Advertisement

Spectroscopic Methods of Steroid Analysis

  • Alexander KasalEmail author
  • Milos Budesinsky
  • William J. Griffiths
Chapter

Abstract

Modern chemical laboratories contain equipment capable of measuring many of the physical properties of single chemical compounds and mixtures of compounds, particularly their spectral properties, which can, if interpreted correctly, provide valuable information about both structure (of single compounds) and composition (of mixtures). Over the past 50 years, the author have witnessed enormous progress in the technical capabilities of this equipment. Automation and speed of analysis have greatly improved the ease of use and the versatility of the technology.

References

  1. Al-Rawi JMA, Bloxsidge JP, Elvidge JA, Jones JR, Chambers VEM, Chambers VMA, Evans EA (1976) Tritium nuclear magnetic resonance pectroscopy. Part VI(1) Tritiated steroid hormones. Steroids. 28; 359–375.Google Scholar
  2. Altman LJ, Silberman N (1977) Tritium nuclear magnetic resonance spectroscopy. Distribution patterns and nuclear Overhauser enhancements in some tritiated steroids. Steroids. 29; 557–565.Google Scholar
  3. Axelson M, Sjövall J (1977) Analysis of unconjugated steroids in plasma by liquid-gel chromatography and glass capillary gas chromatography-mass spectrometry. J. Steroid Biochem. 8; 683–692.Google Scholar
  4. Ballatore AM, Beckner CF, Caprioli RM, Hoffman NE, Liehr JG (1983) Synthesis and spectroscopic analysis of modified bile salts. Steroids. 41; 197–206.Google Scholar
  5. Barber M, Bordoli RS, Sedgwick RD, Tyler AN (1981) Fast atom bombardment of solids (FAB): a new ion source for mass spectrometry. J. Chem. Soc. Chem. Commun. 325–327.Google Scholar
  6. Barrows GH, Stroupe SB, Riehm JD (1980) Nuclear uptake of a 17|3-estradiol-fluorescein derivative a marker of estrogen dependence. J. Clin. Pathol. 73; 330–339.Google Scholar
  7. Barton DHR (1945) The application of the method of molecular rotation differences to steroids. Part I. Naturally occurring sterols and their simple derivatives. J. Chem. Soc. Chem. Commun. 813–819.Google Scholar
  8. Beljebbar A, Romijn JC, Puppels GJ (2000) Investigation of androgen effects on prostate cancer cell lines by near infrared Raman microspectroscopy. Biomedical spectroscopy: vibration spectroscopy and other novel techniques. SPIE Proceedings, Vol 1, pp. 161–165.Google Scholar
  9. Bertoft EJ, Maentausta OK, Löwgren TNE (1985) Anal. Chem. Symp. Ser. 23; 279.Google Scholar
  10. Bhacca NS, Williams DH (1964) Applications of NMR Spectroscopy in Organic Chemistry, Holden-Day, San Francisco, CA.Google Scholar
  11. Björkhem I, Gustafsson JÅ, Sjövall J (1973) A novel fragmentation of trimethylsilyl ethers of 3|3-hydroxy-A5-steroids. Org. Mass. Spectrom. 7; 277–281.Google Scholar
  12. Blakeley CR, McAdams MJ, Vestal ML (1978) Crossed beam liquid chromatography-mass spectrometry combination. J. Chromatogr. 158; 261–276.Google Scholar
  13. Blau K, Halket JM (1993) Handbook of Derivatives for Chromatography, 2nd edn. Wiley, Chichester.Google Scholar
  14. Blau K, King G (1977) Handbook of Derivatives for Chromatography. Heyden & Son, London.Google Scholar
  15. Blunt JW, Stothers JB (1977) 13C NMR spectra of steroids - a survey and commentary. Org. Magn. Resonance. 9; 439–464.Google Scholar
  16. Boul AD, Blunt JW, Browne JW, Kumar V, Meakins GD, Pinhey JT, Thomas VEM (1971) Microbial hydroxylation of steroids. Part II. Structural information and infrared spectrometry: carbonyl, perturbed methylene, and hydroxyl vibrations of steroidal ketones and alcohols. J. Chem. Soc. Chem. Commun. 1130–1136.Google Scholar
  17. Bove KE, Heubi JE, Balistreri WF, Setchell KD (2004) Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr. Dev. Pathol. 7; 315–334.Google Scholar
  18. Bowen CM, Katzenellenbogen A (1997) Synthesis and spectroscopic characterization of two azatetrahydrochrysenes as potential fluorescent ligands for the estrogen receptor. J. Org. Chem. 62; 7650–7657.Google Scholar
  19. Bridgeman JE, Cherry PC, Clegg AS, Evans JM, Jones Sir ERH, Kasal A, Kumar V, Meakins GD, Morisawa Y, Richards EE, Woodgate PD (1970) Microbiological hydroxylation of steroids. Part I. Proton magnetic resonance spectra of ketones, alcohols, and acetates in the androstane, pregnane, and oestrane series. J. Chem. Soc. Chem. Commun. 250–257.Google Scholar
  20. Brooks CJW (1979) Some aspects of mass spectrometry in research on steroids. Phil. Trans. R. Soc. Lond. A293; 53–67.Google Scholar
  21. Brooks CJW, Gaskell SJ (1980) Hormones. In Biochemical Applications of Mass Spectrometry (eds Waller GR, Dermer OC). Wiley, New York, pp. 611–659.Google Scholar
  22. Budzikiewicz H (1972) Steroids. In Biochemical Applications of Mass Spectrometry (ed Waller GR). Wiley, New York, pp. 251–289.Google Scholar
  23. Budzikiewicz H (1980) Steroids. In Biochemical Applications of Mass Spectrometry (eds Waller GR, Dermer OC). Wiley, New York, pp. 211–228.Google Scholar
  24. Budzikiewicz H, Djerassi C, Williams DH (1964) Structure Elucidation of Natural Products by Mass Spectrometry. Vol. II: Steroids, Terpenoids, Sugars and Miscellaneous Classes. Holden-Day, San Francisco, CA.Google Scholar
  25. Budzikiewicz H, Djerassi C, Williams D (1967) Mass Spectrometry of Organic Compounds. Holden-Day, San Francisco, CA.Google Scholar
  26. Burkard I, Rentsch KM, von Eckardstein A (2004) Determination of 24S- and 27-hydroxycholesterol in plasma by high-performance liquid chromatography-mass spectrometry. J. Lipid. Res. 45; 776–781.Google Scholar
  27. Catlin DH, Sekera MH, Ahrens BD, Starcevic B, Chang YC, Hatton CK (2004) Tetrahyd-rogestrinone: discovery, synthesis, and detection in urine. Rapid Commun. Mass. Spectrom. 18; 1245–1249.Google Scholar
  28. Chambaz EM, Defaye G, Madani C (1973) Trimethylsilyl ether-enol-trimethylsilyl ether. New type of derivative for the gas phase study of hormonal steroids. Anal. Chem. 45; 1090–1098.Google Scholar
  29. Chard T (1982) An Introduction to Radioimmunoassay and Related Techniques, Elsevier, Amsterdam/New York/Oxford.Google Scholar
  30. Ciuffreda P, Casati S, Manzocchi A (2004) Complete 1 H and 13C NMR spectral assignment of 17-hydroxy epimeric sterols with planar A or A and B rings. Magn. Reson. Chem. 42; 360–363.Google Scholar
  31. Claridge TDW (2000) High-Resolution NMR Techniques in Organic Chemistry, Elsevier, Oxford.Google Scholar
  32. Clarke N, Goldman M (2005) Clinical applications of HTLC-MS/MS in the very high throughput diagnostic environment: LC-MS/MS on steroids. Proceedings of 53rd ASMS Conference on Mass Spectrometry and Allied Topics, June 5–9, San Antonio, TX.Google Scholar
  33. Clayton PT, Leonard JV, Lawson AM, Setchell KDR, Andersson S, Egestad B, Sjövall J (1987) Familial giant cell hepatitis associated with synthesis of 3p\7a -dihydroxy-and 3p\7a, 12a-trihydroxy-5-cholenoic acids. J. Clin. Invest. 79; 1031–1038.Google Scholar
  34. Covey TR, Lee ED, Bruins AP, Henion JD (1986) Liquid chromatography/mass spectrometry. Anal. Chem. 58; 1451A–1461A.Google Scholar
  35. Crabbé P (1965) Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry. Holden-Day, San Francisco, CA, p. 227.Google Scholar
  36. Crews P, Rodríguez J, Jaspars M (1998) Organic Structure Analysis. Oxford University Press, Oxford.Google Scholar
  37. Cristoni S, Cuccato D, Sciannamblo M, Bernardi LR, Biunno I, Gerthoux P, Russo G, Weber G, Mora S (2004) Analysis of 21-deoxycortisol, a marker of congenital adrenal hyperplasia, in blood by atmospheric pressure chemical ionization and electrospray ionization using multiple reaction monitoring. Rapid Commun. Mass. Spectrom. 18; 77–82.Google Scholar
  38. Croasmun WR, Carlson MK (eds) (1994) Steroid Structural Analysis by Two-Dimensional NMR, In Two-Dimensional NMR Spectroscopy Applications for Chemists and Biochemists, 2nd edn. VCH, New York, pp. 785–840.Google Scholar
  39. Cuffini SL, Ellena JF, Mascarenhas YP, Ayala AP, Sielser HW, Filho JM, Monti GA, Aiassa V, Sperandeo NR (2007) Physicochemical characterization of deflazacort: thermal analysis, crystallographic and spectroscopic study. Steroids. 72; 261–269.Google Scholar
  40. Dandliker WB, Hicks AN, Levison SA, Brawn RJ (1977) Fluorescein-labelled estradiol: a probe for anti-estradiol antibody. Res. Commun. Chem. Pathol. Pharmacol. 18; 147–156.Google Scholar
  41. De Beer TR, Baeyens WR, Vermeire A, Broes D, Remon JP, Vervaet C (2007) Raman spectroscopic method for the determination of medroxyprogesterone acetate in a pharmaceutical suspension: validation of quantifying abilities, uncertainty assessment and comparison with the high performance liquid chromatography reference method. Anal. Chim. Acta. 589; 192–199.Google Scholar
  42. Djerassi C (1960) Optical Rotatory Dispersion. McGraw-Hill, New York.Google Scholar
  43. Djerassi C (1978) Recent advances in the mass spectrometry of steroids. Pure Appl. Chem. 50; 171–184.Google Scholar
  44. Dobriner K, Katzenellenbogen ER, Jones RN (1953) Infrared Absorption Spectra of Steroids, Vol 1. Interscience, New York.Google Scholar
  45. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) Molecular beams of macroions. J. Chem. Phys. 49; 2240–2249.Google Scholar
  46. Donike M (1969) N-Methyl-N-(trimethylsilyl)trifluoracetamide, a new silylation agent in the silylated amide series. J. Chromatogr. 42; 103–104.Google Scholar
  47. Donike M, Zimmerman J (1980) Preparation of trimethylsilyl-, triethylsilyl-and tert-butyldimethylsilyl enol ethers of oxo steroids for gas chromatographic and mass spectrometric studies. J. Chromatogr. 202; 483–486.Google Scholar
  48. Draisci R, Palleschi L, Ferretti E, Lucentini L, Cammarata P (2000) Quantitation of anabolic hormones and their metabolites in bovine serum and urine by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 870; 511–522.Google Scholar
  49. Dufourc EJ, Smith ICP (1985) 2H NMR evidence for antibiotic-induced cholesterol immobilization in biological model membranes. Biochemistry. 24; 331–334.Google Scholar
  50. Eckers C, Eas PB, Haskins NJ (1991) The use of negative ion thermospray liquid chromatography/ tandem mass spectrometry for the determination of bile acids and their glycine conjugates. Biol. Mass. Spectrom. 20; 731–739.Google Scholar
  51. Egestad B, Pettersson P, Skrede S, Sjövall J (1985) Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis. Scand. J. Lab. Invest. 45; 443–446.Google Scholar
  52. Eger CH, Greiner MJ, Norton DA (1971) The participation of the 17|3 side group in binding. Steroids. 18; 231–245.Google Scholar
  53. Eggert H, Djerassi C (1973) Carbon-13 nuclear magnetic resonance spectra of keto steroids. J. Org. Chem. 38; 3788–3792.Google Scholar
  54. Eggert H, Djerassi C (1981) Carbon-13 nuclear magnetic resonance spectra of monounsaturated steroids. Evaluation of rules for predicting their chemical shifts. J. Org. Chem. 46; 5399–5401.Google Scholar
  55. Eggert H, Van Antwer CL, Bhacca NS, Djerassi C (1976) Carbon-13 nuclear magnetic resonance spectra of hydroxy steroids. J. Org. Chem. 41; 71–78.Google Scholar
  56. Elliott WH (1972) Bile acids. In Biochemical Applications of Mass Spectrometry (ed Waller GR). Wiley, New York, pp. 291–312.Google Scholar
  57. Elliott WH (1980) Mass spectra of bile acids. In Biochemical Applications of Mass Spectrometry (eds Waller GR, Dermer OC). Wiley, New York, 229–253.Google Scholar
  58. Emmett MR, Caprioli RM (1994) Micro-electrospray mass spectrometry: ultra-high sensitivity analysis of peptides and proteins. J. Am. Soc. Mass. Spectrom. 5; 605–613.Google Scholar
  59. Eneroth P, Gordon B, Ryhage R, Sjövall J (1966) Identification of mono- and dihydroxy bile acids in human feces by gas-liquid chromatography and mass spectrometry. J. Lipid Res. 7; 511–523.Google Scholar
  60. Engel LL, Orr JC (1972) Hormones. In Biochemical Applications of Mass Spectrometry (ed Waller GR). Wiley, New York, pp. 537–572.Google Scholar
  61. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One- and Two-Dimensions. Oxford University Press, London.Google Scholar
  62. Evershed RP (1993) Advances in silylation. In Handbook of Derivatives for Chromatography, 2nd edn. (eds Blau K, Halket JM). Wiley, Chichester, pp. 51–108.Google Scholar
  63. Evrain Ch, Rajkowski KM, Cittanova N, Jayle MF (1980) The preparation of three fluorescein-labelled derivatives of testosterone. Steroids. 35; 611–619.Google Scholar
  64. Fieser LF, Fieser M (1959) Steroids. Reinhold, New York.Google Scholar
  65. Freudenberg K (1933) Regeln auf dem Gebiete der optischen Drehnung und ihre Anwendung in der Konstitutions- und Konfigurations-Forschung. Chem. Ber. 66; 177–194.Google Scholar
  66. Friebolin H (2005) Basic One- and Two-Dimensional NMR Spectroscopy, 4th edn. Wiley, Weinheim, Germany.Google Scholar
  67. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Miriam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C. 02, Gaussian, Wallingford, CT.Google Scholar
  68. Fukushima DK, Matsui M (1969) Optical rotatory dispersion and circular dichroism studies of C19-steroid N-acetylglucosaminides. Steroids. 14; 651.Google Scholar
  69. Funke CW, Kasperen FM, Wallaart J, Wagenaars GN (1983) Tritium NMR-spectroscopy of steroids. J. Labelled Compd. Rad. 20; 843–853.Google Scholar
  70. Garbuz NI, Yankovskaya GS, Kashkan ZhN, Kananovich OP, Kochanko NV (1992) Circular dichroism of steroids with a lactone ring B. Brassinosteroids and compounds related to them. Chem. Nat. Comp. 28; 63–68.Google Scholar
  71. Gerst N, Ruan B, Pang J, Wilson WK, Schroepfer Jr GJ (1997) An updated look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. J. Lipid Res. 38; 1685–1701.Google Scholar
  72. Goad LJ, Akihisa T (1997) Analysis of Sterols. Blackie Academic & Professional, London.Google Scholar
  73. Goad LJ, Akihisa T (1997) Analysis of Sterols. Chapman & Hill, London.Google Scholar
  74. Goodlett VW (1965) Use of in situ reactions for characterization of alcohols and glycols by nuclear magnetic resonance. Anal. Chem. 37; 431–432.Google Scholar
  75. Goto J, Murao N, Nakada C, Motoyama T, Oohashi J, Yanagihara T, Niwa T, Ikegawa S (1998) Separation and characterization of carboxyl-linked glucuronides of bile acids in incubation mixture of rat liver microsomes. Steroids. 63; 186–192.Google Scholar
  76. Goto T, Shibata A, Iida T, Mano N, Goto J (2004) Sensitive mass spectrometric detection of neutral bile acid metabolites. Formation of adduct ions with an organic anion in atmospheric pressure chemical ionization. Rapid Commun. Mass. Spectrom. 18; 2360–2364.Google Scholar
  77. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62; 7512–7515.Google Scholar
  78. Görög S, Szasz Gy (1978) Analysis of Steroid Hormone Drugs. Akadémiai Kaidó, Budapest.Google Scholar
  79. Grant DM, Harris RK (eds) (1996) Encyclopedia of Nuclear Magnetic Resonance, Vols 1–9. Wiley, Chichester.Google Scholar
  80. Greek S, Schulze HG, Blades MW, Haynes CA, Klein KF, Turner RFB (1998) Fiber-optic probes with improved excitation and collection efficiency for deep-UV Raman and resonance Raman spectroscopy. Appl. Optics. 37; 170–180.Google Scholar
  81. Greig MJ, Bolaños B, Quenzer T, Bylund JMR (2003) Fourier transform ion cyclotron resonance mass spectrometry using atmospheric pressure photoionization for high-resolution analyses of corticosteroids. Rapid Commun. Mass. Spectrom. 17; 2763–2768.Google Scholar
  82. Gremlich HU (2001) Infrared and Raman spectroscopy. In Handbook of Analytical Techniques (eds Guenzler H, Williams A)hj45120104070803050, Vol 1. Wiley, Weinheim, Germany, pp. 465–507. (English).Google Scholar
  83. Griffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y (2001) Electrospray and tandem mass spectrometry in biochemistry. Biochem. J. 355; 545–561.Google Scholar
  84. Griffiths WJ, Liu S, Alvelius G, Sjövall J (2003) Derivatisation for the characterisation of neutral oxosteroids by electrospray and matrix-assisted laser desorption/ionisation tandem mass spectrometry: the Girard P derivative. Rapid Commun. Mass. Spectrom. 17; 924–935.Google Scholar
  85. Griffiths WJ, Shackleton C, Sjövall J (2005) Steroid analysis. In The Encylopedia of Mass Spectrometry (ed. R.M. Caprioli), Vol 3. Elsevier, Oxford, pp. 447–472.Google Scholar
  86. Griffiths WJ, Hornshaw M, Woffendin G, Baker SF, Lockhart A, Heidelberger S, Gustafsson M, Sjövall J, Wang Y (2008) Discovering oxysterols in plasma: a window on the metabolome. J. Proteome. Res. 7; 3602–3612Google Scholar
  87. Gustafsson J-Å, Ryhage R, Sjövall J, Moriarty RM (1969) Migration of the trimethylsilyl group upon electron impact in steroids. J. Am. Chem. Soc. 91; 1234–1236.Google Scholar
  88. Haasnoot CAG, de Leeuw FAAM, Altona C (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities—I: an empirical generalization of the Karplus equation. Tetrahedron. 36; 2783–2792.Google Scholar
  89. Hanson JR, Reese PB (1985) A nuclear magnetic resonance study of the conversion of 4|3-acetoxy-3|3-hydroxy-A4 -steroids into 3p, 6p-diacetoxy-A4-steroids. J. Chem. Soc. [Perkin. 1]. 331–334.Google Scholar
  90. Hickey JP, Butler IS, Pouskouleli G (1980) C-13 NMR-spectra of some representative hormonal steroids. J. Magn. Reson. 38; 501–506.Google Scholar
  91. Higashi T, Takido N, Yamauchi A, Shimada K (2002) Electron-capturing derivatization of neutral steroids for increasing sensitivity in liquid chromatography/negative atmospheric pressure chemical ionization-mass spectrometry. Anal. Sci. 18; 1301–1307.Google Scholar
  92. Higashi T, Takido N, Shimada K (2003) Detection and characterization of 20-oxosteroids in rat brains using LC-electron capture APCI-MS after derivatization with 2-nitro-4-trifluoromethylphenylhydrazine. Analyst. 128; 130–133.Google Scholar
  93. Higashi T, Yamauchi A, Shimada K (2005) 2-Hydrazino-1-methylpyridine: a highly sensitive derivatization reagent for oxosteroids in liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B 825; 214–222.Google Scholar
  94. Horning EC (1968) Gas phase analytical methods for the study of steroid hormones and their metabolites. In Gas Phase Chromatography of Steroids (eds Eik-Nes KB, Horning EC). Springer, Berlin, pp. 1–71.Google Scholar
  95. Hughes DW, Bain AD, Robinson VJ (1991) NMR analysis of fluorinated corticosteroids related to fluocinonide: detection of long-range 1H-19 F couplings using the heteronuclear equivalent of the COSY experiment. Magn. Reson. Chem. 29; 387–397.Google Scholar
  96. Hunt DF, Stafford GC, Crow FW, Russell JW (1976) Pulsed positive negative ion chemical ionization mass spectrometry. Anal. Chem. 48; 2098–2104.Google Scholar
  97. Ikegawa S, Goto T, Watanabe H, Goto J (1995) Stereoisomeric inversion of (25R)- and (25S)-3alpha, 7alpha, 12alpha-trihydroxy-5-beta-cholestanoic acids in rat liver peroxisome. Biol. Pharm. Bull. 18; 1027–1029.Google Scholar
  98. Iribarne JV, Thomson BA (1976) On the evaporation of charged ions from small droplets. J. Chem. Phys. 64; 2287–2294.Google Scholar
  99. Jacques J, Kagan H, Ourisson G (1965) Selected Constants, Optical Rotatory Power, 1a, Steroids. Pergamon, Oxford.Google Scholar
  100. James KC, Noyce PA (1971) An infrared study of solvent effects on the carbonyl stretching bands of some androgen esters. J. Chem. Soc. (B) 2045–2050.Google Scholar
  101. James KC, Rangoolam M (1978) Solvent effects on the carbonyl and ethylenic stretching frequencies in 3-keto unsaturated steroids. Spectrochim. Acta A. 34; 1145–1149.Google Scholar
  102. Jennings JP, Klyne W, Scopes PM (1965) Optical rotatory dispersion. 24. Lactones. J. Chem. Soc. 7211–7242Google Scholar
  103. Joseph-Nathan P, Espineira J, Santillan RL (1984) F-19-NMR study of fluorinated corticosteroids. Spectrochim. Acta A. 40; 347–349.Google Scholar
  104. Kasal A, Černý V (1967) Preparation and properties of some androstan-18-carboxylic acid derivatives. Collect Czech. Chem. C. 32; 3733–3745.Google Scholar
  105. Kasal A, Budešínský M, Drašar P (2002) Analogues of androgen hormones with inverted configuration at carbons 5, 9 and 10. Steroids. 67; 57–70.Google Scholar
  106. Kählig H, Robien W (1994) 17O NMR spectroscopic investigation of steroids at natural abundance. Magn. Reson. Chem. 32; 608–613.Google Scholar
  107. Kebarle P, Ho Y (1997) On the mechanism of electrospray mass spectrometry. In Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation and Applications (ed Cole RB). Wiley, New York, pp. 3–63.Google Scholar
  108. Keller RJ (1986) The Sigma Chemical Library of FT-IR Spectra, Vol 1. Sigma Chemical Company, St. Louis, MO.Google Scholar
  109. Kelly RW, Taylor PL (1976) tert -Butyl dimethylsilyl ethers as derivatives for qualitative analysis of steroids and prostaglandins by gas phase methods. Anal. Chem. 48; 465–467.Google Scholar
  110. Kemp W (1991) Organic Spectroscopy, 3rd edn. Macmillan, London.Google Scholar
  111. Khan MA, Wang Y, Heidelberger S, Alvelius G, Liu S, Sjövall J, Griffiths WJ (2006) Analysis of derivatised steroids by matrix-assisted laser desorption/ionisation and post-source decay mass spectrometry. Steroids. 71; 42–53.Google Scholar
  112. Kim YS, Zhang H, Kim HY (2000) Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal. Biochem. 277; 187–195.Google Scholar
  113. Kimura H, Mukaida M, Wang G, Yuan J, Matsumoto K (2000) Dual-label time-resolved fluoroimmunoassay of psychopharmaceuticals and stimulants in serum. Forensic. Sci. Int. 113; 345–351.Google Scholar
  114. Kirk DN (1986) The chiroptical properties of carbonyl compounds. Tetrahedron. 42; 777–818.Google Scholar
  115. Kirk DN (1989) Steroids: physical methods. Nat. Prod. Rep. 6; 394–404.Google Scholar
  116. Kirk DN, Toms HC, Douglas C, White KA, Smith KF, Latif S, Hubbard RWP (1990) A survey of high-field 1 H N.M.R. spectra of steroid hormones, their hydroxylated derivatives, and related compounds. J. Chem. Soc. Chem. Commun. 2; 1567–1594.Google Scholar
  117. Kobayashi Y, Miyai K, Tsubota N, Watanabe F (1979) Direct fluorescence polarisation immunoassay of serum cortisol. Steroids. 34; 829–834.Google Scholar
  118. Kolodziejski W, Woźniak K, Herold J, Dominiak PM, Kutner A (2005) Crystal and molecular structure of 1 a -hydroxylated analogs of vitamins D. J. Mol. Struct. 734; 149–155.Google Scholar
  119. Kunst M, van Duijn D, Bordwijk P (1979) Hydrogen bonding of 5 a -cholestanol in carbon tetrachloride. Recl. Trav. Chim. Pay-B. 98; 262–267.Google Scholar
  120. Kuuranne T, Vahermo M, Leinonen A, Kostiainen R (2000) Electrospray and atmospheric pressure ionization tandem mass spectrometric behaviour of eight anabolic steroid glucuronides. J. Am. Soc. Mass. Spectrom. 11; 722–730.Google Scholar
  121. Ladd M, Palmer R (2003) Structure Determination by X-Ray Crystallography, 4th edn. Kluwer, New York.Google Scholar
  122. Lagana A, Bacaloni A, Fago G, Marino A (2000) Trace analysis of estrogenic chemicals in sewage effluent using liquid chromatography combined with tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 14; 401–407.Google Scholar
  123. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Plenum, New York.Google Scholar
  124. Láng L (ed) (1978) Absorption Spectra in the Infrared Region. Akadémiai Kiadó, Budapest.Google Scholar
  125. Leinonen A, Kuuranne T, Kostiainen R (2002) Liquid chromatography/mass spectrometry in anabolic steroid analysis - optimization and comparison of three ionization techniques: electrospray ionisation, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J. Mass. Spectrom. 37; 693–698.Google Scholar
  126. Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A, Thiery J (2005) Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. J. Lipid Res. 46; 21–26.Google Scholar
  127. Levitt MH (2001) Spin Dynamics, Basics of Nuclear Magnetic Resonance. Wiley, Chichester.Google Scholar
  128. Liere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjövall J, Baulieu EE (2004) Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J. Lipid Res. 45; 2287–2302.Google Scholar
  129. Lin YY, Smith LL (1984) Chemical ionization of steroids and other lipids. Mass. Spectrom. Rev. 3; 319–355.Google Scholar
  130. Lövgren TNE (1987) Time-resolved fluoro-immunoassay of steroid hormones. J. Steroid Biochem. 27; 47–51.Google Scholar
  131. Luukainen T, VandenHeuvel WJA, Haahti EO, Horning EC (1961) Gas chromatographic behaviour of trimethylsilyl ethers of steroids. Biochim. Biophys. Acta. 52; 599–601.Google Scholar
  132. Ma Y-C, Kim H-Y (1997) Determination of steroids by liquid chromatography/mass spectrometry. J. Am. Soc. Mass. Spectrom. 8; 1010–1020.Google Scholar
  133. Macomber RD (1998) A Complete Introduction to Modern NMR Spectroscopy. Wiley, New York.Google Scholar
  134. Makin HLJ, Trafford DJH, Nolan J (1998) Mass Spectra and GC Data of Steroids. Androgens and Estrogens. Wiley, New York.Google Scholar
  135. Makita M, Wells WW (1963) Quantitative analysis of fecal bile acids by gas-liquid chromatography. Anal. Biochem. 5; 523.Google Scholar
  136. Mazurek S, Szostak R (2006) Quantitative determination of captopril and prednisolone in tablets by FT-Raman spectroscopy. J. Pharm. Biomed. Anal. 40; 1225–1230.Google Scholar
  137. Meng LJ, Griffiths WJ, Sjövall J (1996) The identification of novel steroid N-acetylglucosaminides in the urine of pregnant women. J. Steroid Biochem. Mol. Biol. 58; 585–598.Google Scholar
  138. Meng LJ, Griffiths WJ, Nazer H, Yang Y, Sjövall J (1997) High levels of (24S)-24-hydroxycholesterol 3-sulfate 24-glucuronide in the serum and urine of children with severe cholestatic liver disease. J. Lipid Res. 38; 926–934.Google Scholar
  139. Mims D, Hercules D (2003) Quantification of bile acids directly from urine by MALDI-TOF-MS. Anal. Bioanal. Chem. 375; 609–616.Google Scholar
  140. Mims D, Hercules D (2004) Quantification of bile acids directly from plasma by MALDI-TOF-MS. Anal. Bioanal. Chem. 378; 1322–1326.Google Scholar
  141. Mitamura K, Yatera M, Shimada K (2000a) Studies on neurosteroids XII. Determination of enzymatically formed catechol estrogens and guaiacol estrogens by rat brains using liquid chromatography mass spectrometry mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 748; 89–96.Google Scholar
  142. Mitamura K, Yatera M, Shimada K (2000b) Studies on neurosteroids Part XIII. Characterization of catechol estrogens in rat brains using liquid chromatography-mass spectrometry-mass spectrometry. Analyst. 125; 811–814.Google Scholar
  143. Miyazaki H, Ishibashi M, Itoh M, Nambara T (1977) Use of new silylating agents for identification of hydroxylated steroids by gas chromatography and gas chromatography-mass spectrometry. Biomed. Mass. Spectrom. 4; 23–25.Google Scholar
  144. Murari MP, Murari R, Baumann WJ (1985) Motional anisotropy-induced unequal deuterium NMR spin-lattice relaxation of 3 a -deuteriumcholesterol and 3 b -deuteriumepicholesterol in solution as a measure of sterol motion about the molecular axis. Magn. Reson. Chem. 23; 243–245.Google Scholar
  145. Nassar AE, Varshney N, Getek T, Cheng L (2001) Quantitative analysis of hydrocortisone in human urine using a high performance liquid chromatographic tandem mass spectrometric atmospheric pressure chemical ionization method. J. Chromatogr Sci. 39; 59–64.Google Scholar
  146. Neudert W, Röpke H (1965) Atlas of Steroid Spectra. Springer, Berlin.Google Scholar
  147. Parker F (1975) Biochemical applications of infrared and Raman spectroscopy. Appl. Spectrosc. 29; 129–147.Google Scholar
  148. Phillipou G, Bigham DA, Seamark RF (1975) Steroid tert-butyldimethylsilyl ethers as derivatives for mass fragmentography. Steroids. 26; 516–524.Google Scholar
  149. Poole CF (1977) Recent advances in the silylation of organic compounds for gas chromatography. In Handbook of Derivatives for Chromatography (eds Blau K, King G). Heyden, London, pp. 152–200.Google Scholar
  150. Pouskouleli G, Butler IS, Kourounakis P (1983) Laser Raman-spectra of some representative hormonal steroids. J. Mol. Struct. 102; 93–101.Google Scholar
  151. Rando RR, Bangerter FW, Alecio MR (1982) The synthesis and properties of a functional fluorescent cholesterol analog. Biochim. Biophys. Acta. 684; 12–20.Google Scholar
  152. Redor-Goldman M, Li S, Caulfield MP, Clarke NJ, Reitz RE (2005a) Direct quantification of total testosterone in human sera or plasma by high turbulent flow liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HTLC-ACPI-MS/MS). Endocrine Society 87th Annual Meeting, June 4–7, San Diego, CA.Google Scholar
  153. Redor-Goldman M, Li S, Caulfield MP, Clarke NJ, Reitz, RE (2005b) Detection and quantification of androstenedione, progesterone and 17-hydroxyprogesterone in human serum/plasma by high turbulent flow liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Endocrine Society 87th Annual Meeting, June 4–7, San Diego, CA.Google Scholar
  154. Reinitzer F (1888) Beiträge zur Kenntniss des Cholesterins. Monatsh Chem. 9; 421–441.Google Scholar
  155. Robb DB, Covey TR, Bruins AP (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 72; 3653–3659.Google Scholar
  156. Roberts G, Gallagher BS, Jones RN (1958) Infrared Absorption Spectra of Steroids, Vol 2. Interscience, New York.Google Scholar
  157. Rozen S, Ben-Shushan G (1985) C-13 NMR of tertiary fluorosteroids as a stereochemical probe. Magn. Reson. Chem. 23; 116–118.Google Scholar
  158. Rujoi M, Jin J, Borchman D, Tang D, Yappert MC (2003) Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Invest Ophthalmol. Vis. Sci. 44; 1634–1642.Google Scholar
  159. Rule G, Henion J (1999) High-throughput sample preparation and analysis using 96-well membrane solid-phase extraction and liquid chromatography-tandem mass spectrometry for the determination of steroids in human urine. J. Am. Soc. Mass Spectrom. 10; 1322–1327.Google Scholar
  160. Salmain M, Vessières A, Jaouen G, Butler IS (2005) Analytical potential of near-infrared Fourier transform Raman spectra in the detection of solid transition metal carbonyl steroid hormones. J. Raman Spectrosc. 26; 31–38.Google Scholar
  161. Samek Z, Budešínský M (1979) In situ reactions with trichloroacetyl isocyanate and their application to structural assignment of hydroxy compounds by 1 H NMR spectroscopy. A general comment. Collect. Czech. Chem. C. 44; 558–588.Google Scholar
  162. Sanders JKM, Hunter BK (1987) Modern NMR Spectroscopy. Oxford University Press, Oxford.Google Scholar
  163. Schiller J, Arnhold J, Glander HJ, Arnold K (2000) Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy: effects of freezing and thawing. Chem. Phys. Lipids. 106; 145–156.Google Scholar
  164. Schiller J, Hammerschmidt S, Wirtz H, Arnhold K (2001) Lipid analysis of bronchoalveolar lavage fluid (BAL) by MALDI-TOF mass spectrometry and 31P NMR spectroscopy. Chem. Phys. Lipids. 112; 67–79.Google Scholar
  165. Schrader B (ed) (1995) Raman Spectrometers in Infrared and Raman Spectrometry. VCH, Weinheim, Germany.Google Scholar
  166. Schrader W, Klein HW (2004) Liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS): an early overview. Anal. Bioanal. Chem. 379; 1013–1024.Google Scholar
  167. Schroeder F, Dempsey ME, Fischer RT (1985) Sterol and squalene carrier protein interactions with D 5, 7, 9(11)-cholestatrien-3b -ol. J. Biol. Chem. 260; 2904–2911.Google Scholar
  168. Scigelova M, Makarov A (2006) Orbitrap mass analyzer - overview and applications in proteomics. Proteomics. 6; 16–21.Google Scholar
  169. Setchell KDR, Schwarz M, O’Connell NC, Lund EG, Davis DL, Lathe R, Thompson HR, Tyson RW, Sokol RJ, Russell DW (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7 a -hydroxylase gene causes severe neonatal liver disease. J. Clin. Invest. 102; 1690–1703.Google Scholar
  170. Shackleton CH (1983) Inborn errors of steroid biosynthesis: detection by a new mass-spectrometric method. Clin. Chem. 29; 246–249.Google Scholar
  171. Shackleton CH, Straub KM (1982) Direct analysis of steroid conjugates: the use of secondary ion mass spectrometry. Steroids. 40; 35–51.Google Scholar
  172. Shackleton CHL, Mattox VR, Honour JW (1983) Analysis of intact steroid conjugates by secondary ion mass spectrometry (including FABMS) and by gas chromatography. J. Steroid Biochem. 19; 209–217.Google Scholar
  173. Shackleton CHL, Merdinck J, Lawson AM (1990) Steroid and bile acid analyses. In Mass Spectrometry of Biological Materials (eds McEwen CN, Larsen BS). Marcel Dekker, New York, pp. 297–377.Google Scholar
  174. Shafer-Peltier KE, Haka AS, Fitzmaurice M, Crowe J, Myles J, Dasari RR, Feld MS (2002) Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J. Raman Spectrosc. 33; 552–563.Google Scholar
  175. Shen Z, Thomas JJ, Averbuj C, Broo KM, Engelhard M, Crowell JE, Finn MG, Siuzdak G (2001) Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 73; 612–619.Google Scholar
  176. Shimada K, Mukai Y (1998) Studies on neurosteroids. VII. Determination of pregnenolone and its 3-stearate in rat brains using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 714; 153–160.Google Scholar
  177. Shou WZ, Jiang X, Naidong W (2004) Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma. Biomed. Chromatogr. 18; 414–421.Google Scholar
  178. Singh G, Gutierrez A, Xu K, Blair IA (2000) Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Anal. Chem. 72; 3007–3013.Google Scholar
  179. Sjövall J, Axelson M (1982) Newer approaches to the isolation, identification and quantitation of steroids in biological materials. Vitam. Horm. 39; 31–144.Google Scholar
  180. Sloan S, Harvey DJ, Vouros P (1971) Interaction and rearrangement of trimethylsiloxy functional groups. Structural significance of the m/z 147 ion in the mass spectra of trimethylsilyl steroidal ethers. Org. Mass. Spectrom. 5; 789–799.Google Scholar
  181. Smith AG, Gaskell SJ, Brooks CJW (1976) Trimethylsilyl group migration during electron impact and chemical ionization mass spectrometry of the trimethylsilyl ethers of 20-hydroxy-5 a -pregnan-3-ones and 20-hydroxy-4-pregnen-3-ones. Biomed. Mass. Spectrom. 3; 161–165.Google Scholar
  182. Smith LL, Herz JE, Ezell EL (1993) 17O nuclear magnetic resonance spectra of steroids. Steroids. 58; 260–267.Google Scholar
  183. Smith WB (1978) C-13 NMR of steroids. Ann. Rep. NMR Spectrosc. 8; 199–226.Google Scholar
  184. Snatzke G (1967) Organic Rotatory Dispersion and Circular Dichroism in Organic Chemistry. Heyden, London.Google Scholar
  185. Stafford Jr GC, Kelley PE, Syka JEP, Reynolds WE, Todd JFJ (1984) Recent improvements in and analytical applications of advanced ion trap technology. Int. J. Mass. Spectrom. 60; 85–98.Google Scholar
  186. Starcevic B, DiStefano E, Wang C, Catlin DH (2003) Liquid chromatography-tandem mass spectrometry assay for human serum testosterone and trideuterated testosterone. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 792; 197–204.Google Scholar
  187. Steigner E, Schrader B (1970) Elucidation of structure of steroids by Raman spectroscopy. Liebigs Ann. Chem. 735; 15–22.Google Scholar
  188. Suga T, Shishibori T, Matsuura T (1972) Intramolecular hydrogen bonding in hydroxy-keto-steroids. J. Chem. Soc. Chem. Commun. 1; 171–173.Google Scholar
  189. Taylor GI (1964) Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A. 280; 383–397.Google Scholar
  190. Thenot J-P, Horning E (1972a) MO-TMS derivatives of human urinary steroids for GC and GC-MS studies. Anal. Lett. 5; 21–33.Google Scholar
  191. Thenot J-P, Horning E (1972b) GC-MS derivatization studies. The formation of dexamethasone MO-TMS. Anal. Lett. 5; 905–913.Google Scholar
  192. Thevis M, Opferman G, Schmickler H, Schänzer W (2001) Mass spectrometry of steroid glucuronide conjugates. I. Electron impact fragmentation of 5 a /5|3-androstan-3a -ol-17-one glucuronides, 5 a -estran-3a -ol-17-one glucuronide and deuterium-labelled analogues. J. Mass. Spectrom. 36; 159–168.Google Scholar
  193. Thevis M, Makarov AA, Horning S, Schanzer W (2005) Mass spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap-orbitrap hybrid mass analyzers. Rapid Commun. Mass. Spectrom. 19; 3369–3378.Google Scholar
  194. Trehan IR, Monder C, Bose AK (1968) N.M.R. spectral studies. V. Classification of steroid alcohols by N.M.R. Spectroscopy. Tetrahedron Lett. 67–69.Google Scholar
  195. Trka A, Kasal A (1980) Electron impact mass spectra of some vicinal trans-dihalo- and trans-hydroxyhalocholestanes. Collect. Czech. Chem. C. 45; 1720–1733.Google Scholar
  196. Trösken ER, Straube E, Lutz WK, Völkel W, Patten P (2004) Quantitation of lanosterol and its major metabolite FF-MAS in an inhibition assay of CYP51 by azoles with atmospheric pressure photoionization based LC-MS/MS. J. Am. Soc. Mass. Spectrom. 15; 1216–1221.Google Scholar
  197. Vallée M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal. Biochem. 287; 153–166.Google Scholar
  198. Wahlén E, Egestad B, Strandvik B, Sjövall J (1989) Ketonic bile acids in urine of infants during the neonatal period. J. Lipid Res. 30; 1847–1857.Google Scholar
  199. Wang C, Catlin DH, Starcevic B, Leung A, DiStefano E, Lucas G, Hull L, Swerdloff RS (2004) Testosterone metabolic clearance and production rates determined by stable isotope dilution/ tandem mass spectrometry in normal men: influence of ethnicity and age. J. Clin. Endocrinol. Metab. 89; 2936–2941.Google Scholar
  200. Wang Y, Hornshaw M, Alvelius G, Bodin K, Liu S, Sjövall J, Griffiths WJ (2006) Matrix-assisted laser desorption/ionization high-energy collision-induced dissociation of steroids: analysis of oxysterols in rat brain. Anal. Chem. 78; 164–173.Google Scholar
  201. Wang Y, Karu K, Griffiths WJ (2007) Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie. 89; 182–191. Available online 2 November 2006.Google Scholar
  202. Weidolf LOG, Lee ED, Henion JD (1988) Determination of boldenone sulfoconjugate and related steroid sulfates in equine urine by high performance liquid chromatograph/tandem mass spectrometry. Biomed. Environ. Mass. Spectrom. 15; 283–288.Google Scholar
  203. Weissenberg M, Glotter E (1977) Reduction of 1-oxo-stroids by sodium-borohydride. J. Chem. Soc. Chem Commun. 1; 988–993.Google Scholar
  204. Whitney J, Lewis S, Straub KM, Thaler MM, Burlingame AL (1981) Analysis of conjugated bile salts in human duodenal bile using fast atom bombardment and field desorption mass spectrometry. Koenshu–Iyo Masu Kenkyukai. 6; 33–44.Google Scholar
  205. Wiley WC, McLaren IH (1955) Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26; 1150.Google Scholar
  206. Williams DH, Fleming I (1987) Spectroscopic Methods in Organic Chemistry, 4th edn. McGraw-Hill, London.Google Scholar
  207. Wilm MS, Mann M (1994) Electrospray and Taylor-cone theory: Dole’s beam of macromolecules at last? Int. J. Mass. Spectrom. 136; 167–180.Google Scholar
  208. Wolthers BG, Kraan GPB (1999) Clinical applications of gas chromatography and gas chromatography-mass spectrometry of steroids. J. Chromatogr. A. 843; 247–274.Google Scholar
  209. Wong TC, Rutar V, Wang J (1984) Study of 1 H chemical shifts and couplings with 19F in 9a -fluorocortisol. Application of a novel 1H-13C chemical shift correlation technique with homonuclear decoupling. J. Am. Chem. Soc. 106; 7046–7051.Google Scholar
  210. Wong T, Shackleton CHL, Covey TR, Ellis G (1992) Identification of the steroids in neonatal plasma that interfere with 17a-hydroxyprogesterone radioimmunoassays. Clin. Chem. 38; 1830–1837Google Scholar
  211. Yamashita M, Fenn JB (1984a) Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88; 4451–4459.Google Scholar
  212. Yamashita M, Fenn JB (1984b) Negative ion production with the electrospray ion source. J. Phys. Chem. 88; 4671–4675.Google Scholar
  213. Yang Y, Griffiths WJ, Nazer H, Sjövall J (1997) Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography-mass spectrometry using fast atom bombardment or electrospray ionisation and collision induced dissociation. Biomed. Chromatogr. 11; 240–255.Google Scholar
  214. Zaretskii ZV (1976) Mass Spectrometry of Steroids. Wiley, New York.Google Scholar
  215. Zürcher RF (1961) Protonenresonanzspektroskopie und Steroidstruktur. I. Das C-19 Methylsignal in Funktion der Substituenten. Helv. Chim. Acta. 44; 1380–1395.Google Scholar
  216. Zürcher RF (1963) Protonenresonanzspektroskopie und Steroidstruktur. II. Die Lage der C-18 und C-19 Methylsignal in Funktion der Substituenten. Helv. Chim. Acta. 44; 1380–1395.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alexander Kasal
    • 1
    Email author
  • Milos Budesinsky
    • 1
  • William J. Griffiths
    • 2
  1. 1.Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicPrague, 6Czech Republic
  2. 2.Institute of Mass Spectrometry, School of MedicineSwansea UniversitySwanseaUK

Personalised recommendations