scholar
  380. Pichon V (2007) Selective sample treatment using molecularly imprinted polymers. J. Chromatogr. A.1152; 41–53.Google Scholar
  381. Pinnella KD, Cranmer BK, Tessari JD, Cosma GN, Veeramachaneni DN (2001) Gas chromatographic determination of catecholestrogens following isolation by solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl. 758; 145–152.Google Scholar
  382. Poon GK, Jarman M, McCague R, et al. (1992) Identification of 4-hydroxyandrost-4-ene-3, 17-dione metabolites in prostatic cancer patients by liquid chromatography-mass spectrometry. J. Chromatogr. 576; 235–244.Google Scholar
  383. Porteous CE, Coldwell RD, Trafford DJH, et al. (1987) Recent developments in the measurement of vitamin D and its metabolites in human body fluids. J. Steroid Biochem. 28; 785–801.Google Scholar
  384. Pradhan DS, Yu Y, Soma KK (2008) Rapid estrogen regulation of DHEA metabolism in the male and female songbird brain. J. Neurochem. 104; 244–253.Google Scholar
  385. Pujos E, Flament-Waton MM, Goetinck P, Grenier-Loustalot MF (2004) Optimizing the extraction and analysis of DHEA sulfate, corticosteroids and androgens in urine: application to a study of the influence of corticosteroid intake on urinary steroid profiles. Anal. Bioanal. Chem. 380; 524–536.Google Scholar
  386. Pujos E, Flament-Waton MM, Paisse O, Grenier-Loustalot MF (2005) Comparison of the analysis of corticosteroids using different techniques. Anal. Bioanal. Chem. 381; 244–254.Google Scholar
  387. Pulfer MK, Murphy RC (2004) Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant. J. Biol. Chem. 279; 26331–26338.Google Scholar
  388. Pulfer MK, Harrison K, Murphy RC (2004) Direct electrospray tandem Mass spectrometry of the unstable hydroperoxy bishemiacetal product derived from cholesterol ozonolysis. J. Am. Soc. Mass Spectrom. 15; 194–202.Google Scholar
  389. Purdon MP, Lehman-McKeeman LD (1997) Improved high-performance liquid chromatographic procedure for the separation and quantification of hydroxytestosterone metabolites. J. Pharmacol. Toxicol. Meth. 37; 67–73.Google Scholar
  390. Quesada JM, Mata-Granados JM, Luque De Castro MD (2004) Automated method for the determination of fat-soluble vitamins in serum. J. Steroid Biochem. Mol. Biol. 89–90; 473–477.Google Scholar
  391. Rambaud L, Monteau F, Deceuninck Y, Bichon E, Andre F, Le Bizec B (2007) Development and validation of a multi-residue method for the detection of a wide range of hormonal anabolic compounds in hair using gas chromatography – tandem mass spectrometry. Anal. Chim. Acta. 586; 93–104.Google Scholar
  392. Rauh M, Groschl M, Rascher W, Dorr HG (2006) Automated, fast and sensitive quantification of 17alpha-hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line exaction. Steroids. 71; 450–458.Google Scholar
  393. Reddy S, Brownawell BJ (2005) Analysis of estrogens in sediment from a sewage-impacted urban estuary using high-performance liquid chromatography/time-of-flight mass spectrometry. Environ. Toxicol. Chem. 24; 1041–1047.Google Scholar
  394. Redor-Goldman M, Li S, Caulfield MP, Clarke NJ, Reitz RE (2005) Direct quantification of total testosterone in human sera or plasma by high turbulent flow liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HTLC-ACPI-MS/MS). Endocrine Society 87th Annual Meeting, June 4–7, San Diego, CA.Google Scholar
  395. Redor-Goldman M, Li S, Caulfield MP, Clarke NJ, Reitz RE (2005) Detection and quantification of androstenedione, progesterone and 17-hydroxyprogesterone in human serum/ plasma by high turbulent flow liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Endocrine Society 87th Annual Meeting, June 4–7, San Diego, CA.Google Scholar
  396. Reepmeyer JC, Brower JF, Ye H (2005) Separation and detection of the isomeric equine conjugated estrogens, equilin sulfate and delta8, 9-dehydroestrone sulfate, by liquid chromatography - electrospray – mass spectrometry using carbon-coated zirconia and porous graphitic carbon stationary phases. J. Chromatogr. A. 1083; 42–51.Google Scholar
  397. Riepe FG, Wonka S, Partsch CJ, Sippell WG (2001) Automated chromatographic system for the simultaneous measurement of plasma pregnenolone and 17-hydroxypregnenolone by radioim-munoassay. J. Chromatogr. B Biomed. Sci. Appl. 763; 99–106.Google Scholar
  398. Riepe FG, Krone N, Peter M, Sippell WG, Partsch CJ (2003) Chromatographic system for the simultaneous measurement of plasma 18-hydroxy-11-deoxycorticosterone and 18-hydroxycorticoster-one by radioimmunoassay: reference data for neonates and infants and its application in aldosterone-synthase deficiency. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 785; 293–301.Google Scholar
  399. Rizzolo A, Polesello S (1992) Chromatographic determination of vitamins in foods. J. Chromatogr. 624; 103–152.Google Scholar
  400. Robinzon B, Miller KK, Prough RA (2004) Biosynthesis of [3H] 7 alpha-hydroxy-, 7 beta-hydroxy-, and 7-oxo-dehydroepiandrosterone using pig liver microsomal fractions. Anal. Biochem. 333; 128–135.Google Scholar
  401. Rodrigues CM, Setchell KD (1996) Performance characteristics of reversed-phase bonded silica cartridges for serum bile acid extraction. Biomed. Chromatogr. 10; 1–5.Google Scholar
  402. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2004) Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction-liquid chromatography – electrospray tandem mass spectrometry method. Anal. Chem. 76; 6998–7006.Google Scholar
  403. Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography – mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A. 1152; 97–115.Google Scholar
  404. Rossi SA, Johnson JV, Yost RA (1994) Short column gas chromatography/tandem mass spectrometry for the detection of underivatised anabolic steroids in urine. Biol. Mass Spectrom. 23; 131–139.Google Scholar
  405. Rouits E, Boisdron-Celle M, Morel A, Gamelin E (2003) Simple and sensitive high-performance liquid chromatography method for simultaneous determination of urinary free cortisol and 6beta-hydroxycortisol in routine practice. For CYP 3A4 activity evaluation in basal conditions and after grapefruit juice intake. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 793; 357–366.Google Scholar
  406. Rule G, Henion J (1999) High-throughput sample preparation and analysis using 96-well membrane solid-phase extraction and liquid chromatography – tandem mass spectrometry for the determination of steroids in human urine. J. Am. Soc. Mass Spectrom. 10; 1322–1327.Google Scholar
  407. Saegusa K, Suzuki E, Anjo T, et al. (1993) Determination of catechol and guaiacol estrogens in urine by capillary gas chromatography/mass spectrometry. Biomed. Chromatogr. 7; 172–176.Google Scholar
  408. Saito Y, Ueta I, Ogawa M, Hayashida M, Jinno K (2007) Miniaturized sample preparation needle: a versatile design for the rapid analysis of smoking-related compounds in hair and air samples. J. Pharm. Biomed. Anal. 44; 1–7.Google Scholar
  409. Samtani MN, Jusko WJ (2007) Quantification of dexamethasone and corticosterone in rat biofluids and fetal tissue using highly sensitive analytical methods: assay validation and application to a pharmacokinetic study. Biomed. Chromatogr. 21; 585–597.Google Scholar
  410. Sandhoff R, Brügger B, Jeckel D, Lehmann WD, Wieland FT (1999) Determination of cholesterol at the low picomole level by nano-electrospray ionization mass spectrometry. J. Lipid Res. 40; 126–132.Google Scholar
  411. Sasaki T, Iida T, Nambara T (2000) High-performance ion-pair chromatographic behaviour of conjugated bile acids with di-n-butylamine acetate. J. Chromatogr. A. 888; 93–102.Google Scholar
  412. Satyaswaroop PG, de la Osa EL, Gurpide E (1977) High pressure liquid chromatographic separation of C 18 and C 19 steroids. Steroids. 30; 139–145.Google Scholar
  413. Saugy M, Cardis C, Robinson N, Schweizer C (2000) Test methods: anabolics. Baillieres Best Pract. Res. Clin. Endocrinol. Metab. 14; 111–133.Google Scholar
  414. Scalia S (1990) Group separation of free and conjugated bile acid by pre-packed anion-exchange cartridges. J. Pharm. Biomed. Anal. 8; 253–241.Google Scholar
  415. Scherer C, Wachter U, Wudy SA (1998) Determination of testosterone in human hair by gas chromatography – selected ion monitoring mass spectrometry. Analyst. 123; 2661–2663.Google Scholar
  416. Schirpenbach C, Seiler L, Maser-Gluth C, Beuschlein F, Reincke M, Bidlingmaier M (2006) Automated chemiluminescence-immunoassay for aldosterone during dynamic testing: comparison to radioimmunoassays with and without extraction steps. Clin. Chem. 52; 1749–1755.Google Scholar
  417. Schmidt M, Kreutz M, Loffler G, Scholmerich J, Straub RH (2000) Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J. Endocrinol. 164; 161–169.Google Scholar
  418. Schmidt M, Weidler C, Naumann H, Anders S, Scholmerich J, Straub RH (2005) Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes – androstenedione and testosterone inhibit oestrogen formation and favour production of more potent 5a-reduced androgens. Arthr. Res. Ther. 7; R938–R948.Google Scholar
  419. Schmidt NA, Borburgh HJ, Penders TJ, Weykamp CW (1985) Steroid profiling – an update. Clin. Chem. 31; 637–639.Google Scholar
  420. Schoneshofer M, Dulce HJ (1979) Comparison of different high-performance liquid chromatographic systems for the purification of adrenal and gonadal steroids prior to immunoassay. J. Chromatogr. 164; 17–28.Google Scholar
  421. Schoneshofer M, Kager A, Weber B (1983) New “on-line” sample pre-treatment procedure for routine liquid chromatographic assay of low-concentration compounds in body fluids, illustrated by triamcinolone assay. Clin. Chem. 29; 1367–1371.Google Scholar
  422. Schoneshofer M, Kager A, Weber B, et al. (1985) Determination of urinary free cortisol by “on-line” liquid chromatography. Clin. Chem. 31; 564–568.Google Scholar
  423. Schoneshofer M, Kager A, Eisenschmid P, Heilmann P, Dhar TK, Weber B (1986) Automated liquid chromatographic determination of the 20-dihydro isomers of cortisol and cortisone in human urine. J. Chromatogr. 380; 267–274.Google Scholar
  424. Seamark DA, Trafford DJH, Makin HLJ (1980) The estimation of vitamin D and some metabolites in human plasma by mass fragmentography. Clin. Chim. Acta. 106; 51–62.Google Scholar
  425. Seki T, Yamaguchi Y (1984) New fluorimetric detection method of corticosteroids after high-performance liquid chromatography using post-column derivatization with benzamidine. J. Chromatogr. 305; 188–193.Google Scholar
  426. Senciall IR, Rahak S, Roberts R (1992) Corticosteroid side chain oxidations – II. Metabolism of 20-dihydro steroids and evidence for steroid acid formation by direct oxidation at C-21. J. Steroid Biochem. Mol. Biol. 41; 151–160.Google Scholar
  427. Setchell KD, Heubi JE (2006) Defects in bile acid biosynthesis – diagnosis and treatment. J. Pediatr. Gastroenterol. Nutr. 43 Suppl 1; S17-S22.Google Scholar
  428. Setchell KDR, Shackleton CHL (1973) The group separation of plasma and urinary steroids by column chromatography on Sephadex LH-20. Clin. Chim. Acta. 47; 381–388.Google Scholar
  429. Sevanian A, Berliner J, Peterson H (1991) Uptake, metabolism, and cytotoxicity of isomeric cholesterol-5–6-epoxides in rabbit aortic endothelial cells. J. Lipid Res. 32; 147–155.Google Scholar
  430. Shackleton C (2008) Genetic disorders of steroid metabolism diagnosed by mass spectrometry. In Laboratory Guide to the Methods in Biochemical Genetics (eds Blau N, Duran M, Gibson MK). Springer, Berlin/Heidelberg, Germany, p. 549.Google Scholar
  431. Shackleton CH (1983) Inborn errors of steroid biosynthesis: detection by a new mass-spectrometric method. Clin. Chem. 29; 246–249.Google Scholar
  432. Shackleton CH (1986) Profiling steroid hormones and urinary steroids. J. Chromatogr. 379; 91–156.Google Scholar
  433. Shackleton CH (1993) Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J. Steroid Biochem. Mol. Biol. 45; 127–140.Google Scholar
  434. Shackleton CH, Reid S (1989) Diagnosis of recessive X-linked ichthyosis: quantitative HPLC/ mass spectrometric analysis of plasma for cholesterol sulfate. Clin. Chem. 35; 1906–1910.Google Scholar
  435. Shackleton CH, Straub KM (1982) Direct analysis of steroid conjugates: the use of secondary ion mass spectrometry. Steroids. 40; 35–51.Google Scholar
  436. Shackleton CH, Chuang H, Kim J, de la Torre X, Segura J (1997) Electrospray mass spectrometry of testosterone esters: potential for use in doping control. Steroids. 62; 523–529.Google Scholar
  437. Shackleton CHL (1984) Steroid biosynthesis and catabolism in the fetus and neonate. In Biochemistry of Steroid Hormones (ed Makin HLJ) 2nd edn. Blackwell, Oxford, pp. 441–477.Google Scholar
  438. Shackleton CHL, Honour JW (1976) Simultaneous estimation of urinary steroids by semi-automated gas chromatography. Investigation of neo-natal infants and children with abnormal steroid synthesis. Clin. Chim. Acta. 69; 267–283.Google Scholar
  439. Shackleton CHL, Whitney JO (1980) Use of Sep-Pak cartridges for urinary steroid extractions: evaluation of the method for use prior to gas chromatographic analysis. Clin. Chim. Acta. 107; 231–243.Google Scholar
  440. Shackleton CHL, Roitman E, Monder C, Bradlow HL (1980a) Gas chromatographic and mass spectrometric analysis of urinary acidic metabolites of cortisol. Steroids. 36; 289–298.Google Scholar
  441. Shackleton CHL, Taylor NF, Honour JW (1980b) An atlas of gas chromatographic profiles of neutral urinary steroids. In Health and Disease. Packard-Becker B. V., Delft, The Netherlands.Google Scholar
  442. Shackleton CHL, Mattox VR, Honour JW (1983) Analysis of intact steroid conjugates by secondary ion mass spectrometry (including FABMS) and by gas chromatography. J. Steroid Biochem. 19; 209–217.Google Scholar
  443. Shackleton CHL, Kletke C, Wudy Spratt JH (1990a) Dehydroepiandrosterone sulfate quantification in serum using high-performance liquid chromatography/mass spectrometry and a deuter-ated internal standard: a technique suitable for routine use or as a reference method. Steroids. 55; 472–478.Google Scholar
  444. Shackleton CHL, Merdinck J, Lawson A (1990b) Steroid and bile acid analyses. In Mass Spectrometry in Biological Materials (ed McEwen C). Marcel Dekker, New York, pp. 297–377.Google Scholar
  445. Shareef A, Parnis CJ, Angove MJ, Wells JD, Johnson BB (2004) Suitability of N, O-bis(trimethylsilyl) trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide as derivatiza-tion reagents for the determination of the estrogens estrone and 17alpha-ethinylestradiol by gas chromatography – mass spectrometry. J. Chromatogr. A. 1026; 295–300.Google Scholar
  446. Shareef A, Angove MJ, Wells JD (2006) Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N, O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17alpha-ethinylestradiol by gas chromatography – mass spectrometry. J. Chromatogr. A. 1108; 121–128.Google Scholar
  447. Shibasaki H, Tanabe C, Furuta T, Kasuya Y (2001) Hydrolysis of conjugated steroids by the combined use of beta-glucuronidase preparations from helix pomatia and ampullaria: determination of urinary cortisol and its metabolites. Steroids. 66; 795–801.Google Scholar
  448. Shibata N, Hayakawa T, Takada K, Hoshino N, Minouchi T, Yamaji A (1998) Simultaneous determination of glucocorticoids in plasma or urine by high-performance liquid chromatography with precolumn fluorimetricderivatization by 9-anthroyl nitrile. J. Chromatogr. B Biomed. Sci. Appl. 706; 191–199.Google Scholar
  449. Shimada K, Nonaka M (1991) Utility of cyclodextrin in mobile phase for high-performance liquid chromatography of C 21 steroids. J. Liquid Chromatogr. 14; 2109–2117.Google Scholar
  450. Shimada K, Tanaka T, Nambara T (1979) Studies on steroids. CL. Separation of catechol estrogens by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 178; 350–354.Google Scholar
  451. Shimada K, Xie F, Nambara T (1986) Studies on steroids. CCXIX. Separation and determination of 4-hydroxyoestriol monoglucuronides and monosulphates in biological fluids by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 378; 17–24.Google Scholar
  452. Shimada K, Komine Y, Mitamura K (1990) Retention behaviour of bile acid derivatives using cyclodextrin in the mobile phase in high-performance liquid chromatography. J. Chromatogr. Sci. 28; 331–335.Google Scholar
  453. Shimada K, Komine Y, Mitamura K (1991) High-performance liquid chromatographic separation of bile acid pyrenacyl esters with cyclodextrin-containing mobile phase. J. Chromatogr. 565; 111–118.Google Scholar
  454. Shimada K, Mitamura K, Ishitoya S, Hirakata K (1993) High-performance liquid chromatographic separation of sensitive fluorescent derivatives of bile acids with cyclodextrin-containing mobile phase. J. Chromatogr. 16; 3965–3976.Google Scholar
  455. Shimada K, Fukuda N, Nakagi T (1997) Studies on neurosteroids. V: separation and characterization of pregnenolone 3-stearate in rat brains using high-performance liquid chromatography. J. Chromatogr. Sci. 35; 71–74.Google Scholar
  456. Shimada K, Mitamura K, Higashi T (2001) Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A. 935; 141–172.Google Scholar
  457. Shoda J, Axelson M, Sjövall J (1993) Synthesis of potential C27-intermediates in bile acid biosynthesis and their deuterium-labeled analogs. Steroids. 58; 119–25.Google Scholar
  458. Shu PY, Chou SH, Lin CH (2003) Determination of corticosterone in rat and mouse plasma by gas chromatography – selected ion monitoring mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 783; 93–101.Google Scholar
  459. Sieber-Ruckstuhl NS, Boretti FS, Wenger M, Maser-Gluth C, Reusch CE (2006) Cortisol, aldoster-one, cortisol precursor, androgen and endogenous ACTH concentrations in dogs with pituitary-dependant hyperadrenocorticism treated with trilostane. Domest. Anim. Endocrinol. 31; 63–75.Google Scholar
  460. Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J. Biol. Chem. 273; 4883–4891.Google Scholar
  461. Simard M (2004) The biochemical investigation of Cushing syndrome. Neurosurg. Focus. 16; E4.Google Scholar
  462. Sinclair PA, Squires EJ, Raeside JI, Renaud R (2005) Synthesis of free and sulphoconjugated 16-androstene steroids by the Leydig cells of the mature domestic boar. J. Steroid Biochem. Mol. Biol. 96; 217–228.Google Scholar
  463. Singh G, Gutierrez A, Xu K, Blair IA (2000) Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal. Chem. 72; 3007–3013.Google Scholar
  464. Sjövall J (2004) Fifty years with bile acids and steroids in health and disease. Lipids. 39; 703–722.Google Scholar
  465. Smith KE, Ahmed F, Williams RAD, et al. (1994) Microbial transformations of steroids – VIII. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus. J. Steroid Biochem. Mol. Biol. 49; 93–100.Google Scholar
  466. Soldin OP, Guo T, Weiderpass E, Tractenberg RE, Hilakivi-Clarke L, Soldin SJ (2005) Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil. Steril. 84; 701–710.Google Scholar
  467. Soldin SJ, Soldin OP (2009) Steroid hormone analysis by tandem mass spectrometry. Clin. Chem. 55; 1061–1066.Google Scholar
  468. Souverain S, Rudaz S, Veuthey JL (2004) Restricted access materials and large particle supports for on-line sample preparation: an attractive approach for biological fluids analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 801; 141–156.Google Scholar
  469. Stanley SMR, Wilhelmi BS, Rodgers JP (1993) Immunoaffinity chromatography combined with gas chromatography – negative ion chemical ionisation mass spectrometry for the confirmation of flumethasone abuse in the equine. J. Chromatogr. Biomed. Appl. 614; 77–86.Google Scholar
  470. Starcevic B, DiStefano E, Wang C, Catlin DH (2003) Liquid chromatography-tandem mass spectrometry assay for human serum testosterone and trideuterated testosterone. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 792; 197–204.Google Scholar
  471. Stopforth A, Burger BV, Crouch AM, Sandra P (2007a) The analysis of estrone and 17beta-estradiol by stir bar sorptive extraction-thermal desorption-gas chromatography/mass spectrometry: application to urine samples after oral administration of conjugated equine estrogens. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 856; 156–164.Google Scholar
  472. Stopforth A, Grobbelaar CJ, Crouch AM, Sandra P (2007b) Quantification of testosterone and epites-tosterone in human urine samples by stir bar sorptive extraction – thermal desorption – gas chromatography/mass spectrometry: application to HIV-positive urine samples. J. Sep. Sci. 30; 257–265.Google Scholar
  473. Strahm E, Saudan C, Sottas PE, Mangin P, Saugy M (2007) Direct detection and quantification of 19-norandrosterone sulfate in human urine by liquid chromatography – linear ion trap mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 852; 491–496.Google Scholar
  474. Strasser GR, Varadi I (2000) Investigations of artifact peaks in sensitive high-performance liquid chromatography methods. J. Chromatogr. A. 869; 85–90.Google Scholar
  475. Street JM, Trafford DJH, Makin HLJ (1983) The quantitative estimation of bile acids and their conjugates in human biological fluids (review). J. Lipid Res. 24; 491–511.Google Scholar
  476. Street JM, Trafford DJH, Makin HLJ (1985) Extraction and fractionation of bile acids and their conjugates using pre-packed microparticulate silica cartridges (Sep-Pak SIL and Bond-Elut C18). J. Chromatogr. 343; 259.Google Scholar
  477. Street JM, Trafford DJH, Makin HLJ (1986) Capillary gas-liquid chromatography of glycine conjugated bile acids without prior hydrolysis. J. Lipid Res. 27; 208–214.Google Scholar
  478. Stute P, Gotte M, Kiesel L (2008) Differential effect of hormone therapy on EIS-sulfatase activity in non-malignant and cancerous breast cells in vitro. Breast Cancer Res. Treat. 108; 363–374.Google Scholar
  479. Su P, Zhang XX, Chang WB (2005) Development and application of a multi-target immunoaffinity column for the selective extraction of natural estrogens from pregnant women’s urine samples by capillary electrophoresis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 816; 7–14.Google Scholar
  480. Su SY, Shiu GK, Simmons J., Viswanathan CT, Skelly JP (1992) High performance liquid chro-matographic analysis of 6 conjugated and unconjugated estrogens in serum. Biomed. Chromatogr. 6; 265–268.Google Scholar
  481. Sudo A (1990) Analysis of corticosterone in rat urine by high-performance liquidichromatogra-phy and fluorimetry using post-column reaction with sulphuric acid. J. Chromatogr. Biomed. Appl. 528; 453–458.Google Scholar
  482. Sulima A, Prisinzano TE, Spande T, Deschamps JR, Whittaker N, Hochberg Z, Jacobson AE, Rice KC (2005) A concise method for the preparation of deuterium-labeled cortisone: synthesis of [6, 7 -2H] cortisone. Steroids. 70; 763–769.Google Scholar
  483. Sumpter JP, Johnson AC (2006) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ. Sci. Technol. 39; 4321–4332.Google Scholar
  484. Suzuki E, Saegusa K, Matsuki Y, Nambara T (1993) Assay of enzymic O-methylation of catechol oestrogens by high-performance liquid chromatography with coulometric detection. J. Chromatogr. Biomed. Appl. 617; 221–225.Google Scholar
  485. Swartz ME (2005) UPLCTM: introduction and review. J. Liquid Chromatogr. Rel. Tech. 28; 1253–1263.Google Scholar
  486. Swinkels LMJW, Vanhoof HJC, Smals AGH, Benraad TJ (1992) Low ratio of androstenedione to testosterone in plasma and saliva of hirsute women. Clin. Chem. 38; 1819–1823.Google Scholar
  487. Szucs S, Sarvary A, Cain T, Adany R (2006) Method validation for the simultaneous determination of fecal sterols in surface waters by gas chromatography -mass spectrometry. J. Chromatogr. Sci. 44; 70–76.Google Scholar
  488. Szumski M, Buszewski B (2004) Molecularly imprinted polymers: a new tool for separation of steroid isomers. J. Sep. Sci. 27; 837–842.Google Scholar
  489. Tachibana S, Tanaka M (2001) Simultaneous determination of testosterone metabolites in liver microsomes using column-switching semi-microcolumn high-performance liquid chromatography. Anal. Biochem. 295; 248–256.Google Scholar
  490. Tai SS, Welch MJ (2004) Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope dilution liquid chromatography/ mass spectrometry and liquid chromatography/tandem mass spectrometry. Anal. Chem. 76; 1008–1014.Google Scholar
  491. Tai SS, Welch MJ (2005) Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 77; 6359–6363.Google Scholar
  492. Tai SS, Xu B, Sniegoski LT, Welch MJ (2006a) Development and evaluation of a candidate reference measurement procedure for the determination of 19-norandrosterone in human urine using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal. Chem. 78; 3393–3398.Google Scholar
  493. Tai SS, Xu B, Welch MJ (2006b) Development and evaluation of a candidate reference measurement procedure for the determination of progesterone in human serum using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal. Chem. 78; 6628–6633.Google Scholar
  494. Tai SS, Xu B, Welch MJ, Phinney KW (2007) Development and evaluation of a candidate reference measurement procedure for the determination of testosterone in human serum using isotope dilution liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 388; 1087–1094.Google Scholar
  495. Takanashi K, Honma T, Kashiwagi T, Honjo H, Yoshizawa I (2000) Detection and measurement of urinary 2-hydroxyestradiol 17-sulfate, a potential placental antioxidant during pregnancy. Clin. Chem. 46; 373–378.Google Scholar
  496. Takeda M, Maeda M, Tsuji A (1990) Chemiluminescence high-performance liquid chromatography of corticosteroids using lucigenin as post-column reagent. Biomed. Chromatogr. 4; 119–122.Google Scholar
  497. Tamvakopoulos CS, Neugebauer JM, Donnelly M, Griffin PR (2002) Analysis of betamethasone in rat plasma using automated solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Determination of plasma concentrations in rat following oral and intravenous administration. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 776; 161–168.Google Scholar
  498. Tanaka H, Putalun W, Tsuzaki C, Shoyama Y (1997) A simple determination of steroidal alkaloid glycosides by thin-layer chromatography immunostaining using monoclonal antibody against solamargine. FEBS Lett. 404; 279–282.Google Scholar
  499. Tang PW, Crone DL (1989) A new method for hydrolyzing sulfate and glucuronyl conjugates of steroids. Anal. Biochem. 182; 289–294.Google Scholar
  500. Taylor NF (2006) Urinary steroid profiling. Meth. Mol. Biol. 324; 159–175.Google Scholar
  501. Taylor RL, Machacek D, Singh RJ (2002) Validation of a high-throughput liquid chromatography-tandem mass spectrometry method for urinary cortisol and cortisone. Clin. Chem. 48; 1511–1519.Google Scholar
  502. Tessier E, Neirinck L, Zhu Z (2003) High-performance liquid chromatographic mass spectromet-ric method for the determination of ursodeoxycholic acid and its glycine and taurine conjugates in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 798; 295–302.Google Scholar
  503. Thenot J-P, Horning E (1972) MO-TMS derivatives of human urinary steroids for GC and GC-MS studies. Anal. Lett. 5; 21–33.Google Scholar
  504. Thierry-Palmer M, Gray TK (1983) Separation of the hydroxylated metabolites of vitamin D 3 by high-performance thin-layer chromatography. J. Chromatogr. 262; 460–463.Google Scholar
  505. Thuyne WV, Delbeke FT (2005) Validation of a GC-MS screening method for anabolizing agents in aqueous nutritional supplements. J. Chromatogr. Sci. 43; 2–6.Google Scholar
  506. Tikkanen MJ, Vihma V, Jauhiainen M, Hockerstedt A, Helisten H, Kaamanen M (2002) Lipoprotein-associated estrogens. Cardiovasc. Res. 56; 184–188.Google Scholar
  507. Tomer KB, Moseley MA, Deterding LJ, Parker CE (1994) Capillary liquid chromatography/mass spectrometry. Mass Spectrom. Rev. 13; 431–457.Google Scholar
  508. Torchia EC, Labonte ED, Agellon LB (2001) Separation and quantitation of bile acids using an isocratic solvent system for high performance liquid chromatography coupled to an evaporative light scattering detector. Anal. Biochem. 298; 293–298.Google Scholar
  509. Torma A, Jaatinen TA, Kaihola HL, Koskinen P, Irjala K (1995) A method for measurement of free testosterone in premenopausal women involving equilibrium dialysis, chromatography, and radioimmunoassay. Steroids. 60; 285–289.Google Scholar
  510. Touber ME, van Engelen MC, Georgakopoulus C, van Rhijn JA, Nielen MW (2007) Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta. 586; 137–146.Google Scholar
  511. Tripodi V, Flor S, Carlucci A, Lucangioli S (2006) Simultaneous determination of natural and synthetic estrogens by EKC using a novel microemulsion. Electrophoresis. 27; 4431–4438.Google Scholar
  512. Tscherne RJ, Capitano G (1977) High-pressure liquid chromatographic separation of pharmaceutical compounds using a mobile phase containing silver nitrate. J. Chromatogr. 136; 337–341.Google Scholar
  513. Tseng YL, Kuo FH, Sun KH (2005) Quantification and profiling of 19-norandrosterone and 19-noretiocholanolone in human urine after consumption of a nutritional supplement and norsteroids. J. Anal. Toxicol. 29; 124–134.Google Scholar
  514. Tsikas D (2001) Affinity chromatography as a method for sample preparation in gas chromatography/mass spectrometry. J. Biochem. Biophys. Meth. 49; 705–731.Google Scholar
  515. Turpeinen U, Markkanen H, Valimaki M, Stenman UH (1997) Determination of urinary free cortisol by HPLC. Clin. Chem. 43; 1386–1391.Google Scholar
  516. Ueshiba H, Segawa M, Hayashi T, et al. (1991) Serum profiles of steroid hormones inpatients with Cushing’s Syndrome determined by a new HPLC/RIA method. Clin. Chem. 37; 1329–1333.Google Scholar
  517. Underwood RH, Bradwin GR, Moore TJ, et al. (1990) Semi-automated high-performance liquid chromatographic method for the simultaneous assay of plasma cortisol and 11-deoxycortisol in the metyrapone test. J. Chromatogr. Biomed. Appl. 526; 180–185.Google Scholar
  518. Une M, Harada J, Mikami T, Hoshita T (1996) High-performance liquid chromatographic separation of ultraviolet-absorbing bile alcohol derivatives. J. Chromatogr. B Biomed. Appl. 682; 157–161.Google Scholar
  519. Van der Hoeven RA, Hofte AJ, Frenay M, Irth H, Tjaden UR, van der Greef J, Rudolphi A, Boos KS, Marko Varga G, Edholm LE (1997) Liquid chromatography-mass spectrometry with online solid-phase extraction by restricted-access C18 precolumn for direct plasma and urine injection. J. Chromatogr. A. 762; 193–200.Google Scholar
  520. Van Eenoo P, Delbeke FT (2006) Metabolism and excretion of anabolic steroids in doping control – new steroids and new insights. J. Steroid Biochem. Mol. Biol. 101; 161–178.Google Scholar
  521. Van Herle AJ, Birnbaum JA, Slomowitz LA, Mayes D, Chandler DW, Rosenblit PD, Nissenson A (1998) Paper chromatography prior to cortisol RIA allows for accurate use of the dexamethasone suppression test in chronic renal failure. Nephron. 80; 79–84.Google Scholar
  522. van Hoof HJC, Swinkels LMJW, van Stevenhagen JJ, Vandenberg H, Ross HA, Benraad TJ (1993) Advantages of paper chromatography as a preparative step in the assay of 1, 25-dihydroxyvitamin D. J. Chromatogr. Biomed. Appl. 621; 33–39.Google Scholar
  523. Van Hoof HJ, van der Mooren MJ, Swinkels LM, Sweep CG, Merkus JM, Benraad TJ (1999) Female sex hormone replacement therapy increases serum free 1, 25-dihydroxyvitamin D3: a 1-year prospective study. Clin. Endocrinol. (Oxford). 50; 511–516.Google Scholar
  524. Van Thuyne W, Delbeke FT (2004) Validation of a GC-MS screening method for anabolizing agents in solid nutritional supplements. Biomed. Chromatogr. 18; 155–159.Google Scholar
  525. Van Uytfanghe K, Stockl D, Kaufman JM, Fiers T, De Leenheer A, Thienpont LM (2005) Validation of 5 routine assays for serum free testosterone with a candidate reference measurement procedure based on ultrafiltration and isotope dilution -gas chromatography -mass spectrometry. Clin. Biochem. 38; 253–261.Google Scholar
  526. Vanluchene E, Hinting A, Dhont M, Serreyn R, Vandekerkhove D (1990) Steroid determinations in human ovarian follicular fluid using capilllary gas chromatography. J. Steroid Biochem. 35; 83–89.Google Scholar
  527. Vanluchene E, Desutter P, Dhont M, Vandekerkhove D (1991) Steroid determinations in human ovarian follicular fluid using reversed phase liquid chromatography. J. Steroid Biochem. Mol. Biol. 39; 177–180.Google Scholar
  528. Vazquez BI, Feas X, Lolo M, Fente CA, Franco CM, Cepeda A (2005) Detection of synthetic corticosteroids in bovine urine by chemiluminescence high -performance liquid chromatography. Luminescence. 20; 197–204.Google Scholar
  529. Vermeulen A (2005) Hormonal cut-offs of partial androgen deficiency: a survey of androgen assays. J. Endocrinol. Invest. 28; 28–31.Google Scholar
  530. Visser SA, Smulders CJ, Gladdines WW, Irth H, van der Graaf PH, Danhof M (2000) High-performance liquid chromatography of the neuroactive steroids alphaxalone and pregnanolone in plasma using dansyl hydrazine as fluorescent label: application to a pharmacokinetic-pharmacodynamic study in rats. J. Chromatogr. B Biomed. Sci. Appl. 745; 357–363.Google Scholar
  531. Vogeser M, Briegel J, Jacob K (2001) Determination of serum cortisol by isotope-dilution liquid chromatography electrospray ionization tandem mass spectrometry with on-line extraction. Clin. Chem. Lab. Med. 39; 944–947.Google Scholar
  532. Volin P (1992) Simultaneous determination of serum cortisol and cortisone by reversed-phase liquid chromatography with ultraviolet detection. J. Chromatogr. Biomed. Appl. 584; 147–155.Google Scholar
  533. Volin P (1995) High-performance liquid chromatographic analysis of corticosteroids. J. Chromatogr. B Biomed. Appl. 671; 319–340.Google Scholar
  534. Volin P (2001) Analysis of steroidal lipids by gas and liquid chromatography. J. Chromatogr. A. 935; 125–140.Google Scholar
  535. Wade SE, Haegele AD (1991a) Corticosteroid analysis by HPLC-UV facilitated by use of an injector-mounted extraction column. J. Liquid Chromatogr. 14; 1257–1266.Google Scholar
  536. Wade SE, Haegele AD (1991b) Differential measurement of cortisol and cortisone in human saliva by HPLC with UV detection. J. Liquid Chromatogr. 14; 1813–1827.Google Scholar
  537. Wang D, Zhang M (2007) Rapid quantitation of testosterone hydroxyl metabolites by ultra-performance liquid chromatography and mass spectrometry. J. Chromatogr. B. 855; 290–294.Google Scholar
  538. Wang G, Hsieh Y, Cui X, Cheng KC, Korfmacher WA (2006) Ultra-performance liquid chroma-tography/tandem mass spectrometric determination of testosterone and its metabolites in in vitro samples. Rapid Commun. Mass Spectrom. 20; 2215–2221.Google Scholar
  539. Wang S, Xu Z, Fang G, Zhang Y, He J (2008) Separation and determination of estrone in environmental and drinking water using molecularly imprinted solid phase extraction coupled with HPLC. J. Sep. Sci. 31; 1181–1188.Google Scholar
  540. Wang Y, Hornshaw M, Alvelius G, Bodin K, Liu S, Sjövall J, Griffiths WJ (2006) Matrix-assisted laser desorption/ionization high-energy collision-induced dissociation of steroids: analysis of oxysterols in rat brain. Anal. Chem. 78; 164–173.Google Scholar
  541. Wang Y, Karu K, Griffiths WJ (2007) Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie. 89; 182–191.Google Scholar
  542. Watabe, Y, Kubo, T., Nishikawa, T., Fujita, T., Kaya, K., Hosoya, K (2006) Fully automated liquid chromatography – mass spectrometry determination of 17 beta-estradiol in river water. J. Chromatogr. A. 1120; 252.Google Scholar
  543. Watanabe K, Yoshizawa I (1985) Clinical analysis of steroids. XXXI. Assay of oestradiol 17-sulphate 4-hydroxylase activity by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 337; 114–120.Google Scholar
  544. Waxman DJ, Chang TK (2006) Thin-layer chromatography analysis of human CYP3A-catalyzed testosterone 6beta-hydroxylation. Meth. Mol. Biol. 320; 133–141.Google Scholar
  545. Webb R, Baxter G, McBride D, Nordblom GD, Shaw MP (1985) The measurement of testosterone and oestradiol-17beta using iodinated tracers and incorporating an affinity chromatography extraction procedure. J. Steroid Biochem. 23; 1043–1051.Google Scholar
  546. Wehling M, Losel R (2006) Non-genomic steroid homone effects: membrane or intracellular receptors? J. Steroid Biochem. Mol. Biol. 102; 180–183.Google Scholar
  547. Wei J-Q, Wei J-L, Zhou X-T (1990) Optimization of an isocratic reversed phase liquid chromato-graphic system for the separation of fourteen steroids using factorial design and computer simulation. Biomed Chromatogr. 4; 34–38.Google Scholar
  548. Weidolf LOG, Lee ED, Henion JD (1988) Determination of boldenone sulfoconjugate and related steroid sulfates in equine urine by high performance liquid chromatograph/tandem mass spectrometry. Biomed Environ Mass Spectrom. 15; 283–288.Google Scholar
  549. Weill-Engerer S, David JP, Sazdovitch V, Liere P, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2003) In vitro metabolism of dehydroepiandrosterone (DHEA) to 7alpha-hydroxy-DHEA and Delta5-androstene-3beta, 17beta-diol in specific regions of the aging brain from Alzheimer’s and non-demented patients. Brain Res. 969; 117–125.Google Scholar
  550. Wen Y, Zhou BS, Xu Y, Jin SW, Feng YQ (2006) Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. J. Chromatogr. A. 1133; 21–28.Google Scholar
  551. Wentworth P, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, Lerner RA (2003) Evidence for ozone formation in human atherosclerotic arteries. Science. 302; 1053–1056.Google Scholar
  552. Whalley PM, Bakes D, Grime K, Weaver RJ (2001) Rapid high-performance liquid chromato-graphic method for the separation of hydroxylated testosterone metabolites. J. Chromatogr. B Biomed. Sci. Appl. 760; 281–288.Google Scholar
  553. Wheeler MJ (2006) Measurement of androgens. Meth. Mol. Biol. 324; 197–211.Google Scholar
  554. Whorwood CB, Ueshiba H, Delbalzo P (1992) Plasma levels of C steroid glucuronides in pre-menopausal women with non-classical congenital adrenal hyperplasia. J. Steroid Biochem. Mol. Biol. 42; 211–221.Google Scholar
  555. Wiebe PJ, Barr KJ, Buckingham KD (1991) A radioimmunoassay for the regulatory allylic steroid, 3-alpha-hydroxy-4-pregnen-20-one (3alphaHP). J. Steroid Biochem. Mol. Biol. 38; 505–512.Google Scholar
  556. Wolthers BG, Kraan GP (1999) Clinical applications of gas chromatography and gas chromatog-raphy-mass spectrometry of steroids. J. Chromatogr. A. 843; 247–274.Google Scholar
  557. Wong T, Shackleton CHL, Covey TR, Ellis G (1992) Identification of the steroids in neonatal plasma that interfere with 17a-hydroxyprogesterone radioimmuoassays. Clin. Chem. 38; 1830–1837.Google Scholar
  558. Wudy SA (1990) Synthetic procedures for the preparation of deuterium-labeled analogs of naturally occurring steroids. Steroids. 55; 463–471.Google Scholar
  559. Wudy SA, Hartmann MF (2004) Gas chromatography – mass spectrometry profiling of steroids in times of molecular biology. Harm. Metab. Res. 36; 415–422.Google Scholar
  560. Wudy SA, Hartmann M, Svoboda M (2000) Determination of 17-hydroxyprogesterone in plasma by stable isotope dilution/benchtop liquid chromatography – tandem mass spectrometry. Harm. Res. 53; 68–71.Google Scholar
  561. Wudy SA, Hartmann M, Solleder C, Homoki J (2001) Determination of 17alpha-hydroxypregnenolone in human plasma by routine isotope dilution mass spectrometry using benchtop gas chromatography -mass selective detection. Steroids. 66; 759–762.Google Scholar
  562. Wudy SA, Hartmann M, Homoki J (2002) Determination of 11-deoxycortisol (Reichstein’s compound S) in human plasma by clinical isotope dilution mass spectrometry using benchtop gas chromatography – mass selective detection. Steroids. 67; 851–857.Google Scholar
  563. Xu CL, Chu XG, Peng CF, Jin ZY, Wang LY (2006) Development of a faster determination of 10 anabolic steroids residues in animal muscle tissues by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 41; 616–621.Google Scholar
  564. Yamada H, Kuwahara Y, Takamatsu Y, Hayase T (2000) A new sensitive determination method of estradiol in plasma using peroxyoxalate ester chemiluminescence combined with an HPLC system. Biomed. Chromatogr. 14; 333–337.Google Scholar
  565. Yamada H, Yoshizawa K, Hayase T (2002) Sensitive determination method of estradiol in plasma using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B. 775; 209–213.Google Scholar
  566. Yamashita K, Kobayashi S, Tsukamoto S, Numazawa M (2007a) Synthesis of pyridine-­carboxylate derivatives of hydroxysteroids for liquid chromatography-electrospray ionization -mass spectrometry. Steroids. 72; 50–59.Google Scholar
  567. Yamashita K, Okuyama M, Watanabe Y, Honma S, Kobayashi S, Numazawa M (2007b) Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography -electrospray ionization tandem mass spectrometry. Steroids. 72; 819–827.Google Scholar
  568. Yang Y, Griffiths WJ, Nazer H, Sjövall J (1997) Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography -mass spectrometry using fast atom bombardment or electrospray ionisation and collision induced dissociation. Biomed. Chromatogr. 11; 240–255.Google Scholar
  569. Yang YJ, Lee J, Choi MH, Chung BC (2003) Direct determination of estriol 3-and 16-glucuronides in pregnancy urine by column-switching liquid chromatography with electrospray tandem mass spectrometry. Biomed. Chromatogr. 17; 219–225.Google Scholar
  570. Yoshitake T, Ishida J, Sonezaki S, Yamaguchi M (1992) High performance liquid chromatographic determination of 3alpha, 5beta-tetrahydroaldosterone and cortisol in human urine with fluorescence detection. Biomed. Chromatogr. 6; 217–221.Google Scholar
  571. Zaikin VG, Halket JM (2003) Derivatization in mass spectrometry – 2. Acylation. Eur. J. Mass Spectrom. 9; 421–434.Google Scholar
  572. Zaikin VG, Halket JM (2004) Derivatization in mass spectrometry – 4. Formation of cyclic derivatives. Eur. J. Mass Spectrom. 10; 555–568.Google Scholar
  573. Zaikin VG, Halket JM (2005) Derivatization in mass spectrometry – 6. Formation of mixed derivatives of polyfunctional compounds. Eur. J. Mass Spectrom. 11; 611–636.Google Scholar
  574. Zaikin VG, Halket JM (2006) Derivatization in mass spectrometry – 8. Soft ionization mass spectrometry of small molecules. Eur. J. Mass Spectrom. 12; 79–115.Google Scholar
  575. Zalata A, Hafez T, Verdonck L, Vermeulen L, Comhaire F (1995) Androgens in seminal plasma: markers of the surface epithelium of the male reproductive tract. Int. J. Androl. 18; 271–277.Google Scholar
  576. Zarzycki PK (2008) Simple horizontal chamber for thermostated micro-thin-layer chromatography. J. Chromatogr. A. 1187; 250–259.Google Scholar
  577. Zarzycki PK, Zarzycka MB (2008) Application of temperature-controlled micro planar chroma-tography for separation and quantification of testosterone and its derivatives. Anal. Bioanal. Chem. 391; 2219–2225.Google Scholar
  578. Zarzycki PK, Kulhanek KM, Smith R (2002) Chromatographic behaviour of selected steroids and their inclusion complexes with beta-cyclodextrin on octadecylsilica stationary phases with different carbon loads. J. Chromatogr. A. 955; 71–78.Google Scholar
  579. Zarzycki PK, Kulhanek KM, Smith R, Clifton VL (2006) Determination of steroids in human plasma using temperature-dependent inclusion chromatography for metabolomic investigations. J. Chromatogr. A. 1104; 203–208.Google Scholar
  580. Zemaitis MA, Kroboth PD (1998) Simplified procedure for measurement of serum dehydroepi-androsterone and its sulfate with gas chromatography – ion trap mass spectrometry and selected reaction monitoring. J. Chromatogr. B Biomed. Sci. Appl. 716; 19–26.Google Scholar
  581. Zhao M, Baker SD, Yan X, Zhao Y, Wright WW, Zirkin BR, Jarow JP (2004) Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids. 69; 721–726.Google Scholar
  582. Zhou LY, Wang DS, Senthilkumaran B, Yoshikuni M, Shibata Y, Kobayashi T, Sudhakumari CC, Nagahama Y (2005) Cloning, expression and characterization of three types of 17beta-hydroxysteroid dehydrogenases from the Nile tilapia, Oreochromis niloticus. J. Mol. Endocrinol. 35; 103–116.Google Scholar
  583. Zhou LY, Wang DS, Kobayashi T, Yano A, Paul-Prasanth B, Suzuki A, Sakai F, Nagahama Y (2007) A novel type of P450c17 lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney. Endocrinology. 148; 4282–4291. 2007 June 14 [Epub ahead of print].Google Scholar
  584. Zomer G, Stavenuiter JF (1990) Synthesis of 13C-labeled steroid hormones. Steroids. 55; 440–442.Google Scholar
  585. Zuo Y, Zhang K, Lin Y (2007) Microwave-accelerated derivatization for the simultaneous gas chromatographic-mass spectrometric analysis of natural and synthetic estrogenic steroids. J. Chromatogr. A. 1148; 211–218.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hugh L. J. Makin
    • 1
    Email author
  • John W. Honour
    • 2
  • Cedric H. L. Shackleton
    • 3
  • William J. Griffiths
    • 4
  1. 1.Barts & the London, School of Medicine & DentistryQueen Mary University of LondonLondonUK
  2. 2.Department of Clinical BiochemistryUniversity College London HospitalsLondonUK
  3. 3.Research InstituteOakland Children’s HospitalOaklandUSA
  4. 4.Institute of Mass Spectrometry, School of MedicineSwansea UniversitySwanseaUK

Personalised recommendations