Advertisement

Analysis of Bile Acids

  • Jan SjövallEmail author
  • William J. Griffiths
  • Kenneth D. R. Setchell
  • Nariyasu Mano
  • Junichi Goto
Chapter

Abstract

Bile acids constitute a large family of steroids in vertebrates, normally formed from cholesterol and carrying a carboxyl group in a side-chain of variable length. Bile alcohols, also formed from cholesterol, have similar structures as bile acids, except for the absence of a carboxyl group in the steroid skeleton. The conversion of cholesterol to bile acids and/or bile alcohols is of major importance for maintenance of cholesterol homeostasis, both from quantitative and regulatory points of view (Chiang, 2004; Kalaany and Mangelsdorf, 2006; Moore, Kato, Xie, et al., 2006; Scotti, Gilardi, Godio, et al., 2007). Appropriately conjugated bile acids and bile alcohols (also referred to as bile salts) are secreted in bile and serve vital functions in the absorption of lipids and lipid-soluble compounds (Hofmann, 2007). Reliable analytical methods are required for studies of the functions and pathophysiological importance of the variety of bile acids and bile alcohols present in living organisms. When combined with genetic and proteomic studies, analysis of these small molecules (in today’s terminology: metabolomics, steroidomics, sterolomics, cholanoidomics, etc.) will lead to a deeper understanding of the integrated metabolic processes in lipid metabolism.

Abbreviations

APCI

atmospheric pressure chemical ionization

API

atmospheric pressure ionization

BSTFA

N,O-bis(trimethylsilyl)trifluoroacetamide

CA

cholic acid, 3α,7α,12α-trihydroxy-5β-cholanoic acid

CDCA

chenodeoxycholic acid, 3α,7α-dihydroxy-5β-cholanoic acid

CI

chemical ionization

CID

collision-induced decomposition/dissociation

CRF

charge-remote fragmentation

CTX

cerebrotendinous xanthomatosis

Da

Dalton

DCA

deoxycholic acid, 3α,12α-dihydroxy-5β-cholanoic acid

DEAP

diethylaminohydroxypropyl

DEHS

diethylhydrogensilyl

DHCA

3α,7α-dihydroxy-5β-cholestanoic acid

DMAE

dimethylaminoethyl

DMES

dimethylethylsilyl

ECD

electron capture detector

EI

electron impact ionization

EIA

enzyme immunoassay

ELSD

evaporative light scattering mass detector

ESI

electrospray ionization

ESI-keV-CID

ESI-CID under keV collision energy conditions

ESI-MS

electrospray ionization-mass spectrometry

FAB-MS

fast atom bombardment mass spectrometry

FID

flame ionization detector

G

glycine

GC-MS

gas chromatography-mass spectrometry

GC

gas–liquid chromatography

Glc

glucose

GlcA

glucuronic acid

GlcNAc

N-acetylglucosamine

G/T ratio

ratio of glycine conjugates to taurine conjugates

HMDS

hexamethyldisilazane

HSD

hydroxysteroid dehydrogenase

LC

liquid chromatography

LCA

lithocholic acid, 3α-hydroxy-5β-cholanoic acid

LC-MS

liquid chromatography-mass spectrometry

Me

methyl (ester)

MO

methyl oxime

MRM

multiple reaction monitoring

MS

mass spectrometry

MS/MS

tandem mass spectrometry

MU

methylene unit

NICI

negative ion chemical ionization

N/P ratio

ratio of negative/positive ions

OA

orthogonal acceleration

ODS

octadecylsilane

PHP

piperidinohydroxypropyl

PMS

phenazine methosulphate

RI

Kovats retention index

RIA

radioimmunoassay

SIM

single (selected) ion monitoring

SLO

Smith–Lemli–Opitz syndrome

SRM

single reaction monitoring

T

taurine

TBDMS

t-butyldimethylsilyl

TEAS

triethylamine sulphate

TEAP

triethylaminohydroxypropyl

THCA

3α,7α,12α-trihydroxy-5β-cholestanoic acid

TOF

time of flight

TSIM

trimethylsilylimidazole

TIC

total ion current

TMS

trimethylsilyl

UDCA

ursodeoxycholic acid, 3α,7β-dihydroxy-5β-cholanoic acid

UDP

uridine diphosphate

UPLC

ultra-performance liquid chromatography

UV

ultraviolet

Notes

Acknowledgements

WJG acknowledges the UK Biotechnology and Biological Science Research Council for financial support (grant no. BB/C511356/1 and BB/C515771/1). JS acknowledges the support of the Swedish Research Council and Karolinska Institutet.

References

  1. Abian J, Oosterkamp AJ, Gelpi E (1999) Comparison of conventional, narrow-bore and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations. J. Mass Spectrom. 34; 244–254.Google Scholar
  2. Akashi Y, Miyazaki H, Nakayama F (1983) Correlation of bile acid composition between liver tissue and bile. Clin. Chim. Acta. 133(2); 125–132.Google Scholar
  3. Ali SS, Stephenson E, Elliott WH (1982) Bile acids. LXVII. The major bile acids of Varanus monitor. J. Lipid. Res. 23(7); 947–954.Google Scholar
  4. Almé B, Nyström E (1971) Preparation of lipophilic anion exchangers from chlorohydroxypropylated Sephadex and cellulose. J. Chromatogr. 59; 45–52.Google Scholar
  5. Almé B, Sjövall J (1980) Analysis of bile acid glucuronides in urine. Identification of 3α,6α,12α-trihydroxy-5β-cholanoic acid. J. Steroid Biochem. 13(8); 907–916.Google Scholar
  6. Almé B, Bremmelgaard A, Sjövall J, Thomassen P (1977) Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas–liquid chromatorgaphy mass spectrometry. J. Lipid Res. 18(3); 339–362.Google Scholar
  7. Alvelius G, Hjalmarson O, Griffiths WJ, Björkhem I, Sjövall J (2001) Identification of unusual 7-oxygenated bile acid sulfates in a patient with Niemann-Pick disease, type C. J. Lipid Res. 42(10); 1571–1577.Google Scholar
  8. Andersson SH, Sjövall J (1983) A method combining solvent and gel extraction for isolation and preliminary purification of steroids in tissues. Anal. Biochem. 134(2); 309–312.Google Scholar
  9. Andersson SH, Sjövall J (1984) Preparation of enol- tert -butyldimethylsilyl and mixed tert-butyldim-ethylsilyl-trimethylsilyl ethers for gas chromatography–mass spectrometry of steroids and bile acids. J. Chromatogr. 289; 195–206.Google Scholar
  10. Anderson IG, Haslewood GA, Oldham RS, Amos B, Tökés L (1974) A more detailed study of bile salt evolution, including techniques for small-scale identification and their application to amphibian biles. Biochem. J. 141(2); 485–494.Google Scholar
  11. Ando M, Kaneko T, Watanabe R, Kikuchi S, Goto T, Iida T, Hishinuma T, Mano N, Goto J (2006) High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 40(5); 1179–1186.Google Scholar
  12. Angelin B, Björkhem I (1977) Postprandial serum bile acids in healthy man. Evidence for differences in absorptive pattern between individual bile acids. Gut. 18(8); 606–609.Google Scholar
  13. Angelin B, Björkhem I, Einarsson K (1978) Individual serum bile acid concentrations in normo- and hyperlipoproteinemia as determined by mass fragmentography: relation to bile acid pool size. J. Lipid Res. 19(5); 527–537.Google Scholar
  14. Angelin B, Björkhem I, Einarsson K, Ewerth S (1982) Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J. Clin. Invest. 70(4); 724–731.Google Scholar
  15. Aringer L, Nordström L (1981) Chromatographic properties and mass spectrometric fragmentation of dioxygenated C27- C28-, and C29-steroids. Biomed. Mass Spectrom. 8; 183–203.Google Scholar
  16. Axelson M (1991) Occurrence of isomeric dehydrocholesterols in human plasma. J. Lipid Res. 32(9); 1441–1448.Google Scholar
  17. Axelson M, Sjövall J (1977) Analysis of unconjugated steroids in plasma by liquid-gel chromatography and glass capillary gas chromatography mass spectrometry. J. Steroid Biochem. 8(6); 683–692.Google Scholar
  18. Axelson M, Sjövall J (1979) Strong non-polar cation exchangers for the separation of steroids in mixed chromatographic systems. J. Chromatogr. 186; 725–732.Google Scholar
  19. Axelson M, Sahlberg B-L (1981) On solid extraction of steroids and steroid conjugates in biological fluids. Anal. Lett. 14; 771–782.Google Scholar
  20. Axelson M, Sjövall J (1985) Studies on the selective analysis of ketonic bile acids and steroids in faeces. In Enterohepatic Circulation of Bile Acids and Sterol Metabolism (eds Paumgartner G, Stiehl A, Gerok W). MTP, Lancaster. 249–258.Google Scholar
  21. Axelson M, Sjövall J (1990) Potential bile acid precursors in plasma - possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J. Steroid Biochem. 36(6); 631–640.Google Scholar
  22. Axelson M, Mörk B, Everson GT (1991) Bile acid synthesis in cultured human hepatoblastoma cells. J. Biol Chem. 266(27); 17770–17777.Google Scholar
  23. Axelson M, Sahlberg B-L, Sjövall J (1981) Analysis of profiles of conjugated steroids in urine by ion-exchange separation and gas chromatography–mass spectrometry. J. Chromatogr. Biomed. Appl. 224; 355–370.Google Scholar
  24. Axelson M, Cronholm T, Curstedt T, Reimendal R, Sjövall J (1974) Quantitative analysis of unlabeled and olydeuterated compounds by gas chromatography–mass spectrometry. Chromatographia. 7; 502–509.Google Scholar
  25. Axelson M, Sjövall J, Drakenberg T, Forsén S (1978) Separation and configuration of syn and anti isomers of testosterone oxime. Anal. Lett. B11(3); 229–237.Google Scholar
  26. Axelson M, Ellis E, Mörk B, Garmark K, Abrahamsson A, Björkhem I, Ericzon BG, Einarsson C (2000) Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid. Hepatology. 31(6); 1305–1312.Google Scholar
  27. Axelson M, Shoda J, Sjövall J, Toll A, Wikvall K (1992) Cholesterol is converted to 7α-hydroxy-3-oxo-4-cholestenoic acid in liver mitochondria. Evidence for a mitochondrial sterol 7α-hydroxylase. J. Biol. Chem. 267(3); 1701–1704.Google Scholar
  28. Back P (1976) Bile acid glucuronides, II[1]. Isolation and identification of a chenodeoxycholic acid glucuronide from human plasma in intrahepatic cholestasis. Hoppe Seylers Z Physiol. Chem. 357(2); 213–217.Google Scholar
  29. Back P (1988) Bile acids in urine. In The Bile Acids (eds Setchell KDR, Kritchevsky D, Nair P), Vol 4. Plenum, New York. pp. 405–440.Google Scholar
  30. Back P, Bowen DV (1976) Bile acid glucuronides, III[1, 2]. Chemical synthesis and characterization of glucuronic acid coupled mono-, di- and trihydroxy bile acids. Hoppe Seylers Z Physiol. Chem. 357(2); 219–224.Google Scholar
  31. Back P, Ross K (1973) Identification of 3β-hydroxy-5-cholenoic acid in human meconium. Hoppe Seylers Z Physiol. Chem. 354(1); 83–89.Google Scholar
  32. Back P, Sjövall J, Sjövall K (1974) Monohydroxy bile acids in plasma in intrahepatic cholestasis of pregnancy. Identification by computerized gas chromatography–mass spectrometry. Med. Biol. 52(1); 31–38.Google Scholar
  33. Back P, Spaczynski K, Gerok W (1974) Bile-salt glucuronides in urine. Hoppe Seylers Z Physiol. Chem. 355(6); 749–752.Google Scholar
  34. Baillie TA, Karls M, Sjövall J (1978) Synthesis of deuterium-labelled lithocholic acid. J. Labelled Compd. Radiopharm. 14; 849–859.Google Scholar
  35. Balistreri WF, Cowen AE, Hofmann AF, Szczepanik PA, Klein PD (1975) Validation of use of 11,12-2H-labeled chenodeoxycholic acid in isotope dilution measurements of bile acid kinetics in man. Pediatr. Res. 9(10); 752–760.Google Scholar
  36. Ballatore AM, Beckner CF, Caprioli RM, Hoffman NE, Liehr JG (1983) Synthesis and spectroscopic analysis of modified bile salts. Steroids. 41(2); 197–206.Google Scholar
  37. Baqir YA, Ross PE, Bouchier IA (1979) Homogeneous enzyme immunoassay of chenodeoxycholate conjugates in serum. Anal. Biochem. 93(2); 361–365.Google Scholar
  38. Barnes S, Berkowitz G, Hirschowitz BI, Wirtschafter D, Cassady G (1981) Postnatal physiologic hypercholemia in both premature and full-term infants. J. Clin. Invest. 68(3); 775–782.Google Scholar
  39. Bartholomew TC, Summerfield JA, Billing BH, Lawson AM, Setchell KDR (1982) Bile acid profiles of human serum and skin interstitial fluid and their relationship to pruritus studied by gas chromatography–mass spectrometry. Clin. Sci. 63(1); 65–73.Google Scholar
  40. Batta AK, Salen G (1999) Gas chromatography of bile acids. J. Chromatogr. B Biomed. Sci. Appl. 723(1–2); 1–16.Google Scholar
  41. Batta AK, Salen G, Shefer S (1984) Substrate specificity of cholylglycine hydrolase for the hydrolysis of bile acid conjugates. J. Biol. Chem. 259(24); 15035–15039.Google Scholar
  42. Batta AK, Aggarwal SK, Mirchandani R, Shefer S, Salen G (1992) Capillary gas–liquid chromatographic separation of bile alcohols. J. Lipid Res. 33(9); 1403–1407.Google Scholar
  43. Batta AK, Aggarwal SK, Tint GS, Batta M, Salen G (1995) Capillary gas–liquid chromatography of 6-hydroxylated bile acids. J. Chromatogr. A. 704(1); 228–233.Google Scholar
  44. Batta AK, Salen G, Batta M, Earnest D, Alberts D (1997) Capillary gas–liquid chromatography of acetate-methyl esters of bile acids. J. Chromatogr. A. 766(1–2); 286–291.Google Scholar
  45. Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL (2002) Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas–liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 775(2); 153–161.Google Scholar
  46. Batta AK, Salen G, Cheng FW, Shefer S (1979) Cleavage of the taurine conjugate of 3α,7α,12α-trihydroxy-5β-cholestan-26-oic acid by rat fecal bacteria. J. Biol. Chem. 254(23); 11907–11909.Google Scholar
  47. Batta AK, Salen G, Rapole KR, Batta M, Earnest D, Alberts D (1998) Capillary gas chromatographic analysis of serum bile acids as the n-butyl ester-trimethylsilyl ether derivatives. J. Chromatogr. B Biomed. Sci. Appl. 706(2); 337–341.Google Scholar
  48. Batta AK, Salen G, Rapole KR, Batta M, Batta P, Alberts D, Earnest D (1999) Highly simplified method for gas–liquid chromatographic quantitation of bile acids and sterols in human stool. J. Lipid Res. 40(6); 1148–1154.Google Scholar
  49. Beher WT, Stradnieks S, Beher GR, Lin GJ (1978) The hydrolysis of bile acid conjugates. Steroids. 32(3); 355–363.Google Scholar
  50. Benson GM, Haskins NJ, Eckers C, Moore PJ, Reid DG, Mitchell RC, Waghmare S, Suckling KE (1993) Polydeoxycholate in human and hamster feces: a major product of cholate metabolism. J. Lipid Res. 34; 2121–2134.Google Scholar
  51. Beppu T, Seyama Y, Kasama T, Yamakawa T (1981) Quantitative determination of individual non-sulfated bile acids and sulfated lithocholic acid in serum by mass fragmentography. J. Biochem. 89(6); 1963–1973.Google Scholar
  52. Beppu T, Seyama Y, Kasama T, Serizawa S, Yamakawa T (1982) Serum bile acid profiles in cerebrotendinous xanthomatosis. Clin. Chim. Acta. 118(2–3); 167–175.Google Scholar
  53. Bergström S, Danielsson H, Samuelsson B (1960) Formation and metabolism of bile acids. In Lipide Metabolism (ed Bloch K).Wiley, New York. pp. 291–336.Google Scholar
  54. Bergström S, Krabisch L, Lindeberg UG (1959) The structure of Olof Hammarsten’s α-phocaecholic acid. Acta Soc. Med. Upsal. 64; 160–167.Google Scholar
  55. Bergström S, Rottenberg M, Sjövall J (1953) Metabolism of cholic acid and desoxycholic acid in rats. Hoppe Seylers Z. Physiol. Chem. 295; 278–285.Google Scholar
  56. Björkhem I (1979) Selective ion monitoring in clinical chemistry. CRC Crit. Rev. Clin. Lab. Sci. 11(1); 53–105.Google Scholar
  57. Björkhem I, Falk O (1983) Assay of the major bile acids in serum by isotope dilution-mass spectrometry. Scand. J. Clin. Lab. Invest. 43(2); 163–170.Google Scholar
  58. Björkhem I, Lewenhaupt A (1979) Preferential utilization of newly synthesized cholesterol as substrate for bile acid biosynthesis. An in vivo study using 18O-inhalation technique. J. Biol. Chem. 254(12); 5252–5256.Google Scholar
  59. Björkhem I, Angelin B, Einarsson K, Ewerth S (1982) Fasting levels of monoketonic bile acids in human peripheral and portal circulation. J. Lipid Res. 23(7); 1020–1025.Google Scholar
  60. Björkhem I, Andersson U, Ellis E, Alvelius G, Ellegård L, Diczfalusy U, Sjövall J, Einarsson C (2001) From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J. Biol. Chem. 276(40); 37004–37010.Google Scholar
  61. Blau K, Halket JM (1993) Handbook of Derivatives for Chromatography, 2nd edn. Wiley, Chichester.Google Scholar
  62. Blau K, King G (1979) Handbook of Derivatives for Chromatography. Heyden & Son, Rheine.Google Scholar
  63. Bootsma AH, Overmars H, van Rooij A, van Lint AE, Wanders RJ, van Gennip AH, Vreken P (1999) Rapid analysis of conjugated bile acids in plasma using electrospray tandem mass spectrometry: application for selective screening of peroxisomal disorders. J. Inherit. Metab. Dis. 22(3); 307–310.Google Scholar
  64. Bournot P, Ramirez LC (1989) Evidence of formation of isomeric methoximes from 20-oxosteroids. J. Steroid Biochem. 33(5); 971–976.Google Scholar
  65. Bove KE, Heubi JE, Balistreri WF, Setchell KDR (2004) Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr. Dev. Pathol. 7(4); 315–334.Google Scholar
  66. Bremmelgaard A, Sjövall J (1979) Bile acid profiles in urine of patients with liver diseases. Eur. J. Clin. Invest. 9(5); 341–348.Google Scholar
  67. Bremmelgaard A, Almé B (1980) Analysis of plasma bile acid profiles in patients with liver diseases associated with cholestasis. Scand. J. Gastroenterol. 15(5); 593–600.Google Scholar
  68. Bremmelgaard A, Sjövall J (1980) Hydroxylation of cholic, chenodeoxycholic, and deoxycholic acids in patients with intrahepatic cholestasis. J. Lipid Res. 21(8); 1072–1081.Google Scholar
  69. Brooks CJ, Barrett GM, Cole WJ (1984) Studies on the selective derivatization of methyl hyocholate and related steroidal ring B diols by gas chromatography–mass spectrometry. J. Chromatogr. 289; 231–248.Google Scholar
  70. Brooks CJ, Henderson W, Steel G (1973) The use of trimethylsilyl ethers in the characterization of natural sterols and steroid diols by gas chromatography–mass spectrometry. Biochim. Biophys. Acta. 296(2); 431–445.Google Scholar
  71. Brooks CJ, Cole WJ, Mclntyre HB, Smith AG (1980) Selective reactions in the analysis and characterization of steroids by gas chromatography–mass spectrometry. Lipids. 15(9); 745–755.Google Scholar
  72. Budai K, Javitt NB (1997) Bile acid analysis in biological fluids: a novel approach. J. Lipid Res. 38(9); 1906–1912.Google Scholar
  73. Burkard I, von Eckardstein A, Rentsch KM (2005) Differentiated quantification of human bile acids in serum by high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 826(1–2); 147–159.Google Scholar
  74. Carlström K, Kirk DN, Sjövall J (1981) Microbial synthesis of 1β- and 15β-hydroxylated bile acids. J. Lipid Res. 22(8); 1225–1234.Google Scholar
  75. Carlton VEH, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN (2003) Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat. Gen. 34; 91–96.Google Scholar
  76. Cheng JB, Jacquemin E, Gerhardt M, Nazer H, Cresteil D, Heubi JE, Setchell KDBkRussell DW (2003) Molecular genetics of 3β-hydroxy-Δ5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J. Clin. Endocrinol. Metab. 88(4); 1833–1841.Google Scholar
  77. Chen LJ, Bolt RJ, Admirand WH (1977) Enzymatic sulfation of bile salts. Partial purification and characterization of an enzyme from rat liver that catalyzes the sulfation of bile salts. Biochim. Biophys. Acta. 480(1); 219–227.Google Scholar
  78. Chiang JY (2004) Regulation of bile acid synthesis: pathways nuclear receptors, and mechanisms. J. Hepatol. 40(3); 539–551.Google Scholar
  79. Child P, Aloe M, Mee D (1987) Separation and quantitation of fatty acids, sterols and bile acids in feces by gas chromatography as the butyl ester-acetate derivatives. J. Chromatogr. 415(1); 13–26.Google Scholar
  80. Child P, Kuksis A, Marai L (1979) Preparation and mass spectral behaviour of some 5 beta-cholenoic acids. Can. J. Biochem. 57(3); 216–225.Google Scholar
  81. Clayton PT, Muller DP, Lawson AM (1982) The bile acid composition of gastric contents from neonates with high intestinal obstruction. Biochem. J. 206(3); 489–498.Google Scholar
  82. Clayton PT, Lake BD, Hall NA, Shortland DB, Carruthers RA, Lawson AM (1987) Plasma bile acids in patients with peroxisomal dysfunction syndromes: analysis by capillary gas chromatography–mass spectrometry. Eur. J. Pediatr. 146(2); 166–173.Google Scholar
  83. Clayton PT, Lake BD, Hjelm M, Stephenson JB, Besley GT, Wanders RJ, Schram AW, Tager JM, Schutgens RB, Lawson AM (1988) Bile acid analyses in “pseudo-Zellweger” syndrome. Clues to the defect in peroxisomal β-oxidation. J. Inherit. Metab. Dis. 11(Suppl 2); 165–168.Google Scholar
  84. Clayton PT, Leonard JV, Lawson AM, Setchell KDR, Andersson S, Egestad B, Sjövall J (1987) Familial giant cell hepatitis associated with synthesis of 3β\7α-dihydroxy- and 3β,7α,12α-trihydroxy-5-cholenoic acids. J. Clin. Invest. 79; 1031–1038.Google Scholar
  85. Clayton PT, Patel E, Lawson AM, Carruthers RA, Tanner MS, Strandvik B, Egestad B, Sjövall J (1988) 3-Oxo-Δ4 bile acids in liver disease [letter]. Lancet. 1(8597); 1283–1284.Google Scholar
  86. Clayton PT, Patel E, Lawson AM, Carruthers RA, Collins J (1990) Bile acid profiles in peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. J. Clin. Invest. 85(4); 1267–1273.Google Scholar
  87. Cohen BI, Budai JC, Javitt NB (1981) Solvolysis of chenodeoxycholic acid sulfates. Steroids. 37(6); 621–626.Google Scholar
  88. Cohen BI, Tint GS, Kuramoto T, Mosbach EH (1975) New bile alcohols – synthesis of 5β-cholestane-3α,7α,25-triol and 5β-cholestane-3α,7α,25-24 (14C)-triol. Steroids. 25(3); 365–378.Google Scholar
  89. Coleman JP, Hudson LL (1995) Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61(7); 2514–2520.Google Scholar
  90. Colombo C, Zuliani G, Ronchi M, Breidenstein J, Setchell KDR (1987) Biliary bile acid composition of the human fetus in early gestation. Pediatr. Res. 21(2); 197–200.Google Scholar
  91. Cowen AE, Hofmann AF, Hachey DL, Thomas PJ, Belobaba DT, Klein PD, Tökés L (1976) Synthesis of 11,12-2H2- and 11,12-3H2-labeled chenodeoxycholic and lithocholic acids. J. Lipid Res. 17(3); 231–238.Google Scholar
  92. Cowen AE, Korman MG, Hofmann AF, Turcotte J, Carter JA (1977) Radioimmunoassay of sulfated lithocholates. J. Lipid Res. 18(6); 698–703.Google Scholar
  93. Cronholm T, Burlingame AL, Sjövall J (1974) Utilization of the carbon and hydrogen atoms of ethanol in the biosynthesis of steroids and bile acids. Eur. J. Biochem. 49(3); 497–510.Google Scholar
  94. Cronholm T, Makino I, Sjövall J (1972a) Steroid metabolism in rats given (1-2H2) ethanol. Biosynthesis of bile acids and reduction of 3-keto-5β-cholanoic acid. Eur. J. Biochem. 24(3); 507–519.Google Scholar
  95. Cronholm T, Makino I, Sjövall J (1972b) Steroid metabolism in rats given (1-2H2) ethanol. Oxidoreduction of isomeric 3-hydroxycholanoic acids and reduction of 3-oxo-4-cholenoic acid. Eur. J. Biochem. 26(2); 251–258.Google Scholar
  96. Cronholm T, Eriksson H, Matern S, Sjövall J (1975) Deuterium transfer from [1,1-2H] ethanol during metabolism of bile acids and cyclohexanone in the isolated perfused rat liver. Eur. J. Biochem. 53(2); 405–410.Google Scholar
  97. Curstedt T (1977) Analysis of molecular species of ether analogues of phosphatidylcholines from biological samples. Biochim. Biophys. Acta. 489(1); 79–88.Google Scholar
  98. Czuba B, Vessey DA (1980) Kinetic characterization of cholyl-CoA glycine-taurine N-acyltransferase from bovine liver. J. Biol. Chem. 255(11); 5296–5299.Google Scholar
  99. Czuba B, Vessey DA (1982) The effect of bile acid structure on the activity of bile acid-CoA:glycine/taurine-N-acetyltransferase. J. Biol. Chem. 257(15); 8761–8765.Google Scholar
  100. Dayal B, Ertel NH (1998) Rapid hydrolysis of bile acid conjugates using microwaves: retention of absolute stereochemistry in the hydrolysis of (25R) 3α,7α,12α-trihydroxy-5β-cholestan-26-oyltaurine. Lipids. 33(3); 333–338.Google Scholar
  101. Dayal B, Salen G, Tint GS, Shefer S, Benz SW (1990) Use of positive ion fast atom bombardment mass spectrometry for rapid identification of a bile alcohol glucuronide isolated from cerebro-tendinous xanthomatosis patients. Steroids. 55(2); 74–78.Google Scholar
  102. De Weerdt GA, Beke R, Verdievel H, Barbier F (1980) Quantitative determination of fecal bile acids as their methyl ether methyl esters by the repetitive scan technique. Biomed. Mass Spectrom. 7(11–12); 515–520.Google Scholar
  103. Dean M, Cervellati C, Casanova E, Squerzanti M, Lanzara V, Medici A, Polverino De Laureto P, Bergamini CM (2002) Characterization of cholylglycine hydrolase from a bile-adapted strain of Xanthomonas maltophilia and its application for quantitative hydrolysis of conjugated bile salts. Appl. Environ. Microbiol. 68(6); 3126–3128.Google Scholar
  104. DeMark BR, Klein PD (1981) Ammonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates. J. Lipid Res. 22(1); 166–171.Google Scholar
  105. DeMark BR, Everson GT, Klein PD, Showalter RB, Kern F, Jr. (1982) A method for the accurate measurement of isotope ratios of chenodeoxycholic and cholic acids in serum. J. Lipid Res. 23(1); 204–210.Google Scholar
  106. Demers LM, Hepner G (1976) Radioimmunoassay of bile acids in serum. Clin. Chem. 22(5); 602–606.Google Scholar
  107. Dumaswala R, Setchell KDR, Zimmer-Nechemias L, Iida T, Goto J, Nambara T: (1989) Identification of 3α,4β,7α-trihydroxy-5β-cholanoic acid in human bile: reflection of a new pathway in bile acid metabolism in humans. J. Lipid Res. 30(6); 847–856.Google Scholar
  108. Dyfverman A, Sjövall J (1983) Ion-pair extraction of bile acids with Lipidex gel. Anal. Biochem. 134(2); 303–308.Google Scholar
  109. Egestad B, Pettersson P, Skrede S, Sjövall J (1985) Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis. Scand. J. Clin. Lab. Invest. 45(5); 443–446.Google Scholar
  110. Eguchi T, Miyazaki H, Nakayama F (1990) Simultaneous determination of keto and non-keto bile acids in human serum by gas chromatography with selected ion monitoring. J. Chromatogr. 525(1); 25–42.Google Scholar
  111. Ellingboe J, Nyström E, Sjövall J (1970) Liquid-gel chromatography on lipophilic–hydrophobic Sephadex derivatives. J. Lipid Res. 11(3); 266–273.Google Scholar
  112. Elliott WH (1972) Mass spectra of bile acids. In Biochemical Applications of Mass Spectrometry (ed Waller G). Wiley Interscience, New York, London. pp. 291–312.Google Scholar
  113. Elliott WH (1980a) Mass spectra of bile acids. In Biomedical Applications of Mass Spectrometry (eds Waller G, Dermer O), First Supplementary Volume. WileyInterscience, New York, London. pp. 229–253.Google Scholar
  114. Elliott WH (1980b) Identification of sterols and bile acids by computerized gas chromatography–mass spectrometry. Lipids. 15(9); 764–769.Google Scholar
  115. Elliott WH (1985) Metabolism of bile acids in liver and extrahepatic tissues. In Sterols and Bile Acids (eds Danielsson H, Sjövall J). Elsevier, Amsterdam. pp. 303–329.Google Scholar
  116. Eneroth P, Sjövall J (1971) Extraction, purification and chromatographic analysis of bile acids in biological materials. In The Bile Acids (eds Kritchevsky D, Nair PP), Vol 1. Plenum, New York. pp. 209–248.Google Scholar
  117. Eneroth P, Hellström K, Sjövall J (1968) A method for quantitative determination of bile acids in human feces. Bile acids and steroids 195. Acta Chem. Scand. 22(6); 1729–1744.Google Scholar
  118. Eriksson H, Gustafsson J-Å, Sjövall J (1968) Steroids in germfree and conventional rats. 4. Identification and bacterial formation of 17α-pregnane derivatives. Eur. J. Biochem. 6(2); 219–226.Google Scholar
  119. Eriksson H, Taylor W, Sjövall J (1978) Occurrence of sulfated 5α-cholanoates in rat bile. J. Lipid Res. 19(2); 177–186.Google Scholar
  120. Evans JE, Ghosh A, Evans BA, Natowicz MR (1993) Screening techniques for the detection of inborn errors of bile acid metabolism by direct injection and micro-high performance liquid chromatography-continuous flow/fast atom bombardment mass spectrometry. Biol. Mass Spectrom. 22(6); 331–337.Google Scholar
  121. Evershed RP (1993) Advances in silylation. In Handbook of Derivatives for Chromatography (eds Blau K, Halket JM). Wiley, London. pp. 52–108.Google Scholar
  122. Ewerth S (1982) Postprandial serum concentration of individual bile acids in man. Influence of ileal resection. Scand. J. Gastroenterol. 17(6); 781–784.Google Scholar
  123. Eyssen H, Eggermont E, van Eldere J, Jaeken J, Parmentier G, Janssen G (1985) Bile acid abnor-malities and the diagnosis of cerebro-hepato-renal syndrome (Zellweger syndrome). Acta Paediatr. Scand. 74(4); 539–544.Google Scholar
  124. Eyssen H, Parmentier G, Compernolle F, Boon J, Eggermont E (1972) Trihydroxycoprostanic acid in the duodenal fluid of two children with intrahepatic bile duct anomalies. Biochim. Biophys. Acta. 273(1); 212–221.Google Scholar
  125. Eyssen H, Smets L, Parmentier G, Janssen G (1977) Sex-linked differences in bile acid metabolism of germfree rats. Life Sci. 21(5); 707–712.Google Scholar
  126. Fantin G, Fogagnolo M, Medici A, Petrini P, Cova U (1992) Spontaneous ketalization of 3-keto-5β-cholanoic acids in methanol. Tetrahedron Lett. 33; 3235–3236.Google Scholar
  127. Fausa O, Skålhegg BA (1977) Quantitative determination of serum bile acids using a 7α-hydrox-ysteroid dehydrogenase. Scand. J. Gastroenterol. 12(4); 441–447. Google Scholar
  128. Ferdinandusse S, Denis S, Clayton PT, Graham A, Rees JE, Allen JT, McLean BN, Brown AY, Vreken P, Waterham HR, Wanders RJA (2000) Mutations in the gene encoding peroxisomal α-methyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat. Gen. 24; 188–191.Google Scholar
  129. Ferdinandusse S, Overmars H, Denis S, Waterham HR, Wanders RJ, Vreken P (2001) Plasma analysis of di- and trihydroxycholestanoic diastereoisomers in peroxisomal a -methylacyl-CoA racemase deficiency. J. Lipid Res. 42; 137–141.Google Scholar
  130. Fukunaga A, Hatta Y, Ishibashi M, Miyazaki H (1980) Gas chromatography of dimethylalkylsilyl ether derivatives of bile acid methyl esters. J. Chromatogr. 190(2); 339–345.Google Scholar
  131. Galeazzi R, Kok E, Javitt N (1976) Gas–liquid chromatography of bile acids: a new liquid phase for both acetate and trimethylsilyl derivatives. J. Lipid Res. 17(3); 288–290.Google Scholar
  132. Gan-Schreier H, Okun JG, Kohlmueller D, Langhans CD, Peters V, Ten Brink HJ, Verhoeven NM, Jakobs C, Voelkl A, Hoffmann GF (2005) Measurement of bile acid CoA esters by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC-ESI-MS/MS). J. Mass Spectrom. 40(7); 882–889.Google Scholar
  133. Gatti R, Roda A, Cerre C, Bonazzi D, Cavrini V (1997) HPLC-fluorescence determination of individual free and conjugated bile acids in human serum. Biomed. Chromatogr. 11(1); 11–15.Google Scholar
  134. Gerst N, Ruan B, Pang J, Wilson WK, Schroepfer GJ, Jr. (1997) An updated look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. J. Lipid Res. 38(8); 1685–1701.Google Scholar
  135. Goldsmith RF, Gruca M, O’Halloran MT, Earl JW, Gaskin K (1994) Determination of conjugated and unconjugated serum 3α-OH bile acids by high-performance liquid chromatography. Ann. Clin. Biochem. 31(Pt 5); 479–484.Google Scholar
  136. Goto J, Chikai T, Nambara T (1986) Separation of bile acid 7- and 12-sulfates by high-performance liquid chromatography with pre-column fluorescence labelling. Anal. Sci. 2; 157–178.Google Scholar
  137. Goto J, Chikai T, Nambara T (1987) Studies on steroids. CCXXVII. Separation and determination of bile acid 7- and 12-sulphates in urine by high-performance liquid chromatography with fluorescence labelling. J. Chromatogr. 415(1); 45–52.Google Scholar
  138. Goto J, Kato H, Nambara T (1980) Separation of monosulfated bile acids by high-performance liquid chromatography. J. Liq. Chromatogr. 3; 645–655.Google Scholar
  139. Goto J, Miura H, Nambara T (1989) Studies on steroids. CCXXXXV. Determination of 5β-cholestanoic acids in human urine by gas chromatography–mass spectrometry with negative ion chemical ionization detection. J. Chromatogr. 493(2); 245–255.Google Scholar
  140. Goto J, Saisho Y, Nambara T (1989) Sensitive fluorescence labeling reagents for high performance liquid chromatography of carbonyl compounds. Anal. Sci. 5; 399–402.Google Scholar
  141. Goto J, Saisho Y, Nambara T (1991) Studies on steroids. CCLII. Separation and characterization of 3-oxo bile acids in serum by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. 567(2); 343–349.Google Scholar
  142. Goto J, Goto N, Shamsa F, Saito M, Komatsu S, Suzaki K, Nambara T (1983) New sensitive derivatization of hydroxysteroids for high-performance liquid chromatography with fluorescence detection. Anal. Chim. Acta. 147; 397–400.Google Scholar
  143. Goto J, Hasegawa M, Kato H, Nambara T (1978) A new method for simultaneous determination of bile acids in human bile without hydrolysis. Clin. Chim. Acta. 87(1); 141–147.Google Scholar
  144. Goto J, Hasegawa K, Nambara T, Iida T (1992) Studies on steroids. CCLIV. Gas chromatographic–mass spectrometric determination of 4- and 6-hydroxylated bile acids in human urine with negative ion chemical ionization detection. J. Chromatogr. 574(l); 1–7.Google Scholar
  145. Goto J, Kato H, Kaneko K, Nambara T (1981) High-performance liquid chromatography of sulfated bile acids. J. Liq. Chromatogr. 4; 1351–1359.Google Scholar
  146. Goto J, Kato H, Saruta Y, Nambara T (1980) Separation and determination of bile acids in human bile by high-performance liquid chromatography. J. Liq. Chromatogr. 3; 991–1003.Google Scholar
  147. Goto J, Kato H, Saruta Y, Nambara T (1981) Studies on steroids. CLXX. Separation and determination of bile acid 3-sulfates in human bile by high-performance liquid chromatography. J. Chromatogr. 226(1); 13–24.Google Scholar
  148. Goto J, Miura H, Inada M, Nambara T, Nagakura T, Suzuki H (1988) Studies on steroids. CCXXXVIII. Determination of bile acids in liver tissue by gas chromatography–mass spectrometry with negative ion chemical ionization detection. J. Chromatogr. 452; 119–129.Google Scholar
  149. Goto J, Murao N, Nakada C, Motoyama T, Oohashi J, Yanagihara T, Niwa T, Ikegawa S (1998) Separation and characterization of carboxyl-linked glucuronides of bile acids in incubation mixture of rat liver microsomes. Steroids. 63(4); 186–192.Google Scholar
  150. Goto T, Myint KT, Sato K, Wada O, Kakiyama G, Iida T, Hishinuma T, Mano N, Goto J (2007) LC/ESI-tandem mass spectrometric determination of bile acid 3-sulfates in human urine. 3 β-Sulfooxy-12α-hydroxy-5β-cholanoic acid is an abundant nonamidated sulfate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 846(1–2); 69–77.Google Scholar
  151. Goto J, Saito M, Chikai T, Goto N, Nambara T (1983) Studies on steroids. CLXXXVII. Determination of serum bile acids by high-performance liquid chromatography with fluorescence labeling. J. Chromatogr. 276(2); 289–300.Google Scholar
  152. Goto T, Shibata A, Iida T, Mano N, Goto J (2004) Sensitive mass spectrometric detection of neutral bile acid metabolites. Formation of adduct ions with an organic anion in atmospheric pressure chemical ionization. Rapid Commun. Mass Spectrom. 18(19); 2360–2364.Google Scholar
  153. Goto J, Suzaki K, Chikai T, Nagase K, Nambara T (1985) Studies on steroids. CCXVI. Separation of bile acid 3-glucuronides by high-performance liquid chromatography. J. Chromatogr. 348(1); 151–157.Google Scholar
  154. Goto J, Teraya Y, Nambara T, Iida T (1991) Studies on steroids. CCLIII. Capillary gas chromatographic behaviour of diethylhydrogensilyl-diethylsilylene derivatives of stereoisomeric bile acids. J. Chromatogr. 585(2); 281–288.Google Scholar
  155. Goto J, Watanabe K, Miura H, Nambara T, Iida T (1987) Studies on steroids. CCXXVIII Trace analysis of bile acids by gas chromatography–mass spectrometry with negative ion chemical ionization detection. J. Chromatogr. 388(2); 379–387.Google Scholar
  156. Goto T, Shibata A, Sasaki D, Suzuki N, Hishinuma T, Kakiyama G, Iida T, Mano N, Goto J (2005) Identification of a novel conjugate in human urine: bile acid acyl galactosides. Steroids. 70(3); 185–192.Google Scholar
  157. Güldütuna S, You T, Kurts W, Leuschner U (1993) High performance liquid chromatographic determination of free and conjugated bile acids in serum, liver biopsies, bile, gastric juice and feces by fluorescence labeling. Clin. Chim. Acta. 214(2); 195–207.Google Scholar
  158. Gustafsson J, Anderson S, Sjövall J (1987) Bile acid metabolism during development: metabolism of lithocholic acid in human fetal liver. Pediatr. Res. 21(1); 99–103.Google Scholar
  159. Gustafsson J (1975) Biosynthesis of cholic acid in rat liver. 24-Hydroxylation of 3α,7α,12α-trihydroxy-5β-cholestanoic acid. J. Biol. Chem. 250(20); 8243–8247.Google Scholar
  160. Griffiths WJ, Brown A, Reimendal R, Yang Y, Zhang J, Sjövall J. (1996) A comparison of fast atom bombardment and electrospray as methods of ionization in the study of sulphated- and sulphonated-lipids by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 10; 1169–1174.Google Scholar
  161. Hachey DL, Szczepanik P, Bergrubes OW, Klein PD (1973) Synthesis of stable-isotopes: synthesis of deuterium and 13C labeled bile acid. J. Labelled Comps. 9; 103–178.Google Scholar
  162. Hagey LR (1992) Bile acid biodiversity in vertebrates: chemistry and evolutionary implications. PhD thesis, University of California, San Diego, CA.Google Scholar
  163. Hagey LR, Gavrilkina MA, Hofmann AF (1997) Age-related changes in biliary bile acid composition of bovids. Can. J. Zool. 75; 1193–1201.Google Scholar
  164. Hagey LR, Schteingart CD, Rossi SS, Ton-Nu HT, Hofmann AF (1998) An N-acyl glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit. J. Lipid Res. 39(11); 2119–2124.Google Scholar
  165. Hagey LR, Schteingart CD, Ton-Nu HT, Hofmann AF (2002) A novel primary bile acid in the Shoebill stork and herons and its phylogenetic significance. J. Lipid Res. 43(5); 685–690.Google Scholar
  166. Hagio M, Matsumoto M, Fukushima M, Hara H, Ishizuka S (2009) Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. J. Lipid Res. 50; 173–180.Google Scholar
  167. Hamilton JP, Xie G, Raufman JP, Hogan S, Griffin TL, Packard CA, Chatfield DA, Hagey LR, Steinbach JH, Hofmann AF (2007) Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293(1); G256–G263.Google Scholar
  168. Hanson RF, Williams G (1971) The isolation and identification of 3α,7α-dihydroxy-5β-cholestan-26-oic acid from human bile. Biochem. J. 121(5); 863–864.Google Scholar
  169. Hanson RF, Isenberg JN, Williams GC, Hachey D, Szczepanik P, Klein PD, Sharp HL (1975) The metabolism of 3α,7α,12α-trihydroxy-5β-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis. J. Clin. Invest. 56(3); 577–587.Google Scholar
  170. Harvey DJ, Vouros P (1979) Influence of the 6-trimethylsilyl group on the fragmentation of the trimethylsilyl derivatives of some 6-hydroxy and 3,6-dihydroxy-steroids and related compounds. Biomed. Mass Spectrom. 6; 135–143.Google Scholar
  171. Haslewood GA (1951) Comparative studies of ‘bile salts’. III. The conversion of pythocholic acid to deoxycholic acid. Biochem. J. 49(5); 718–720.Google Scholar
  172. Haslewood GA (1967) Bile salt evolution. J. Lipid Res. 8(6); 535–550.Google Scholar
  173. Haslewood GA (1971) Bile salts of germ-free domestic fowl and pigs. Biochem. J. 123(1); 15–18. Haslewood GA, Wootton VM (1951) Comparative studies of ‘bile salts’. II. Pythocholic acid. Biochem. J. 49(1); 67–71.Google Scholar
  174. Haslewood GA, Murphy GM, Richardson JM (1973) A direct enzymic assay for 7α-hydroxy bile acids and their conjugates. Clin. Sci. 44(1); 95–98.Google Scholar
  175. Haslewood GA, Ikawa S, Tökés L, Wong D (1978) Bile salts of the green turtle Chelonia mydas (L.). Biochem. J. 171(2); 409–412.Google Scholar
  176. Haslewood GAD (1978) The Biological Importance of Bile Salts. North Holland, AmsterdamGoogle Scholar
  177. Hedenborg G, Norlander A, Norman A (1986) Bile acid conjugates present in tissues during extrahepatic cholestasis. Scand. J. Clin. Lab. Invest. 46(6); 539–544.Google Scholar
  178. Hellström K, Sjövall J (1962) Turnover of deoxycholic acid in the rabbit. J. Lipid Res. 3; 397–404.Google Scholar
  179. Heubi JE, Setchell KDR, Bove KE (2007) Inborn errors of bile acid metabolism. Semin. Liver Dis. 27(3); 282–294.Google Scholar
  180. Hirano JH, Miyazaki S, Higashidate S, Nakayama F (1987) Analysis of 3-sulfated and non-sulfated bile acids by one step solvolysis and high performance liquid chromatography. J. Lipid Res. 28; 1524–1529.Google Scholar
  181. Hiraoka T, Kihira K, Kajiyama G, Kuramoto T, Hoshita T (1987) Identification of 5β-cholestane-3α,7α,12α,24,25,26-hexol in human urine. J. Lipid Res. 28(8); 895–899.Google Scholar
  182. Hofmann AF (2007) Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6(1); 15–27.Google Scholar
  183. Hofmann AF, Schteingart CD, Hagey LR (1995) Species differences in bile acid metabolism. In Bile Acids in Liver Diseases (eds Paumgartner G, Beuers U). Kluwer, Dordrecht. pp. 3–30.Google Scholar
  184. Hofmann AF, Sjövall J, Kurz G, Radominska A, Schteingart CD, Tint GS, Vlahcevic ZR, Setchell KDR (1992) A proposed nomenclature for bile acids. J. Lipid Res. 33(4); 599–604.Google Scholar
  185. Honda A, Salen G, Shefer S, Batta AK, Honda M, Xu G, Tint GS, Matsuzaki Y, Shoda J, Tanaka N (1999) Bile acid synthesis in the Smith–Lemli–Opitz syndrome: effects of dehydrocholesterols on cholesterol 7α-hydroxylase and 27-hydroxylase activities in rat liver. J. Lipid Res. 40(8); 1520–1528.Google Scholar
  186. Honda A, Tint GS, Salen G, Batta AK, Chen TS, Shefer S (1995) Defective conversion of 7-dehydrocholesterol to cholesterol in cultured skin fibroblasts from Smith–Lemli–Opitz syndrome homozygotes. J. Lipid Res. 36(7); 1595–1601.Google Scholar
  187. Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, Xu G, Numazawa M, Matsuzaki Y (2009) Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J. Lipid Res. 50; 350–357.Google Scholar
  188. Honda A, Yamashita K, Miyazaki H, Shirai M, Ikegami T, Xu G, Numazawa M, Hara T, Matsuzaki Y (2008) Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J. Lipid Res. 49; 2063–2073.Google Scholar
  189. Honda A, Yamashita K, Numazawa M, Ikegami T, Doy M, Matsuzaki Y, Miyazaki H (2007) Highly sensitive quantification of 7α-hydroxy-4-cholesten-3-one in human serum by LC-ESI-MS/MS. J. Lipid Res. 48; 458–464.Google Scholar
  190. Horning EC, Brooks CJ, Vanden Heuvel WJ (1968) Gas phase analytical methods for the study of steroids. Adv. Lipid Res. 6; 273–392.Google Scholar
  191. Hoshita T, Yasuhara M, Une M, Kibe A, Itoga E, Kito S, Kuramoto T (1980) Occurrence of bile alcohol glucuronides in bile of patients with cerebrotendinous xanthomatosis. J. Lipid Res. 21(8); 1015–1021.Google Scholar
  192. Huijghebaert SM, Hofmann AF (1986) Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J. Lipid Res. 27(7); 742–752.Google Scholar
  193. Huijghebaert S, Parmentier G, Eyssen H (1984) Specificity of bile salt sulfatase activity in man, mouse and rat internal Aicroflora. J. Steroid Biochem. 20(4A); 907–912.Google Scholar
  194. Hulzebos CV, Renfurm L, Bandsma RH, Verkade HJ, Boer T, Boverhof R, Tanaka H, Mierau I, Sauer PJ, Kuipers F, Stellaard F (2001) Measurement of parameters of cholic acid kinetics in plasma using a microscale stable isotope dilution technique: application to rodents and humans. J. Lipid Res. 42(11); 1923–1929.Google Scholar
  195. Ichimiya H, Egestad B, Nazer H, Baginski ES, Clayton PT, Sjövall J (1991) Bile acids and bile alcohols in a child with hepatic 3β-hydroxy-Δ5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. J. Lipid Res. 32(5); 829–841.Google Scholar
  196. Iida T, Chang FC, Matsumoto T, Tamura T (1983) Separation of mono-, di-, and trihydroxy stereoisomers of bile acids by capillary gas–liquid chromatography. J. Lipid Res. 24(2); 211–215.Google Scholar
  197. Iida T, Hikosaka M, Goto J, Nambara T (2001) Capillary gas chromatographic behaviour of tert-hydroxylated steroids by trialkylsilylation. J. Chromatogr A. 937(1–2); 97–105.Google Scholar
  198. Iida T, Hikosaka M, Kakiyama G, Shiraishi K, Schteingart CD, Hagey LR, Ton-Nu HT, Hofmann AF, Mano N, Goto J, Nambara T (2002) Potential bile acid metabolites. 25. Synthesis and chemical properties of stereoisomeric 3α,7α,16- and 3α,7α,15-trihydroxy-5β-cholan-24-oic acids. Chem. Pharm. Bull. (Tokyo). 50(10); 1327–1334.Google Scholar
  199. Iida T, Kakiyama G, Hibiya Y, Miyata S, Inoue T, Ohno K, Goto T, Mano N, Goto J, Nambara T, Hofmann AF (2006) Chemical synthesis of the 3-sulfooxy-7-N-acetylglucosaminyl-24-amidated conjugates of 3 β,7β-dihydroxy-5-cholen-24-oic acid, and related compounds: unusual, major metabolites of bile acid in a patient with Niemann-Pick disease type Cl. Steroids. 71(1); 18–29.Google Scholar
  200. Iida T, Komatsubara I, Chang FC, Goto J, Nambara T (1990) Capillary gas liquid chromatographic separation of oxo and oxo-hydroxy bile acid isomers of allo and normal series. Lipids. 25; 753–755.Google Scholar
  201. Iida T, Komatsubara I, Chang FC, Goto J, Nambara T (1991a) Potential bile acid metabolites. 17. Synthesis of 2β-hydroxylated bile acids. Steroids. 56(3); 114–122.Google Scholar
  202. Iida T, Komatsubara I, Chang FC, Goto J, Nambara T (1991b) Capillary gas chromatographic separation of stereoisomeric bile acids with vicinal glycol structure by “mixed” alkylboronate derivatives. J. Chromatogr. 537; 345–356.Google Scholar
  203. Iida T, Momose T, Tamura T, Matsumoto T, Goto J, Nambara T, Chang FC (1987) Capillary gas chromatography of hydroxylated bile acid stereoisomers of the allo and normal series. J. Chromatogr. 389(1); 155–164.Google Scholar
  204. Iida T, Ohnuki Y, Chang FC, Goto J, Nambara T (1985) High performance liquid cbfomatographic separation of stereoisomeric bile acids as their UV-sensitive esters. Lipids. 20(3); 187–194.Google Scholar
  205. Iida T, Tamura T, Chang FC, Goto J, Nambara T (1991) Capillary gas chromatographic analysis of oxo, oxo-hydroxy and unsaturated bile acid glycine conjugates. J. Chromatogr. 558; 451–457.Google Scholar
  206. Iida T, Tazawa S, Tamaru T, Goto J, Nambara T (1995) Gas chromatographic separation of bile acid 3-glucosides and 3-glucuronides without prior deconjugation on a stainless-steel capillary column. J. Chromatogr A. 689(1); 77–84.Google Scholar
  207. Ikawa S, Mura T, Kawasaki H (1981) Fluorometric microassays of serum primary bile acids using 7α-hydroxysteroid dehydrogenase. Rinsho Byori-Jpn. J. Clin. Pathol. 29; 463–466.Google Scholar
  208. Ikawa S, Miyake M, Mura T, Ikeguchi M (1987) High-performance liquid chromatographic-fluorescence determination of human faecal bile acids. J. Chromatogr. 400; 149–161.Google Scholar
  209. Ikegawa S, Hirabayashi N, Yoshimura T, Tohma M, Maeda M, Tsuji A (1992) Determination of conjugated bile acids in human urine by high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr. 577(2); 229–238.Google Scholar
  210. Ikegawa S, Ishikawa H, Oiwa H, Nagata M, Goto J, Kozaki T, Gotowda M, Asakawa N (1999) Characterization of cholyl-adenylate in rat liver microsomes by liquid chromatography/electrospray ionization–mass spectrometry. Anal. Biochem. 266(1); 125–132.Google Scholar
  211. Ikegawa S, Murao N, Motoyama T, Yanagihara T, Niwa T, Goto J (1996) Separation and detection of bile acid 3-glucuronides in human urine by liquid chromatography/electrospray ionization-mass spectrometry. Biomed. Chroamtogr. 10(6); 313–317.Google Scholar
  212. Ikegawa S, Murao N, Nagata M, Ohba S, Goto J (1999) Covalent binding of bile acid acylglucuronide with protein. Anal. Sci. 15; 213–215.Google Scholar
  213. Ikegawa S, Okuyama H, Oohashi J, Murao N, Goto J (1999) Separation and detection of bile acid 24-glucuronides in human urine by liquid chromatography combined with electrospray ionization mass spectrometry. Anal. Sci. 15; 625–631.Google Scholar
  214. Ikegawa S, Yamamoto T, Ito H, Ishiwata S, Sakai T, Mitamura K, Maeda M (2008) Immunoprecipitation and MALDI-MS identification of lithocholic acid-tagged proteins in liver of bile duct-ligated rats. J. Lipid Res. 49; 2463–2473.Google Scholar
  215. Ikegawa S, Yanagihara T, Murao N, Watanabe H, Goto J, Niwa T (1997) Separatory determination of bile acid 3-sulfates by liquid chromatography/electrospray ionization mass spectrometry. J. Mass Spectrom. 32; 401–407.Google Scholar
  216. Ikegawa S, Yoshimura T, Ito K, Kurosawa T, Tohma M (1995) Simultaneous flurometric determination of conjugated fetal bile acids in newborns by high-performance liquid chromatography. Analyt. Sci. 11; 91–96.Google Scholar
  217. Imai K, Tamura Z, Mashige F, Osuga T (1976) Gas chromatography of bile acids as their hexafluoroisopropyl ester-trifluoroacetyl derivatives. J. Chromatogr. 120(1); 181–186.Google Scholar
  218. Iqbal MN, Patrick PH, Elliott WH (1991) Bile acids. LXXXI. Synthesis and structural assignment of E/Z isomers of substituted methyl hydroxy-5β-cholest-24-en-26-oates. Steroids. 56(10); 505–512.Google Scholar
  219. Ishii D, Murata S, Takeuchi T (1983) Analysis of bile acids by micro high-performance liquid chromatography with postcolumn enzyme reaction and fluorometric detection. J. Chromatogr. 282; 569–577.Google Scholar
  220. Ito Y, Takeuchi T, Ishii D, Goto M, Mizuno T (1986) Direct coupling of micro high-performance liquid chromatography with fast atom bombardment mass spectrometry. II. Application to gradient elution of bile acids. J. Chromatogr. 358(1); 201–207.Google Scholar
  221. Iwata T, Yamasaki K (1964) Enzymatic determination and thin-layer chromatography of bile acids in blood. J. Biochem. 56; 424–431.Google Scholar
  222. Janssen G, Parmentier G (1981) A further study of the bile acids in infants with coprostanic acidemia. Steroids. 37(1); 81–89.Google Scholar
  223. Janssen G, Toppet S, Parmentier G (1982) Structure of the side chain of the C29 dicarboxylic bile acid occurring in infants with coprostanic acidemia. J. Lipid Res. 23(3); 456–465.Google Scholar
  224. Janssen G, Toppet S, Compernolle F, Parmentier G (1989) By-products in the analysis of beta-muricholic acid in biological samples as methyl ester triacetate. Steroids. 53(6); 677–693.Google Scholar
  225. Javitt NB (2000) Biologic role(s) of the 25(R),26-hydroxycholesterol metabolic pathway. Biochim. Biophys. Acta. 1529(1–3); 136–141.Google Scholar
  226. Johnson DW, ten Brink HJ, Schuit RC, Jakobs C (2001) Rapid and quantitative analysis of unconjugated C27 bile acids in plasma and blood samples by tandem mass spectrometry. J. Lipid Res. 42(1); 9–16.Google Scholar
  227. Kakiyama G, Iida T, Goto T, Mano N, Goto J, Nambara T, Hagey LR, Schteingart CD, Hofmann AF (2006) Identification of a novel bile acid in swans, tree ducks, and geese: 3α,7α,15α-tri-hydroxy-5β-cholan-24-oic acid. J. Lipid Res. 47(7); 1551–1558.Google Scholar
  228. Kakiyama G, Tamegai H, Iida T, Mitamura K, Ikegawa S, Goto T, Mano N, Goto J, Holz P, Hagey LR, Hofmann AF (2007) Isolation and chemical synthesis of a major, novel biliary bile acid in the common wombat (Vombatus ursinus): 15α-hydroxylithocholic acid. J. Lipid Res. 48(12); 2682–2692.Google Scholar
  229. Kalaany NY, Mangelsdorf DJ (2006) LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu. Rev. Physiol. 68; 159–191.Google Scholar
  230. Kallner A (1968) Bile acids of the teleost Cottus quadricornis: isolation of 3α,12α-dihydroxy-5-P-chol-7-enoic acid. Bile acids and steroids 199. Acta Chem. Scand. 22(7); 2353–2360.Google Scholar
  231. Kamada S, Maeda M, Tsuji A (1983) Fluorescence high-performance liquid chromatographic determination of free and conjugated bile acids in serum and bile using 1-bromoacetylpyrene as a pre-labeling reagent. J. Chromatogr. 272(1); 29–41.Google Scholar
  232. Kamada S, Maeda M, Tsuji A, Umezawa Y, Kurahashi T (1982) Separation and determination of bile acids by high-performance liquid chromatography using immobilized 3α-hydroxysteroid dehydrogenase and an electrochemical detector. J. Chromatogr. 239; 773–783.Google Scholar
  233. Kamat SY, Elliott WH (1972) Bile acids XXXVI. Synthesis of 5α-cholestan-26-oic acids. Steroids. 20(3); 279–294.Google Scholar
  234. Kanno T, Tominaga K, Fujii T, Funatani F (1971) Analysis of serum bile acids by gas liquid chromatography equipped with Ni-63-electron capture detector. J. Chromatogr. Sci. 9; 53–58.Google Scholar
  235. Karlaganis G, Paumgartner G (1979) Determination of bile acids in serum by capillary gas–liquid chromatography. Clin. Chim. Acta. 92(1); 19–26.Google Scholar
  236. Karlaganis G, Sjövall J (1984) Formation and metabolism of bile alcohols in man. Hepatology. 4(5); 966–973.Google Scholar
  237. Karlaganis G, Karlaganis V, Sjövall J (1984) Identification of 27-nor-5β-cholestane-3α,7α,12α,24ξ,25ξ,26-hexol and partial characterization of the bile alcohol profile in urine. J. Lipid Res. 25(7); 693–702.Google Scholar
  238. Kato T, Yoneda M, Nakamura K, Makino I (1996) Enzymatic determination of serum 3α-sulfated bile acids concentration with bile acid 3α-sulfate sulfohydrolase. Dig. Dis. Sci. 41(8); 1564–1570.Google Scholar
  239. Kawasaki T, Maeda M, Tsuji A (1983) Immobilized 3α-hydroxysteroid dehydrogenase and dansyl hydrazine as a pre-labeling reagent for high-performance liquid chromatography with fluorescence detection of bile acids. J. Chromatogr. 272(2); 261–268.Google Scholar
  240. Kelsey MI, Mui MM, Elliott WH (1971) Bile acids. 33. The synthesis of allomuricholic acids. Steroids. 18(3); 261–279.Google Scholar
  241. Kelsey MI, Molina JE, Huang SK, Hwang KK (1980) The identification of microbial metabolites of sulfolithocholic acid. J. Lipid Res. 21(6); 751–759.Google Scholar
  242. Kern F, Jr., Eriksson H, Curstedt T, Sjövall J (1977) Effect of ethynylestradiol on biliary excretion of bile acids, phosphatidylcolines, and cholesterol in the bile fistula rat. J. Lipid Res. 18(5); 623–634.Google Scholar
  243. Kern F, Jr., Everson GT, DeMark B, McKinley C, Showalter R, Erfling W, Braverman DZ, Szczepanik-van Leeuwen P, Klein PD (1981) Biliary lipids, bile acids, and gallbladder function in the human female. Effects of pregnancy and the ovulatory cycle. J. Clin. Invest. 68(5); 1229–1242.Google Scholar
  244. Kihira K, Hoshita T (1985) Synthesis of α,β-unsaturated C24 bile acids. Steroids. 46(2–3):767–774.Google Scholar
  245. Kihira K, Morioka Y, Hoshita T (1981) Synthesis of (22R and 22S)-3α,7α,22-trihydroxy-5β-cholan-24-oic acids and structure of haemulcholic acid, a unique bile acid isolated from fish bile. J. Lipid Res. 22(8); 1181–1187.Google Scholar
  246. Kihira K, Okamoto A, Ikawa S, Mikami T, Yoshii M, Mosbach EH, Hoshita T (1991) Metabolism of sodium 3α,7α-dihydroxy-5β-cholane-24-sulfonate in hamsters. J. Biochem. 109(6); 879–881.Google Scholar
  247. Kihira K, Shimazu K, Kuwabara M, Yoshii M, Takeuchi H, Nakano I, Ozawa S, Onuki M, Hatta Y, Hoshita T (1986) Bile acid profiles in bile, urine, and feces of a patient with cerebrotendinous xanthomatosis. Steroids. 48(1–2); 109–119.Google Scholar
  248. Kimura A, Mahara R, Inoue T, Nomura Y, Murai T, Kurosawa T, Tohma M, Noguchi K, Hoshiyama A, Fujisawa T, Kato H (1999) Profile of urinary bile acids in infants and children: developmental pattern of excretion of unsaturated ketonic bile acids and 7β-hydroxylated bile acids. Pediatr. Res. 45(4 Pt 1); 603–609.Google Scholar
  249. Kimura A, Suzuki M, Murai T, Inoue T, Kato H, Hori D, Nomura Y, Yoshimura T, Kurosawa T, Tohma M (1997) Perinatal bile acid metabolism: analysis of urinary bile acids in pregnant women and newborns. J. Lipid Res. 38(10); 1954–1942.Google Scholar
  250. Kimura A, Suzuki M, Murai T, Kurosawa T, Tohma M, Sata M, Inoue T, Hoshiyama A, Nakashima E, Yamashita Y, Fujisawa T, Kato H (1998) Urinary 7α-hydroxy-3-oxochol-4-en-24-oic and 3-oxochola-4,6-dien-24-oic acids in infants with cholestasis. J. Hepatol. 28(2); 270–279.Google Scholar
  251. Kimura H, Suzuki M, Sato T, Goto J, Nambara T (1979) Separatory determination of free and conjugated bile acids in human serum. Jpn. J. Clin. Chem. 8; 126.Google Scholar
  252. Kimura A, Yamakawa R, Ushijima K, Fujisawa T, Kuriya N, Kato H, Inokuchi T, Mahara R, Kurosawa T, Tohma M (1994) Fetal bile acid metabolism during infancy: analysis of l β-hydroxylated bile acids in urine, meconium and feces. Hepatology. 20(4 Pt 1); 19–824.Google Scholar
  253. Kingston EE, Beynon JH, Newton RP, Liehr JG (1985) The differentiation of isomeric biological compounds using collision-induced dissociation of ions generated by fast atom bombardment. Biomed. Mass Spectrom. 12(9); 525–534.Google Scholar
  254. Klein PD, Haumann JR, Hachey DL (1975) Stable isotope ratiometer-multiple ion detector unit for quantitative and qualitative stable isotope studies by gas chromatography–mass spectrometry. Clin. Chem. 21(9); 1253–1257.Google Scholar
  255. Kobayashi N, Oiwa H, Goto J (1998) Production and characterization of group-specific monoclonalantibodies recognizing nonamidated, glycine- and taurine-amidated ursodeoxycholic acid 7-N-acetylglucosaminides. J. Steroid Biochem. Mol. Biol. 64(3–4); 171–177.Google Scholar
  256. Kobayashi N, Katsumata H, Katayama H, Oiwa H, Goto J, Takeuchi Y (2000) A monoclonal antibody-based enzyme-linked immunosorbent assay of ursodeoxycholic acid 3-sulfates in human urine. J. Steroid Biochem. Mol. Biol. 72(5); 265–272.Google Scholar
  257. Kobayashi N, Katsumata H, Uto Y, Goto J, Niwa T, Kobayashi K, Mizuuchi Y (2002) A monoclonal antibody-based enzyme-linked immunosorbent assay of glycolithocholic acid sulfate in human urine for liver function test. Steroids. 67(10); 827–833.Google Scholar
  258. Komiyama Y, Adachi T, Ito Y, Hirano K, Sugiura M, Sawaki S (1982) Microassay of serum bile acids by an enzymatic cycling method. Chem. Pharm. Bull. (Tokyo). 30(10); 3796–3799.Google Scholar
  259. Koopman BJ, Wolthers BG, van der Molen JC, Nagel GT, Kruizinga W (1987) Abnormal urinary bile acids in a patient suffering from cerebrotendinous xanthomatosis during oral administration of ursodeoxycholic acid. Biochim. Biophys. Acta. 917(2); 238–246.Google Scholar
  260. Korpela JT, Fotsis T, Adlercreutz H (1986) Multicomponent analysis of bile acids in faeces by anion exchange and capillary column gas–liquid chromatography: application in oxytetracycline treated subjects. J. Steroid Biochem. 25(2); 277–284.Google Scholar
  261. Kuksis A (1976) Gas chromatography of bile acids. In Lipid Chromatographic Analysis (ed Martinetti G), 2nd edn., Vol 2. Marcel Dekker, New York. pp. 479–610.Google Scholar
  262. Kuksis A, Child P (1980) Analysis and structure determination of unsaturated 5β-cholanoic acids. Lipids. 15(9); 770–782.Google Scholar
  263. Kumar RS, Brannigan JA, Prabhune AA, Pundle AV, Dodson GG, Dodson EJ, Suresh CG (2006) Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J. Biol. Chem. 281(43); 32516–32525.Google Scholar
  264. Kuramoto T, Furukawa Y, Nishina T, Sugimoto T, Mahara R, Tohma M, Kihira K, Hoshita T (1990) Identification of short side chain bile acids in urine of patients with cerebrotendinous xanthomatosis. J. Lipid Res. 31(10); 1895–1902.Google Scholar
  265. Kuramoto T, Kikuchi H, Sanemori H, Hoshita T (1973) Bile salts of anura. Chem. Pharm. Bull. (Tokyo). 21(5); 952–959.Google Scholar
  266. Kuramoto T, Miyamoto J, Konishi M, Hoshita T, Masul T, Une M (2000) Bile acids in porcine fetal bile. Biol. Pharm. Bull. 23(10); 1143–1146.Google Scholar
  267. Kuriyama K, Ban Y, Nakashima T, Murata T (1979) Simultaneous determination of biliary bile acids in rat: electron impact and ammonia chemical ionization mass spectrometric analyses of bile acids. Steroids. 34(6 Spec no); 717–728.Google Scholar
  268. Kuroki S, Schteingart CD, Hagey LR, Cohen BI, Mosbach EH, Rossi SS, Hofmann AF, Matoba N, Une M, Hoshita T, et al. (1988) Bile salts of the West Indian manatee, Trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids. J. Lipid Res. 29(4); 509–522.Google Scholar
  269. Kuroki S, Shimazu K, Kuwabara M, Une M, Kihira K, Kuramoto T, Hoshita T (1985) Identification of bile alcohols in human bile. J. Lipid Res. 26(2); 230–240.Google Scholar
  270. Kurosawa T, Mahara R, Nittono H, Tohma M (1989) Synthesis of 6-hydroxylated bile acids and identification of 3α,6α,7α,12α-tetrahydroxy-5β-cholan-24-oic acid in human meconium and neonatal urine. Chem. Pharm. Bull. (Tokyo). 37(2); 557–559.Google Scholar
  271. Kurosawa T, Nomura Y, Mahara R, Yoshimura T, Kimura A, Ikegawa S, Tohma M (1995) Synthesis of 19-hydroxylated bile acids and identification of 3α,7α,12α,19-tetrahydroxy-5β-cholan-24-oic acid in human neonatal urine. Chem. Pharm. Bull. (Tokyo). 43(9); 1551–1557.Google Scholar
  272. Kurosawa T, Sato M, Nakano H, Tohma M (1996) Synthesis of diastereomers of 3α,7α,12α,24-tetrahydroxy- and 3α,7α,24-trihydroxy-5β-cholestan-26-oic acids and their structures. Steroids. 61(7); 421–428.Google Scholar
  273. Kurosawa T, Sato H, Sato M, Takechi H, Machida M, Tohma M (1997) Analysis of stereoisomeric C27-bile acids by high performance liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal. 15(9–10); 1375–1382.Google Scholar
  274. Kuwabara M, Ushiroguchi T, Kihira K, Kuramoto T, Hoshita T (1984) Identification of bile alcohols in urine from healthy humans. J. Lipid Res. 25(4); 361–368.Google Scholar
  275. Lawson AM, Setchell KDR (1988a) Mass spectrometry of bile acids. In The Bile Acids. Methods and Applications (eds Setchell KDR, Kritchevsky D, Nair PP), Vol 4. Plenum, New York. pp. 167–268.Google Scholar
  276. Lawson AM, Setchell KDR (1988b) Appendix. In The Bile Acids (eds Setchell KDR, Kritchevsky D, Nair PP), Vol 4. Plenum, New York. pp. 571–575.Google Scholar
  277. Lawson AM, Madigan MJ, Shortland D, Clayton PT (1986) Rapid diagnosis of Zellweger syndrome and infantile Refsum’s disease by fast atom bombardment mass spectrometry of urine bile salts. Clin. Chim. Acta. 161(2); 221–231.Google Scholar
  278. Lee BL, New AL, Ong CN (1997) Comparative analysis of conjugated bile acids in human serum using high-performance liquid chromatography and capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 704(1–2); 35–42.Google Scholar
  279. Legrand-Defretin V, Juste C, Henry R, Corring T (1991) Ion-pair high-performance liquid chromatography of bile salt conjugates: application to pig bile. Lipids. 26(8); 578–583.Google Scholar
  280. Lemonde HA, Johnson AW, Clayton PT (1999) The identification of unusual bile acid metabolites by tandem mass spectrometry: use of low-energy collision-induced dissociation to produce informative spectra. Rapid Commun. Mass Spectrom. 13(12); 1159–1164.Google Scholar
  281. Lepage G, Roy CC, Weber AM (1981) Separation of sulfated from non-sulfated serum bile acids without the use of Sephadex columns. J. Lipid Res. 22(4); 705–711.Google Scholar
  282. Lester R, St. Pyrek J, Little JM, Adcock EW (1983) Diversity of bile acids in the fetus and newborn infant. J Pediatr Gastroenterol Nutr. 2(2); 355–364.Google Scholar
  283. Libert R, Hermans D, Draye JP, Van Hoof F, Sokal E, de Hoffmann E (1991) Bile acids and conjugates identified in metabolic disorders by fast atom bombardment and tandem mass spectrometry. Clin. Chem. 37(12); 2102–2110.Google Scholar
  284. Liehr JG, Kingston EE, Beynon JH (1985) Collision-induced dissociation-mass-analysed ion kinetic energy (CID-MIKE) analysis of ions generated by fast atom bombardment of isomeric bile salts. Biomed. Mass Spectrom. 12(3); 95–99.Google Scholar
  285. Liere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjövall J, Baulieu EE (2004) Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J. Lipid Res. 45(12); 2287–2302.Google Scholar
  286. Lindqvist A, Midtvedt T, Skrede S, Sjövall J (1990) Effect of bile alcohols on the microbial 7α-dehydroxylation of chenodeoxycholic acid. Microb. Ecol. Health Dis. 3; 25–32.Google Scholar
  287. Liu S, Sjövall J, Griffiths WJ (2003) Neurosteroids in rat brain: extraction, isolation and analysis by nanoscale liquid chromatography–electrospray mass spectrometry. Anal. Chem. 75: 5835–5846.Google Scholar
  288. Lund E, Boberg KM, Byström S, Ölund J, Carlström K, Björkhem I (1991) Formation of novelC -bile acids from cholesterol in the rat. Structure identification of the major di- and trihydroxylated species. J. Biol. Chem. 266(8); 4929–4937.Google Scholar
  289. Macdonald IA, Williams CN, Mahony DE (1974) A 3α- and 7α-hydroxysteroid dehydrogenase assay for conjugated dihydroxy-bile acid mixtures. Anal. Biochem. 57(1); 127–136.Google Scholar
  290. Macdonald IA, Williams CN, Musial BC (1980) 3α-, 7α-, and 12α-OH group specific enzymic analysis of biliary bile acids: comparison with gas–liquid chromatograpy. J. Lipid Res. 21(3): 381–385.Google Scholar
  291. Macdonald IA, Williams CN, Sutherland JD, MacDonald AC (1983) Estimation of ursodeoxy-cholic acid in human and bear biles using Clostridium absonum 7β-hydroxysteroid dehydrogenase. Anal. Biochem. 135(2); 349–354.Google Scholar
  292. Maeda Y, Setoguchi T, Katsuki T, Ishikawa E (1979) Development of a solid-phase enzyme immunoassay for ursodeoxycholic acid: application to plasma disappearance of injected ursodeoxycholic acid in the rabbit. J. Lipid Res. 20(8); 960–965.Google Scholar
  293. Makino I, Sjövall J, Norman A, Strandvik B (1971) Excretion of 3β-hydroxy-5-cholenoic and 3α-hydroxy-5α-cholanoic acids in urine of infants with biliary atresia. FEBS Lett. 15(2); 161–164.Google Scholar
  294. Makino I, Shinozaki K, Nakagawa S, Mashimo K (1974) Measurement of sulfated and nonsulfated bile acids in human serum and urine. J. Lipid Res. 15(2); 132–138.Google Scholar
  295. Makino I, Tashiro A, Hashimoto H, Nakagawa S, Yoshizawa I (1978) Radioimmunoassay of ursodeoxycholic acid in serum. J. Lipid Res. 19(4); 443–447.Google Scholar
  296. Malavolti M, Fromm H, Nsien E, Setchell KDR, Albert MB, Cohen B, Ceryak S (1993) Formation, absorption, and biotransformation of Δ6-lithocholenic acid in humans. Am. J. Physiol. 264(1 Pt 1); G163–G171.Google Scholar
  297. Maneerat S, Nitoda T, Kanzaki H, Kawai F (2005) Bile acids are new products of a marine bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 67(5); 679–683.Google Scholar
  298. Mano N, Goto T, Nikaido A, Narui T, Goto J (2003) Inhibition of the rat hepatic microsomal flurbiprofen acyl glucuronidation by bile acids. J. Pharm. Sci. 92(10); 2098–2108.Google Scholar
  299. Mano N, Goto T, Uchida M, Nishimura K, Ando M, Kobayashi N, Goto J (2004) Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J. Lipid Res. 45(2); 295–300.Google Scholar
  300. Mano N, Nishimura K, Narui T, Ikegawa S, Goto J (2002) Characterization of rat liver bile acid acyl glucuronosyltransferase. Steroids. 67(3–4); 257–262.Google Scholar
  301. Marschall H-U, Egestad B, Matern H, Matern S, Sjövall J (1987) Evidence for bile acid glucosides as normal constituents in human urine. FEBS Lett. 213(2); 411–414.Google Scholar
  302. Marschall H-U, Green G, Egestad B, Sjövall J (1988) Isolation of bile acid glucosides and N-acetylglucosaminides from human urine by ion-exchange chromatography and reversed-phase high-performance liquid chromatography. J. Chromatogr. 452; 59–468.Google Scholar
  303. Marschall H-U, Griffiths WJ, Zhang J, Wietholtz H, Matern H, Matern S, Sjövall J (1994) Positions of conjugation of bile acids with glucose and N-acetylglucosamine in vitro. J. Lipid Res. 35(9); 1599–1610.Google Scholar
  304. Marschall HU, Griffiths WJ, Götze U, Zhang J, Wietholtz H, Busch N, Sjövall J, Matern S (1994) The major metabolites of ursodeoxycholic acid in human urine are conjugated with N-acetylglucosamine. Hepatology. 20(4 Pt 1); 845–853.Google Scholar
  305. Marschall H-U, Matern H, Wietholtz H, Egestad B, Matern S, Sjövall J (1992) Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7β-hydroxylated bile acids in humans. J. Clin. Invest. 89(6); 1981–1987.Google Scholar
  306. Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, Zirah S, Murphy GM, Cloarec O, Lindon JC, Sprenger N, Fay LB, Kochhar S, van Bladeren P, Holmes E, Nicholson JK (2007) A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3; 112.Google Scholar
  307. Mashige F, Imai K, Osuga T (1976) A simple and sensitive assay of total serum bile acids. Clin. Chim. Acta. 70; 79–86.Google Scholar
  308. Mashige F, Tanaka N, Makai A, Kamei S, Yamanaka M (1981) Direct spectrophotometry of total bile acids in serum. Clin. Chem. 27; 352–1356.Google Scholar
  309. Masui T, Egestad B, Sjövall J (1988) Detergent and ion-pair extraction of bile acids in liver tissue for analysis by fast atom bombardment mass spectrometry. Biomed. Environ. Mass Spectrom. 16(1–12); 71–74.Google Scholar
  310. Matern S, Krieger R, Gerok W (1976) Radioimmunoassay of serum conjugated cholic acid. Clin. Chim. Acta. 72(1); 39–48.Google Scholar
  311. Matern H, Matern S, ScheMg C, Gerok W (1980) Bile acidJJDP-glfcuronyltransferase from human liver. Properties and studies on aglycone substrate specificity. FEBS Lett. 118(2); 251–254.Google Scholar
  312. Matoba N, Une M, Hoshita T (1986) Identification of unconjugated bile acids in human bile. J. Lipid Res. 27(11); 154–1162.Google Scholar
  313. Matsui A, Kasano Y, Yamauchi Y, Momoya T, Shimada T, Ishikawa T, Abukawa D, Kimura A, Adachi K, Tazuke Y (1996) Direct enzymatic assay of urinary sulfated bile acids to replace serum bilirubin testing for selective screening of neonatal cholestasis. J. Pediatr. 129(2); 306–308.Google Scholar
  314. Meng LJ, Sjövall J (1997) Method for combined analysis of profiles of conjugated progesterone metabolites and bile acids in serum and urine of pregnant women. J. Chromatogr. Biomed. Sci. Appl. 688; 11–26.Google Scholar
  315. Meng LJ, Griffiths WJ, Nazer H, Yang Y, Sjövall J (1997) High levels of (24S)-24-hydroxycholesterol 3-sulfate, 24-glucuronide in the serum and urine of children with severe cholestatic liver disease. J. Lipid Res. 38(5); 926–934.Google Scholar
  316. Meng LJ, Reyes H, Palma J, Hernandez I, Ribalta J, Sjövall J (1997) Effects of ursodeoxycholic acid on conjugated bile acids and progesterone metabolites in serum and urine of patients with intrahepatic cholestasis of pregnancy. J. Hepatol. 27(6); 1029–1040.Google Scholar
  317. Mikami T, Ohshima A, Mosbach EH, Cohen BI, Ayyad N, Yoshii M, Ohtani K, Kihira K, Schteingart CD, Hoshita T (1996) 15α-Hydroxylation of a bile acid analogue, sodium 3α,7α-dihydroxy-25,26-bishomo-5β-cholane-26-sulfonate in the hamster. J. Lipid Res. 37(6); 1189–1197.Google Scholar
  318. Mills KA, Mushtaq I, Johnson AW, Whitfield PD, Clayton PT (1998) A method for the quantitation of conjugated bile acids in dried blood spots using electrospray ionization–mass spectrometry. Pediatr. Res. 43(3); 361–368.Google Scholar
  319. Minder E, Karlaganis G, Schmied U, Vitins P, Paumgartner G: (1979) A highly specific 125I-radioimmunoassay for cholic acid conjugates. Clin. Chim. Acta. 92(2); 177–185.Google Scholar
  320. Mingrone G, Greco AV (1980) Reversed-phase high-performance liquid chromatographic separation and quantification of individual human bile acids. J. Chromatogr. 183(3); 277–286.Google Scholar
  321. Mitamura K, Sogabe M, Sakanashi H, Watanabe S, Sakai T, Yamaguchi Y, Wakamiya T, Ikegawa S (2007) Analysis of bile acid glutathione thioesters by liquid chromatography/electrospray ionization–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 855(1); 88–97.Google Scholar
  322. Miyazaki H, Ishibashi M, Yamashita K (1978) Use of a new silylating agent for separation of bile acids and cholesterol by selected ion monitoring with the computer controlled intensity matching technique. Biomed. Mass Spectrom. 5(8); 469–476.Google Scholar
  323. Miyazaki H, Ishibashi M, Inoue M, Ito M, Kubodera T (1974) Simultaneous qualitative and quantitative analyses of bile acids by mass chromatography. J. Chromatogr. 99(0); 554–565.Google Scholar
  324. Momose T, Maruyama J, Iida T, Goto J, Nambara T (1997) Comparative abilities and optimal conditions for β-glycosidase enzymes to hydrolyse the glucuronide, glucoside, and N-acetylglucosaminide conjugates of bile acids. Biol. Pharm. Bull. 20(8); 828–833.Google Scholar
  325. Momose T, Yamaguchi Y, Iida T, Goto J, Nambara T (1998) Structure-retention correlation of isomeric bile acids in inclusion high-performance liquid chromatography with methyl beta-cyclodextrin. Lipids. 33(1); 101–108.Google Scholar
  326. Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 58(4); 742–759.Google Scholar
  327. Moschetta A, Xu F, Hagey LR, van Berge-Henegouwen GP, van Erpecum KJ, Brouwers JF, Cohen JC, Bierman M, Hobbs HH, Steinbach JH, Hofmann AF (2005) A phylogenetic survey of biliary lipids in vertebrates. J. Lipid Res. 46(10); 2221–2232.Google Scholar
  328. Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 124(6); 1209–1223.Google Scholar
  329. Mui MM, Kamat SY, Elliott WH (1974) Bile acids XLII. Preparation of 5α-cholestan-26-oic acids from kryptogenin. Steroids. 24(2); 239–250.Google Scholar
  330. Murai T, Mahara R, Kurosawa T, Kimura A, Tohma M (1997) Determination of fetal bile acids in biological fluids from neonates by gas chromatography-negative ion chemical ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 691(1); 13–22.Google Scholar
  331. Murai T, Mahara R, Suzuki M, Yoshimura T, Kurosawa T, Tohma M (1995) Determination of fetal bile acids in a dried blood disc from neonates by gas chromatography/negative-ion chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. Spec No: S205–S206.Google Scholar
  332. Murphy GM, Billing BH, Baron DN (1970) A fluorimetric and enzymatic method for the estimation of serum total bile acids. J. Clin. Pathol. 23(7); 594–598.Google Scholar
  333. Murphy GM, Edkins SM, Williams JW, Catty D (1974) The preparation and properties of an antiserum for the radioimmunoassaylof serum conjugated cholic acid. Clin. Chim. Acta. 54(1); 81–89.Google Scholar
  334. Mushtaq I, Logan S, Morris M, Johnson AW, Wade AM, Kelly D, Clayton PT (1999) Screening of newborn infants for cholestatic hepatobiliary disease with tandem mass spectrometry. BMJ. 319(7208); 471–477.Google Scholar
  335. Nakagawa M, Setchell KDR (1990) Bile acid metabolism in early life: studies of amniotic fluid. J. Lipid Res. 31(6); 1089–1098.Google Scholar
  336. Nakashima T, Ban Y, Kuriyama K, Takino T (1979) An improved gas–liquid chromatographic method using silicon AN-600 column for separation of bile acids: its application on analysis of bile acids in rat bile. Jpn. J. Pharmacol. 29(4); 667–670.Google Scholar
  337. Natowicz MR, Evans JE (1994) Abnormal bile acids in the Smith–Lemli–Opitz syndrome. Am. J. Med. Genet. 50(4); 364–367.Google Scholar
  338. Nicholas JC, Chaintreuil J, Descomps B, Crastes de Paulet A (1980) Enzymatic microassay of serum bile acids: increased sensitivity with an enzyme amplification technique. Anal. Biochem. 103; 170–175.Google Scholar
  339. Nishida T, Miwa H, Yamamoto M, Koga T, Yao T (1982) Bile acid absorption kinetics in Crohn’s disease on elemental diet after oral administration of a stable-isotope tracer with chenodeoxycholic-11,12-d2 acid. Gut. 23(9); 751–757.Google Scholar
  340. Niwa T, Fujita K, Goto J, Nambara T (1992) Separation of bile acid N-acetylglucosaminides by high-performance liquid chromatography with precolumn fluorescence labelling. Anal. Sci. 8; 659–662.Google Scholar
  341. Niwa T, Fujita K, Goto J, Nambara T (1993) Separation and characterization of ursodeoxycholate 7-N-acetylglucosaminides in human urine by high performance liquid chromatography with fluorescence detection. J. Liq. Chromatogr. 16; 2531–2544.Google Scholar
  342. Noma Y, Une M, Kihira K, Yasuda M, Kuramoto T, Hoshita T (1980) Bile acids and bile alcohols of bullfrog. J. Lipid Res. 21(3); 339–346.Google Scholar
  343. Norlin M, Wikvall K (2007) Enzymes in the conversion of cholesterol into bile acids. Curr. Mol. Med. 7(2); 199–218.Google Scholar
  344. Norman A (1964) Faecal excretion products of cholic acid in man. Br. J. Nutr. 18; 173–186.Google Scholar
  345. Norman A, Palmer RH (1964) Metabolites of lithocholic acid-24-14C in human bile and reces. J. Lab. Clin. Med. 63; 986–1001.Google Scholar
  346. Nuber R, Maucher H, Stange EF (1990) Size exclusion chromatography for extraction of serum bile acids. J. Lipid Res. 31(8); 1517–1522.Google Scholar
  347. Okuyama S, Uemura D, Hirata Y (1976) High-performance liquid chromatographic separation of individual bile acids: free, glycine and taurine conjugated bile acids. Chem. Lett. 5; 679–682.Google Scholar
  348. Okuyama S, Uemura D, Hirata Y (1979) The improved method of high-performance liquid chromatographic separation of individual bile acids: free and glycine-conjugated bile acids. Chem. Lett. 8; 461–462.Google Scholar
  349. Okuyama S, Kokubun N, Higashidate S, Uemura D, Hirata Y (1979) A new analytical method of individual bile acids using high-performance liquid chromatography and immobilized 3α-hydroxysteroid dehydrogenase in column form. Chem. Lett. 8; 1443–1446.Google Scholar
  350. Ozaki S, Tashiro A, Makino I, Nakagawa S, Yoshizawa I (1979) Enzyme-linked immunoassay of ursodeoxycholic acid in serum. J. Lipid Res. 20(2); 240–245.Google Scholar
  351. Palmer RH, Bolt MG (1971) Bile acid sulfates. I. Synthesis of lithocholic acid sulfates and their identification in human bile. J. Lipid Res. 12(6); 671–679.Google Scholar
  352. Parmentier G, Mertens J, Eyssen H (1975) Cholic acid-7-sulfate, a major bile acid in the large intestine of mouse. In Advances in Bile Acid Research-3rd Bile Acid Meeting (eds Matern S, Hackenschmidt J, Back T). Schattauer Verlag, Stuttgart. I3P 144.Google Scholar
  353. Parmentier GG, Busson RH, Janssen GA, Mannaerts GP, Eyssen HJ (1993) Synthesis and 29-14C-labeling of 3α,7α,12α-trihydroxy-27-carboxymethyl-5β-cholestan-26-oic acid. A bile acid occurring in peroxisomal diseases. Steroids. 58(8); 351–356.Google Scholar
  354. Parmentier GG, Janssen GA, Eggermont EA, Eyssen HJ (1979) C27 bile acids in infants with coprostanic acidemia and occurrence of a 3α,7α,12α-trihydroxy-5β-C29 dicarboxylic bile acid as a major component in their serum. Eur. J. Biochem. 102(1); 173–183.Google Scholar
  355. Parris NA (1977) Liquid chromatographic separation of bile acids. J. Chromatogr. 133(2): 273–279.Google Scholar
  356. Pedersen JI, Veggan T, Björkhem I (1996) Substrate specificity in oxidation of (25S)-3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA by peroxisomal trihydroxy-5β-cholestanoyl-CoA oxidase. Biochem. Biophys. Res. Comm. 224; 37–42.Google Scholar
  357. Persson E, Löfgren L, Hansson G, Abrahamsson B, Lennernäs H, Nilsson R (2007) Simultaneous assessment of lipid classes and bile acids in human intestinal fluid by solid-phase extraction and HPLC methods. J. Lipid Res. 48(1); 242–251.Google Scholar
  358. Perwaiz S, Tuchweber B, Mignault D, Gilat T, Yousef IM (2001) Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 42(1); 114–119.Google Scholar
  359. Plumb RS, Johnson KA, Rainville P, Shockcor JP, Williams R, Granger JH, Wilson ID (2006) The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 20(19): 2800–2806.Google Scholar
  360. Polokoff MA, Bell RM (1977) Characterization of liver cholic acid coenzyme A ligase activity. Evidence that separate microsomal enzymes are responsible for cholic acid and fatty acid activation. J. Biol. Chem. 252(4); 1167–1171.Google Scholar
  361. Porter JL, Fordtran JS, Santa Ana CA, Emmett M, Hagey LR, Macdonald EA, Hofmann AF (2003) Accurate enzymatic measurement of fecal bile acids in patients with malabsorption. J. Lab. Clin. Med. 141(6); 411–418.Google Scholar
  362. Princen HM, Meijer P, Kuipers F (1990) One-step solvolysis of 3-, 7- and 12-sulfated free and conjugated bile acids. Clin. Chim. Acta. 192(1); 77–83.Google Scholar
  363. Que AH, Konse T, Baker AG, Novotny MV (2000) Analysis of bile acids and their conjugates by capillary electrochromatography/electrospray ion trap mass spectrometry. Anal. Biochem. 72; 2703–2710.Google Scholar
  364. Radominska A, Comer KA, Zimniak P, Falany J, Iscan M, Falany CN (1990) Human liver steroid sulphotransferase sulphates bile acids. Biochem. J. 272(3); 597–604.Google Scholar
  365. Radominska A, Little JM, Lester R, Mackenzie PI (1994) Bile acid glucuronidation by rat liver microsomes and cDNA-expressed UDP-glucuronosyltransferases. Biochim. Biophys. Acta. 1205(1); 75–82.Google Scholar
  366. Radominska-Pyrek A, Zimniak P, Chari M, Golunski E, Lester R, St. Pyrek J: (1986) Glucuronides of monohydroxylated bile acids: specificity of microsomal glucuronyl-transferase for the glucuronidation site, C-3 configuration, and side chain length. J. Lipid Res. 27(1); 89–101.Google Scholar
  367. Reimendal R, Sjövall J (1972) Analysis of steroids by off-line computerized gas chromatography–mass spectrometry. Anal. Chem. 44(1); 21–29.Google Scholar
  368. Robben J, Parmentier G, Eyssen H (1986) Isolation of a rat intestinal Clostridium strain producing 5α- and 5β-bile salt 3α-sulfatase activity. Appl. Environ. Microbiol. 51(1); 32–38.Google Scholar
  369. Robben J, Janssen G, Merckx R, Eyssen H (1989) Formation of Δ2- and Δ3-cholenoic acids from bile acid 3-sulfates by a human intestinal Fusobacterium strain. Appl. Environ. Microbiol. 55(11); 2954–2959.Google Scholar
  370. Roda A, Piazza F, Baraldini M (1998) Separation techniques for bile salts analysis. J. Chromatogr. B Biomed. Sci. Appl. 717(1–2); 263–278.Google Scholar
  371. Roda A, Cerrè C, Simoni P, Polimeni C, Vaccari C, Pistillo A (1992) Determination of free and amidated bile acids by high-performance liquid chromatography with evaporative light-scattering mass detection. J. Lipid Res. 33(9); 1393–1402.Google Scholar
  372. Roda A, Gioacchini AM, Cerrè C, Baraldini M (1995) High-performance liquid chromatographic-electrospray mass spectrometric analysis of bile acids in biological fluids. J. Chromatogr. B Biomed. Appl. 665(2); 281–294.Google Scholar
  373. Roda A, Kricka LJ, DeLuca M, Hofmann AF (1982) Bioluminescence measurement of primary bile acids using immobilized 7α-hydroxysteroid dehydrogenase: application to serum bile acids. J. Lipid Res. 23(9); 1354–1361.Google Scholar
  374. Roda A, Roda E, Aldini R, Festi D, Mazzella G, Sama C, Barbara L (1977) Development, validation, and application of a single-tube radioimmunoassay for cholic and chenodeoxycholic conjugated bile acids in human serum. Clin. Chem. 23(11); 2107–2113.Google Scholar
  375. Rodrigues CM, Setchell KDR (1996) Performance characteristics of reversed-phase bonded silica cartridges for serum bile acid extraction. Biomed. Chromatogr. 10(1); 1–5.Google Scholar
  376. Rodrigues CM, Kren BT, Steer CJ, Setchell KDR (1996) Formation of Δ22-bile acids in rats is not gender specific and occurs in the peroxisome. J. Lipid Res. 37(3); 540–550.Google Scholar
  377. Rossi SS, Converse JL, Hofmann AF (1987) High pressure liquid chromatographic analysis of conjugated bile acids in human bile: simultaneous resolution of sulfated and unsulfated lithocholyl amidates and common conjugated bile acids. J. Lipid Res. 28; 589–595.Google Scholar
  378. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72; 137–174.Google Scholar
  379. Russell DW, Setchell KDR (1992) Bile acid biosynthesis. Biochemistry. 31; 4737–4749.Google Scholar
  380. Sakakura H, Kimura N, Takeda H, Komatsu H, Ishizaki K, Nagata S (1998) Simultaneous determination of bile acids in rat liver tissue by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 718(1); 33–40.Google Scholar
  381. Sakakura H, Suzuki M, Kimura N, Takeda H, Nagata S, Maeda M (1993) Simultaneous determination of bile acids in rat bile and serum by high-performance liquid chromatography. J. Chromatogr. 621(2); 123–131.Google Scholar
  382. Scalia S (1990) Group separation of free and conjugated bile acids by pre-packed anion-exchange cartridges. J. Pharm. Biomed. Anal. 8(3); 235–241.Google Scholar
  383. Scalia S (1995) Bile acid separation. J. Chromatogr. B Biomed. Appl. 671(1–2); 299–317.Google Scholar
  384. Scalia S, Pazzi P (1990) Group separation of non-sulfated and 3-sulfated bile acids by disposable anion-exchange cartridges. Chromatographia. 30; 377–381.Google Scholar
  385. Scalia S, Pazzi P (1994) HPLC assay of conjugated bile acids in human fluids using on-line sample pretreatment on a standard isocratic chromatograph. Clin. Chim. Acta. 224(2); 181–190.Google Scholar
  386. Schalm SW, van Berge-Henegouwen GP, Hofmann AF, Cowen AE, Turcotte J (1977) Radioimmunoassay of bile acids: development, validation, and preliminary application of an assay for conjugates of chenodeoxycholic acid. Gastroenterology. 73(2); 285–290.Google Scholar
  387. Schoelmerich J, Hinkley JE, Macdonald IA, Hofmann AF, DeLuca M (1983) A bioluminescent assay for 12α-hydroxy bile acids using immobilized enzymes. Anal. Biochem. 133(1); 244–250.Google Scholar
  388. Schteingart CD, Hagey LR, Setchell KDR, Hofmann AF (1993) 5β-Hydroxylation by the liver. Identification of 3,5,7-trihydroxy nor-bile acids as new major biotransformation products of 3,7-dihydroxy nor-bile acids in rodents. J. Biol. Chem. 268(15); 11239–11246.Google Scholar
  389. Scotti E, Gilardi F, Godio C, Gers E, Krneta J, Mitro N, De Fabiani E, Caruso D, Crestani M (2007) Bile acids and their signaling pathways: eclectic regulators of diverse cellular functions. Cell Mol. Life Sci. 64(19–20); 2477–2491.Google Scholar
  390. Setchell KDR, Matsui A (1983) Serum bile acid analysis. Clin. Chim. Acta. 127(1); 1–17.Google Scholar
  391. Setchell KDR, Street JM (1987) Inborn errors of bile acid synthesis. Semin. Liver Dis. 7(2); 85–99.Google Scholar
  392. Setchell KDR, Vestal CH (1989) Thermospray ionization liquid chromatography–mass spectrometry: a new and highly specific technique for the analysis of bile acids. J. Lipid Res. 30(9); 1459–1469.Google Scholar
  393. Setchell KDR, Heubi JE (2006) Defects in bile acid biosynthesis-diagnosis and treatment. J. Pediatr. Gastroenterol. Nutr. 43(Suppl 1); S17–S22.Google Scholar
  394. Setchell KDR, Lawson AM (1989) Bile Acids. In Mass Spectrometry. Clinical Biochemistry – Principles, Methods, Applications (ed Lawson AM). Walter de Gruyter, Berlin, New York. pp. 54–125.Google Scholar
  395. Setchell KDR, O’Connell NC (1994) Inborn errors of bile acid metabolism. In Liver Disease in Children (ed Suchy F). Mosby-Yearbook, St. Louis, MO. pp. 835–851.Google Scholar
  396. Setchell KDR, O’Connell NC (2007) Disorders of bile acid synthesis and metabolism: a metabolic basis for liver disease. In Liver Disease in Children (eds Suchy FJ, Sokol RJ, Balistreri WF), 3rd edn. Lippincott Williams & Wilkins, Philadelphia, PA. pp. 736–766.Google Scholar
  397. Setchell KDR, O’Connell NC (2008) Disorders of bile acid systhesis and metabolism. In Walker’s Pediatric Gastrointestinal Disease (eds Kleinman RE, Sanderson IR, Goulet O, Sherman PM, Meili-Vergani G, Shneider BL), 5th edn. B.C. Decker, Hamilton, Ontario, Canada, pp. 1069–1094.Google Scholar
  398. Setchell KDR, Street JM, Sjövall J (1988) Fecal bile acids. In The Bile Acids: Methods and Applications (eds Setchell KDR, Kritchevsky D, Nair PP). Plenum, New York. pp. 441–570.Google Scholar
  399. Setchell KDR, Almé B, Axelson M, Sjövall J (1976) The multicomponent analysis of conjugates of neutral steroids in urine by lipophilic ion exchange chromatography and computerised gas chromatography–mass spectrometry. J. Steroid Biochem. 7; 615–629.Google Scholar
  400. Setchell KDR, Bragetti P, Zimmer-Nechemias L, Daugherty C, Pelli MA, Vaccaro R, Gentili G, Distrutti E, Dozzini G, Morelli A, et al. (1992) Oral bile acid treatment and the patient with Zellweger syndrome. Hepatology. 15(2); 198–207.Google Scholar
  401. Setchell KDR, Dumaswala R, Colombo C, Ronchi M (1988) Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J. Biol. Chem. 263(32); 16637–16644.Google Scholar
  402. Setchell KDR, Heubi JE, Bove KE, O’Connell NC, Brewsaugh T, Steinberg SJ, Moser A, Squires JRH (2003) Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology. 124; 217–232.Google Scholar
  403. Setchell K, Heubi J, O’Connell N, Hofmann A, Lavine J (1997) Identification of a unique inborn error in bile acid conjugation involving a deficiency in amidation. In Bile Acids in Hepatobiliary Diseases: Basic Research and Clinical Application (eds Paumgartner G, Stiehl A, Gerok W). Kluwer, Dordrecht, Boston, London. pp. 43–47.Google Scholar
  404. Setchell KDR, Ives JA, Cashmore GC, Lawson AM (1987) On the homogeneity of stools with respect to bile acid composition and normal day-to-day variations: a detailed qualitative and quantitative study using capillary column gas chromatography–mass spectrometry. Clin. Chim. Acta. 162(3); 257–275.Google Scholar
  405. Setchell KDR, Lawson AM, Blackstock EJ, Murphy GM (1982) Diurnal changes in serum unconjugated bile acids in normal man. Gut. 23(8); 637–642.Google Scholar
  406. Setchell KDR, Lawson AM, Tanida N, Sjövall J (1983) General methods for the analysis of meta-bolic profiles of bile acids and related compounds in feces. J. Lipid Res. 24(8); 1085–1100.Google Scholar
  407. Setchell KDR, Schwarz M, O’Connell NC, Lund EG, Davis DL, Lathe R, Thompson HR, Weslie Tyson R, Sokol RJ, Russell DW (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J. Clin. Invest. 102(9); 1690–1703.Google Scholar
  408. Setchell KDR, Suchy FJ, Welsh MB, Zimmer-Nechemias L, Heubi JE, Balistreri WF (1988) Δ4–3-Oxosteroid 5β-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J. Clin. Invest. 82; 2148–2157.Google Scholar
  409. Setchell KDR, Yamashita H, Rodrigues CM, O’Connell NC, Kren BT, Steer CJ: (1995) Δ22-Ursodeoxycholic acid, a unique metabolite of administered ursodeoxycholic acid in rats, indicating partial β-oxidation as a major pathway for bile acid metabolism. Biochemistry. 34(13); 4169–4178.Google Scholar
  410. Shaikh B, Pontzer NJ, Molina JE, Kelsey MI (1978) Separation and detection of uv-absorbing derivatives of fecal bile acid metabolites by high-performance liquid chromatography. Anal. Biochem. 85(1); 47–55.Google Scholar
  411. Shalon Y, Elliott WH (1976) Bile acids. LII. The synthesis of 24-nor-5α-cholic acid and its 3beta-isomer. Steroids. 28(5); 655–667.Google Scholar
  412. Shan H, Pang J, Li S, Chiang TB, Wilson WK, Schroepfer GJ, Jr. (2003) Chromatographic behavior of oxygenated derivatives of cholesterol. Steroids. 68(3); 221–233.Google Scholar
  413. Shaw R, Elliott WH (1976) Bile acids. XLVIII. Separation of conjugated bile acids by high-pressure liquid chromatography. Anal. Biochem. 74(2); 273–281.Google Scholar
  414. Shaw R, Elliott WH (1978) Bile acids. LIV-mass spectra of conjugated bile acids. Biomed. Mass Spectrom. 5(7); 433–438.Google Scholar
  415. Shefer S, Salen G, Batta AK, Honda A, Tint GS, Irons M, Elias ER, Chen TC, Holick MF (1995) Markedly inhibited 7-dehydrocholesterol Δ7-reductase activity in liver microsomes from Smith–Lemli–Opitz homozygotes. J. Clin. Invest. 96(4); 1779–1785.Google Scholar
  416. Shimada K, Komine Y, Mitamura K (1991) High-performance liquid chromatographic separation of bile acid pyrenacyl esters with cyclodextrin-containing mobile phase. J. Chromatogr. 565(1–2); 111–118.Google Scholar
  417. Shimada K, Mitamura K, Higashi T (2001) Gas chromatography and high performance liquid chromatography of natural steroids. J. Chromatogr. A. 935; 141–172.Google Scholar
  418. Shimada K, Hasegawa M, Goto J, Nambara T (1978) Studies on steroids. CXXVIII. Separation and determination of bile acids by high-performance liquid chromatography. J. Chromatogr. 152(2); 431–436.Google Scholar
  419. Shimazu K, Kuwabara M, Yoshii M, Kihira K, Takeuchi H, Nakano I, Ozawa S, Onuki M, Hatta Y, Hoshita T (1986) Bile alcohol profiles in bile, urine, and feces of a patient with cerebrotendinous xanthomatosis. J. Biochem. 99(2); 477–483.Google Scholar
  420. Shinka T, Inoue Y, Ohse M, Kuhara T (2007) Simple and quantitative analysis of urinary sulfated tauro- and glycodihydroxycholic acids in infant with cholestasis by electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 855(1); 104–108.Google Scholar
  421. Shoda J, Axelson M, Sjövall J (1993) Synthesis of potential C27-intermediates in bile acid biosynthesis and their deuterium-labeled analogs. Steroids. 58(3); 119–125.Google Scholar
  422. Shoda J, Mahara R, Osuga T, Tohma M, Ohnishi S, Miyazaki H, Tanaka N, Matsuzaki Y (1988) Similarity of unusual bile acids in human umbilical cord blood and amniotic fluid from newborns and in sera and urine from adult patients with cholestatic liver diseases. J. Lipid Res. 29(7); 847–858.Google Scholar
  423. Shoda J, Osuga T, Mahara R, Tohma M, Matsuura K, Tanaka N, Matsuzaki Y, Miyazaki H (1989) Altered metabolism of bile acids in cholestasis: determination of 1β- and 6α-hydroxylated metabolites. J. Chromatogr. 488(2); 315–328.Google Scholar
  424. Shoda J, Tanaka N, Osuga T, Matsuura K, Miyazaki H (1990) Altered bile acid metabolism in liver disease: concurrent occurrence of C-1 and C-6 hydroxylated bile acid metabolites and their preferential excretion into urine. J. Lipid Res. 31(2); 249–259.Google Scholar
  425. Simmonds WJ, Korman MG, Go VL, Hofmann AF (1973) Radioimmunoassay of conjugated cholyl bile acids in serum. Gastroenterology. 65(5); 705–711.Google Scholar
  426. Sjövall J (1959) Dietary glycine and taurine conjugation in man. Proc. Soc. Exp. Biol. Med. 100: 676–678.Google Scholar
  427. Sjövall J (1995) Role of alternative pathways in bile acid biosynthesis in liver disease. In Bile Acids in Liver Diseases (eds Paumgartner G, Beuers U). Kluwer, Dordrecht. pp. 31–37.Google Scholar
  428. Sjövall J, Axelson M (1984) Sample work-up by column techniques. J. Pharm. Biomed. Anal. 2(2); 265–280.Google Scholar
  429. Sjövall J, Setchell KDR (1988) Techniques for extraction and group separation of bile acids. In The Bile Acids (eds Setchell KDR, Kritchevsky D, Nair PP ), Vol 4. New York, Plenum. pp. 1–42.Google Scholar
  430. Sjövall J, Vihko R (1966) Chromatography of conjugated steroids on lipophilic Sephadex. Acta Chem. Scand. 20; 1419–1421.Google Scholar
  431. Sjövall J, Eneroth P, Ryhage R (1971) Mass spectra of bile acids. In The Bile Acids. Chemistry, Physiology and Metabolism (eds Nair P, Kritchevsky D) vol 1. Plenum, New York. pp. 209–248.Google Scholar
  432. Sjövall J, Lawson AM, Setchell KDR (1985) Mass spectrometry of bile acids. In Methods in Enzymology (eds Law JH, Rilling HC), Vol 111. Academic, London. pp. 63–113.Google Scholar
  433. Smith DW, Lemli L, Opitz JM (1964) A newly recognized syndrome of multiple congenital anomalies. J. Pediatr. 64; 210–217.Google Scholar
  434. Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang J, Vrieze LA, Anderson KR, Hoye TR (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat. Chem. Biol. 1(6); 324–328.Google Scholar
  435. Spenney JG, Johnson BJ, Hirschowitz BI, Mihas AA, Gibson R (1977) An 125I radioimmunoassay for primary conjugated bile salts. Gastroenterology. 72(2); 305–311.Google Scholar
  436. Stellaard F, Paumgartner G (1987) Quantitation of serum bile acids by isotope dilution with 13C-labelled homologs. Clin. Chim. Acta. 162(1); 45–51.Google Scholar
  437. Stellaard F, Hachey DL, Klein PD (1978) Separation of bile acids as their phenacyl esters by high-pressure liquid chromatography. Anal. Biochem. 87(2); 359–366.Google Scholar
  438. Stellaard F, Schubert R, Paumgartner G (1983) Measurement of bile acid kinetics in human serum using stable isotope labeled chenodeoxycholic acid and capillary gas chromatography electron impact mass spectrometry. Biomed. Mass Spectrom. 10(3); 187–191.Google Scholar
  439. Stellaard F, Langelaar SA, Kok RM, Jakobs C (1989) Determination of plasma bile acids by capillary gas–liquid chromatography–electron capture negative chemical ionization mass fragmentography. J. Lipid Res. 30(10); 1647–1652.Google Scholar
  440. Stellaard F, Sackmann M, Sauerbruch T, Paumgartner G (1984) Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C-labeled bile acids. J. Lipid Res. 25(12); 1313–1319.Google Scholar
  441. Stiehl A (1974) Bile salt sulphates in cholestasis. Eur J. Clin. Invest. 4(1); 59–63.Google Scholar
  442. Stiehl A, Raedsch R, Rudolph G, Czygan P, Walker S (1982) Analysis of bile acid glucuronides in urine: group separation on a lipophilic anion exchanger. Clin. Chim. Acta. 123(3); 275–285.Google Scholar
  443. Strandvik B, Wikström SA (1982) Tetrahydroxylated bile acids in healthy human newborns. Eur. J. Clin. Invest. 12(4); 301–305.Google Scholar
  444. Street JM, Trafford DJ, Makin HL (1985) Extraction and fractionation of bile acids and their conjugates using pre-packed microparticulate silica cartridges (Sep-Pak Sil and Bond-Elut C18). J. Chromatogr. 343(2); 259–270.Google Scholar
  445. Street JM, Trafford DJ, Makin HL (1989) Carrier gas flow-rate and injection system in capillary gas chromatography of unconjugated and glycine-conjugated bile acids. J. Chromatogr. 495; 31–40.Google Scholar
  446. Stroobant V, de Hoffmann E, Libert R, Van Hoof F (1995) Fast-atom bombardment mass spectrometry and low energy collision-induced tandem mass spectrometry of tauroconjugated bile acid anions. J. Am. Soc. Mass Spectrom. 6; 588–596.Google Scholar
  447. Sugiyama K, Okuyama S, Imoto M, Okumura K, Takagi K, Satake T (1986) Clinical evaluation of serum 3b-hydroxy-5-cholenoic acid in hepatobiliary diseases. Gastroenterol. Jpn. 21; 608–616.Google Scholar
  448. Summerfield JA, Billing BH, Shackleton CHL (1976) Identification of bile acids in the serum and urine in cholestasis. Evidence for 6α-hydroxylation of bile acids in man. Biochem. J. 154(2): 507–516.Google Scholar
  449. Swobodnik W, Klüppelberg U, Wechsler JG, Volz M, Normandin G, Ditschuneit H (1985) Rapid and accurate reversed-phase high-performance liquid chromatographic determination of conjugated bile acids in human bile for routine clinical applications. Therapeutic control during gallstone dissolution therapy. J. Chromatogr. 339(2); 263–271.Google Scholar
  450. Szczepanik PA, Hachey DL, Klein PD (1976) Characterization of bile acid methyl ester acetate derivatives using gas–liquid chromatography, electron impact, and chemical ionization mass spectrometry. J. Lipid Res. 17(4); 314–334.Google Scholar
  451. Szczepanik PA, Hachey DL, Klein PD (1978) Evaluation of Poly S-179 as a stationary phase for the gas–liquid chromatography–mass-spectrometry of bile acid methyl ester acetates. J. Lipid Res. 19(2); 280–283.Google Scholar
  452. Tagliacozzi D, Mozzi AF, Casetta B, Bertucci P, Bernardini S, Di Ilio C, Urbani A, Federici G (2003) Quantitative analysis of bile acids in human plasma by liquid chromatography-electro-spray tandem mass spectrometry: a simple and rapid one-step method. Clin. Chem. Lab. Med. 41(12); 1633–1641.Google Scholar
  453. Takeuchi T, Saito S, Ishii D (1983) Micro high-performance liquid chromatographic separations of bile acids. J. Chromatogr. 258; 125–134.Google Scholar
  454. Takikawa H, Otsuka H, Beppu T, Seyama Y, Yamakawa T (1982) Quantitative determination of bile acid glucuronides in serum by mass fragmentography. J. Biochem. 92(4); 985–998.Google Scholar
  455. Tandon R, Axelson M, Sjövall J (1984) Selective liquid chromatographic isolation and gas chromatographic-mass spectrometric analysis of ketonic bile acids in faeces. J. Chromatogr. 302; 1–14.Google Scholar
  456. Thenot J-P, Horning EC (1972a) MO-TMS derivatives of human urinary steroids for GC and GC-MS studies. Anal. Lett. 5; 21–33.Google Scholar
  457. Thenot J-P, Horning EC (1972b) GC/MS derivatization studies: the formation of dexamethasone MO-TMS. Anal. Lett. 5; 905–913.Google Scholar
  458. Thomassen PA (1979) Urinary bile acids in late pregnancy and in recurrent cholestasis of pregnancy. Eur. J. Clin. Invest. 9(6); 425–432.Google Scholar
  459. Thompson MB, Davis DG, Morris RW (1993) Taurine conjugate of 3α,6β,7β-trihydroxy-5β,22-cholen-24-oic acid (tauro-Δ22-β-muricholate): the major bile acid in the serum of female rats treated with alpha-naphthylisothiocyanate and its secretion by liver slices. J. Lipid Res. 34(4):553–561.Google Scholar
  460. Tint GS, Dayal B, Batta AK, Shefer S, Cheng FW, Salen G, Mosbach EH (1978) Gas–liquid chromatography–mass spectrometry of trimethylsilyl ethers of bile alcohols. J. Lipid Res. 19(8); 956–966.Google Scholar
  461. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, Salen G (1994) Defective cholesterol biosynthesis associated with the Smith–Lemli–Opitz syndrome [see comments]. N. Engl. J. Med. 330(2); 107–113.Google Scholar
  462. Tohma M, Mahara R, Takeshita H, Kurosawa T, Ikegawa S, Nittono H (1985) Synthesis of the 1β-hydroxylated bile acids and identification of 1β,3α,7α-trihydroxy- and 1β,3α,7α,12α-tetrahydroxy-5β-cholan-24-oic acids in human meconium. Chem. Pharm. Bull. (Tokyo). 33(7); 3071–3073.Google Scholar
  463. Tohma M, Mahara R, Takeshita H, Kurosawa T, Ikegawa S (1986) Synthesis of the 1β-hydroxylated bile acids, unusual bile acids in human biological fluids. Chem. Pharm. Bull. (Tokyo). 34(7): 2890–2899.Google Scholar
  464. Tohma M, Wajima H, Mahara R, Kurosawa T, Makino I (1984) Determination of 3β-hydroxy-5-cholen-24-oic acid and its sulfate in human serum by gas chromatography–mass spectrometry. Steroids. 44(1); 47–55.Google Scholar
  465. Tomer KB, Jensen NJ, Gross ML, Whitney J (1986) Fast atom bombardment combined with tandem mass spectrometry for determination of bile salts and their conjugates. Biomed Environ Mass Spectrom. 13(6); 265–272.Google Scholar
  466. Tomer KB, Moseley MA, Deterding LJ, Parker CE (1994) Capillary liquid chromatography/mass spectrometry. Mass Spectrom. Rev. 13; 431–457.Google Scholar
  467. Torchia EC, Labonte ED, Agellon LB (2001) Separation and quantitation of bile acids using an isocratic solvent system for high performance liquid chromatography coupled to an evaporative light scattering detector. Anal. Biochem. 298(2); 293–298.Google Scholar
  468. Tripodi VP, Lucangioli SE, Scioscia SL, Carducci CN (2003) Simultaneous determination of free and conjugated bile acids in serum by cyclodextrin-modified micellar electrokinetic chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 785(1); 147–155.Google Scholar
  469. Tsaconas C, Padieu P, Maume G, Chessebeuf M, Hussein N, Pitoizet N (1986) Gas chromatography–mass spectrometry of isobutyl ester trimethylsilyl ether derivatives of bile acids and application to the study of bile sterol and bile acid biosynthesis in rat liver epithelial cell lines. Anal. Biochem. 157(2); 300–315.Google Scholar
  470. Tserng KY, Klein PD (1977) An improved synthesis of 24-13C-labeled bile acids using formyl esters and a modified lead tetraacetate procedure. J. Lipid Res. 18(3); 400–403.Google Scholar
  471. Une M, Hoshita T (1994) Natural occurrence and chemical synthesis of bile alcohols, higher bile acids, and short side chain bile acids. Hiroshima J. Med. Sci. 43(2); 37–67.Google Scholar
  472. Une M, Kuramoto T, Hoshita T (1983) The minor bile acids of the toad, Bufo vulgaris formosus. J. Lipid Res. 24(11); 1468–1474.Google Scholar
  473. Une M, Harada J, Mikami T, Hoshita T (1996) High-performance liquid chromatographic separation of ultraviolet-absorbing bile alcohol derivatives. J. Chromatogr. B Biomed. Appl. 682(l); 157–161.Google Scholar
  474. Une M, Matsumoto N, Kihira K, Yasuhara M, Kuramoto T, Hoshita T (1980) Bile salts of frogs: a new higher bile acid, 3α,7α,12α,26-tetrahydroxy-5β-cholestanoic acid from the bile Rana plancyi. J. Lipid Res. 21(3); 269–276.Google Scholar
  475. Une M, Shinonaga Y, Matoba N, Kuroki S, Kihira K, Hoshita T (1986) Identification of new bile alcohols, 5β-cholestane-3α,7α,24,26-tetrol, 5β-cholestane-3α,7α,25,26-tetrol, and 5β-cholestane-3α,7α,26,27-tetrol in human gallbladder bile. J. Lipid Res. 27(12); 1318–1323.Google Scholar
  476. Une M, Tazawa Y, Tada K, Hoshita T (1987) Occurrence of both (25R)- and (25S)-3α,7α,12α-hydroxy-5β-cholestanoic acids in urine from an infant with Zellweger’s Syndrome. J. Biochem. 102; 1525–1530.Google Scholar
  477. Une M, Tsujimura K, Kihira K, Hoshita T (1989) Identification of (22R)-3α,7α,12α,22- and (23R)-3α,7α,12α,23-tetrahydroxy-5β-cholestanoic acids in urine from a patient with Zellweger’s syndrome. J. Lipid Res. 30(4); 541–547. Google Scholar
  478. Uusijärvi J, Egestad B, Sjövall J (1989) Manual and automated enrichment procedures for biological samples using lipophilic gels. J. Chromatogr. 488(1); 87–104.Google Scholar
  479. Van Veldhoven PP, Croes K, Asselberghs S, Herdewijn P, Mannaerts GP (1996) Peroxisomal β oxidation of 2-methyl-branched chain acyl-CoA esters: stereospecific recognition of the 25-methyl compounds by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase. FEBS Lett. 388; 80–84.Google Scholar
  480. Vertzoni M, Archontaki H, Reppas C (2008) Determination of intralumenal individual bile acids by HPLC with charged aerosol detection. J. Lipid Res. 49; 2690–2695.Google Scholar
  481. Vlahcevic ZR, Cronholm T, Curstedt T, Sjövall J (1980) Biosynthesis of 5α- and 5β-cholanoic acid derivatives during metabolism of [1,1-2H]- and [2,2,2-2H]ethanol in the rat. Biochim. Biophys. Acta. 618(3); 369–377.Google Scholar
  482. Wahlén E, Egestad B, Strandvik B, Sjövall J (1989) Ketonic bile acids in urine of infants during the neonatal period. J. Lipid Res. 30(12); 1847–1857.Google Scholar
  483. Wahlén E, Tamasawa N, Ichimiya H, Egestad B, Sjövall J (1994) Conditions for solid-phase extraction of urinary bile acids with octadecylsilane-bonded silica. J. Lipid Res. 35(10): 1902–1906.Google Scholar
  484. Wang GF, Stacey NH, Earl J (1990) Determination of individual bile acids in serum by high performance liquid chromatography. Biomed. Chromatogr. 4(4); 136–140.Google Scholar
  485. Warrack BM, DiDonato GC (1993) Ion spray liquid chromatography/mass spectrometric characterization of bile acids. Biol. Mass Spectrom. 22; 101–111.Google Scholar
  486. Watkins JB, Ingall D, Szczepanik P, Klein PD, Lester R (1973) Bile-salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technic. N. Engl. J. Med. 288(9); 431–134.Google Scholar
  487. Whitney J, Lewis S, Straub KM, Thaler MM, Burlingame AL (1981) Analysis of conjugated bile salts in human duodenal bile using fast atom bombardment and field desorption mass spectrometry. Koenshu-lyo Masu Keenkyukai. 6; 33–44.Google Scholar
  488. Wietholtz H, Marschall H-U, Sjövall J, Matern S (1996) Stimulation of bile acid 6α-hydroxylation by rifampin. J. Hepatol. 24(6); 713–718.Google Scholar
  489. Williams JR, Gong H (2004) Isolation and synthesis of shark-repelling saponins. Lipids. 39(8): 795–799.Google Scholar
  490. Wolthers BG, Walrecht HT, van der Molen JC, Nagel GT, Van Doormaal JJ, Wijnandts PN (1991) Use of determinations of 7-lathosterol (5α-cholest-7-en-3β-ol) and other cholesterol precursors in serum in the study and treatment of disturbances of sterol metabolism, particularly cerebrotendinous xanthomatosis. J. Lipid Res. 32(4); 603–612.Google Scholar
  491. Yanagisawa J, Akashi Y, Miyazaki H, Nakayama F (1984) Critical evaluation of the existence of so-called tissue-bound lithocholate in human liver tissue by selected ion monitoring. J. Lipid Res. 25(11); 1263–1271.Google Scholar
  492. Yanagisawa J, Itoh M, Ishibashi M, Miyazaki H, Nakayama F (1980) Microanalysis of bile acid in human liver tissue by selected ion monitoring. Anal. Biochem. 104(1); 75–86.Google Scholar
  493. Yang Y, Griffiths WJ, Nazer H, Sjövall J (1997) Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography–mass spectrometry using fast atom bombardment or electrospray ionization and collision-induced dissociation. Biomed. Chromatogr. 11(4): 240–255.Google Scholar
  494. Yousef IM, Fisher MM, Myher JJ, Kuksis A (1976) Superior gas–liquid chromatography of methyl cholanoate acetates on cyanopropylphenylsiloxane liquid phases. Anal. Biochem. 75(2); 538–544.Google Scholar
  495. Zhang RW, Barnes S, Diasio RB (1991) Disposition and metabolism of 2-fluoro-β-alanine conjugates of bile acids following secretion into bile. Biochim. Biophys. Acta. 1096(3); 179–186.Google Scholar
  496. Zhang J, Larsson O, Sjövall J (1995) 7α-Hydroxylation of 25-hydroxycholesterol and 27-hydroxy-cholesterol in human fibroblasts. Biochim. Biophys. Acta. 1256(3); 353–359.Google Scholar
  497. Zhang J, Griffiths WJ, Bergman T, Sjövall J (1993) Derivatization of bile acids with taurine for analysis by fast atom bombardment mass spectrometry with collision-induced fragmentation. J. Lipid Res. 34(11); 1895–1900.Google Scholar
  498. Zhang J, Akwa Y, el-Etr M, Baulieu EE, Sjövall J (1997) Metabolism of 27-, 25- and 24-hydroxycholesterol in rat glial cells and neurons. Biochem. J. 322(Pt 1); 175–184.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jan Sjövall
    • 1
    Email author
  • William J. Griffiths
    • 2
  • Kenneth D. R. Setchell
    • 3
  • Nariyasu Mano
    • 4
  • Junichi Goto
    • 5
  1. 1.Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
  2. 2.Institute of Mass Spectrometry, School of Medicine, Grove BuildingSwansea UniversitySingleton ParkUK
  3. 3.Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center and Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA
  4. 4.Department of Pharmaceutical Sciences, Tohoku University Hospital, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  5. 5.Tohoku University HospitalSendaiJapan

Personalised recommendations