Advertisement

Analysis of Vitamins D, Their Metabolites and Analogues

  • Hugh L. J. MakinEmail author
  • Glenville Jones
  • Martin Kaufmann
  • Martin J. Calverley
Chapter

Abstract

The analysis of vitamins D and their metabolites and analogues has been reviewed by us on two occasions (Makin et al., 1995; Jones and Makin, 2000) over the last 10-15 years. In this chapter, we have drawn heavily on the 2000 review, up-dating it to take account of the developments in methodology that have occurred in the intervening years, but including elements of our 1995 review so that the reader can get a picture of the historical context as well as the modern developments.

References

  1. Aagaard G, Andersen NR, Schaumburg K (1996) Determination of protection group position in silylated vitamin D analogs by proton-detected one-dimensional 1H-29Si correlation. Magn. Reson. Chem. 34; 945–947.Google Scholar
  2. Aberhart DJ, Hsu AC-T (1976) Studies on the adduct of 4-phenyl-l,2,4-triazoline-3,5-dione with vitamin D3. J. Org. Chem. 41; 2098–2102.Google Scholar
  3. Adams JS, Clemens TL, Holick MR (1981) Silica Sep-Pak preparative chromatography for vitamin D and its metabolites. J. Chromatogr. 226; 198–201.Google Scholar
  4. Adams JS, Gacad MA, Singer FR, Sharma OR (1986) Production of 1,25-dihydroxyvitamin D3 by pulmonary alveolar macrophages from patients with sarcoidosis. Ann. NY Acad. Sci. 465; 587–594.Google Scholar
  5. Agarwal VK (1990) A new procedure for the isomerisation of vitamin D and its metabolites. J. Steroid Biochem. Mol. Biol. 35; 149–150.Google Scholar
  6. Akiyoshi-Shibata M, Sakaki T, Ohyama Y, Noshiro M, Okuda K, Yabusaki Y (1994) Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. A study with the mature enzyme expressed in Escherichia coli. Eur. J. Biochem. 224; 335–343.Google Scholar
  7. Aloia JF, Patel M, Dimaano R, Li-Ng M, Talwar SA, Mikhail M, Pollack S, Yeh JK (2008) Vitamin D intake to attain a desired serum 25 hydroxyvitamin D concentration. Am. J. Clin. Nutr. 87; 1952–1958.Google Scholar
  8. Alvarez JC, De Mazancourt P (2001) Rapid and sensitive high-performance liquid chromatographic method for simultaneous determination of retinol, alpha-tocopherol, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human plasma with photodiode-array ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 755; 129–135.Google Scholar
  9. Andersen NR, Buchwald FA, Grue-Soerensen G (1992) Identification and synthesis of a metabolite of KH 1060, a new potent lα,25-dihydroxyvitamin D, analog. Bioorg. Med. Chem. Lett. 2; 1713–1716.Google Scholar
  10. Andersson S, Davis DL, Dahlback H, Jornvall H, Russell DW (1989) Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264; 8222–8229.Google Scholar
  11. Andreassen TK (2006) The role of plasma-binding protein in the cellular uptake of lipophylic vitamins and steroids. Harm. Metab. Res. 38; 279–290.Google Scholar
  12. Arai MA, Kittaka A (2006) Novel 2 alkyl-lα,25-dihydroxy-19 norvitamin D3: efficient synthesis with Julia olefination evaluation of biological activity and development of new analyzing system for co-activator recruitment. Anticancer Res. 26; 2621–2632.Google Scholar
  13. Araya Z, Hosseinpour F, Bodin K, Wikvall K (2003) Metabolism of 25-hydroxyvitamin D3 by microsomal and mitochondrial vitamin D3 25-hydroxylases (CYP2D25 and CYP27A1): a novel reaction by CYP27A1. Biochim. Biophys. Acta. 1632; 40–47.Google Scholar
  14. Armas LA, Hoilis LB WmJeaney RP (2004) Vitamin D, is much less effective than vitamin D, in humans. J. Clin. Endocrinol. Metab. 89; 5387–5391.Google Scholar
  15. Armbrecht HJ, Hodam TL, Boltz MA (2003) Hormonal regulation of 25-hydroxyvitamin D3-lα-hydroxylase and 24-hydroxylase gene transcription in opossum kidney cells. Arch. Biochem.Biophys. 409; 298–304.Google Scholar
  16. Armbruster FP, Friedl S, Karmatschek M, Heckl-Ostreicher B, Reichel H, Woloszczuk W (2000) Development of a novel ELISA for 1,25 dihydroxyvitamin D. Clin. Lab. 46; 165–166.Google Scholar
  17. Aronov PA, Hall LM, Dettmer K, Stephensen CB, Hammock B (2008) Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 391; 1917–1930.Google Scholar
  18. Astecker N, Bobrovnikova EA, Omdahl JL, Gennaro L, Vouros P, Schuster I, Uskokovic MR, Ishizuka S, Wang S, Reddy GS (2004) C-25 hydroxylation of lα,24(R)-dihydroxyvitamin D3 is catalyzed by 25-hydroxyvitamin D3 -24-hydroxylase (CYP24A1): metabolism studies with human keratinocytes and rat recombinant CYP24A1. Arch. Biochem. Biophys. 431; 261–270.Google Scholar
  19. Axelson M (1985) 25-Hydroxyvitamin D, 3-sulphate is a major circulating form of vitamin D in man. FEBS Lett. 191; 171–175.Google Scholar
  20. Baggiolini EG, Wovkulich PM, Iacobelli JA, Hennessy BM, Uskokovic MR (1982) Preparation of 1α -hydroxylated vitamin D metabolites by total synthesis. In Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism (eds Norman AW, Schaefer K, von Herrath D, Grigoleit H-G). De Gruyter, Berlin, pp. 1089–1100.Google Scholar
  21. Baggiolini EG, Partridge JJ, Shiuey S-J, Truitt GA, Uskokovic MR (1989) Cholecalciferol 23-yne derivatives, their pharmaceutical compositions, their use in the treatment of calcium-related diseases, and their antitumor activity, US 4 804 502. Chem. Abstr. 111; 58160d.Google Scholar
  22. Baillie TA, Brooks CJ, Middleditch BS (1972) Comparison of corticosteroid derivatives by gas chromatography-mass spectrometry. Anal. Chem. 44; 30–37.Google Scholar
  23. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL (1981) Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N. Engl. J. Med. 305; 440–443.Google Scholar
  24. Barton DH, Hesse RH, Pechet MM, Rizzardo E (1973) A convenient synthesis of lα-hydroxy vitamin D. J. Am. Chem. Soc. 95; 2748–2749.Google Scholar
  25. Beckman MJ, Tadikonda P, Werner E, Prahl J, Yamada S, DeLuca HE (1996) Human 25-hydroxv-vitamin D3 -24-hydroxylase, a multicatalytic enzyme. Biochemistry. 35; 8465–8472.Google Scholar
  26. Bell PH (1978) 1. The chemistry of the Vitamins D. In Vitamin D (ed Lawson DEM). Academic Press, London.Google Scholar
  27. Belsey R, Deluca HF, Potts JT Jr (1971) Competitive binding assay for vitamin D and 25-OH vitamin D. J. Clin. Endocrinol. Metab. 33; 554–557.Google Scholar
  28. Belsey RE, DeLuca HF, Potts JT Jr (1974) A rapid assay for 25-OH-vitamin D, without preparative chromatography. J. Clin. Endocrinol. Metab. 38; 1046–1051.Google Scholar
  29. Berginer VM, Shany S, Alkalay D, Berginer J, Dekel S, Salen G, Tint GS, Gazit D (1993) Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis. Metabolism. 42; 69–74.Google Scholar
  30. Berlin T, Emtestam L, Bjorkhem I (1986a) Studies on the relationship between vitamin D3 status and urinary excretion of calcium in healthy subjects: effects of increased levels of 25-hydroxyvitamin D3. Scand. J. Clin. Lab. Invest. 46; 723–739.Google Scholar
  31. Berlin T, Holmberg I, Bjorkhem I (1986b) High circulating levels of 25-hydroxyvitamin D3 in renal stone formers with hyperabsorptive hypercalciuria. Scand. J. Clin. Lab. Invest. 46; 367–374.Google Scholar
  32. Berman E, Luz Z, Mazur Y, Sheves M (1977) Conformational analysis of vitamin D and analogs. 1. Carbon-13 and proton nuclear magnetic resonance study. J. Org. Chem. 42; 3225–3330.Google Scholar
  33. Berman E, Friedman N, Mazur Y, Sheves M (1978) Conformational equilibriums in vitamin D. Synthesis and proton and carbon-13 dynamic nuclear magnetic resonance study of 4,4-dimethyl-vitamin D3, 4,4-dimethyl-lα-hydroxyvitamin D3, and 4,4-dimethyl-lα-hydroxyepivitamin D3. J. Am. Chem. Soc. 100; 5626–5634.Google Scholar
  34. Bhattacharyya MH, DeLuca HF (1973) Comparative studies on the 25-hydroxylation of vitamin D3, and dihydrotachysterol3. J. Biol. Chem. 248; 2974–2977.Google Scholar
  35. Bikle DD (1983) Assay of Calcium Regulating Hormones. Springer, New York.Google Scholar
  36. Binderup E, Calverley MJ, Binderup L (1991) Synthesis and biological activity of lα -hydroxylated vitamin D analogues with poly-unsaturated side chains. In Vitamin D: Gene Regulation, Structure–Function Analysis and Clinical Application (eds Norman AW, Bouillon R, Thomsett M). De Gruyter, Berlin, pp. 192–193.Google Scholar
  37. Binderup L, Kragballe K (1992) Origin of the use of calcipotriol in psoriasis treatment. Rev.Contemp. Pharmaco. 3; 357–365.Google Scholar
  38. Binkley N (2006) Vitamin D: clinical measurement and use. J. Musculoskelet. Neuronal. Interact.6; 338–340.Google Scholar
  39. Binkley N, Krueger D, Cowgill CS, Plum L, Lake E, Hansen KE, DeLuca HF, Drezner MK. (2004) Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization. J. Clin. Endocrinol. Metab. 89; 3152–3157.Google Scholar
  40. Binkley N, Novotny R, Krueger D, Kawahara T, Daida YG, Lensmeyer G, Hollis BW, Drezner MK (2007) Low vitamin D status despite abundant sun exposure. J. Clin. Endocrinol. Metab. 92; 2130–2135. Epub Apr 10, 2007.Google Scholar
  41. Binkley N, Krueger D, Gemar D, Drezner MK (2008) Correlation among 25-hydroxy-vitamin D assays. J. Clin. Endocrinol. Metab. 93; 1804–1808.Google Scholar
  42. Binkley N, Krueger D, Lensmeyer G (2009) 25-hydroxyvitamin D measurement, 2009: a review for clinicians. J. Clin. Densitometry. 12; 417–427.Google Scholar
  43. Bischoff-Ferrari HA (2007) The 25-hydroxyvitamin D threshold for better health. J. Steroid Biochem. Mol. Biol. 103; 614–619.Google Scholar
  44. Bischoff-Ferrari HA (2008) Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv. Exp. Med. Biol. 624; 55–71.Google Scholar
  45. Bischoff-Ferrari HA, Dawson-Hughes B (2007) Where do we stand on vitamin D? Bone. 41; S13–S19.Google Scholar
  46. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004a) Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am. J. Med. 116; 634–639.Google Scholar
  47. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B. (2004b) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am. J. Clin. Nutr. 80; 752–758.Google Scholar
  48. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am. J. Clin. Nutr. 84; 18–28. Erratum in: Ibid. 84; 1253. dosage error in abstract.Google Scholar
  49. Bishop JE, Norman AW, Coburn JW, et al. (1980) Studies on the metabolism of calciferol XVI. Determination of the concentration of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in a single two millilitre plasma sample. Miner. Electrol. Metab. 3; 181–189.Google Scholar
  50. Bishop JE, Collins ED, Okamura WH, Norman AW (1994) Profile fo ligand specificity of the vitamin D binding protein for 1 alpha, 25-dihydroxyvitamin D3 and its analogs. J. Bone Miner.Res. 9; 1277–1288.Google Scholar
  51. Bjorkhem I, Holmberg I (1976) A novel specific assay of 25-hydroxyvitamin D. Clin. Chim. Acta. 68; 215–221.Google Scholar
  52. Bjorkhem I, Holmberg I (1980) Mass fragmentographic assay of 25-hydroxyvitamin D3. Methods Enzymol. 67; 385–393.Google Scholar
  53. Bjorkhem I, Larsson A (1978) A specific assay of vitamin D3 in human serum. Clin. Chim. Acta. 88; 559–567.Google Scholar
  54. Bjorkhem I, Holmberg I, Kristiansen T, Pedersen JI (1979) Assay of 1,25-dihydroxyvitamin D3 by isotope dilution - mass fragmentography. Clin. Chem. 25; 584–588.Google Scholar
  55. Blaehr LK, Bjorkling F, Binderup E, Calverley MJ, Kaastrup P (2001) Polyclonal antibodies to EB1089 (seocalcitol), an analog of 1α,25-dihydroxyvitamin D3. Steroids. 66; 539–548.Google Scholar
  56. Blaehr LK, Bjorkling F, Calverley MJ, Binderup E, Begtrup M (2003) Synthesis of novel hapten derivatives of 1α,25-dihydroxyvitamin D3 and its 20-epi analogue. J. Org. Chem. 68; 1367–1375.Google Scholar
  57. Blake CJ (2007) Status of methodology for the determination of fat-soluble vitamins in foods, dietary supplements, and vitamin D premixes. J. AOAC Int. 90; 897–910.Google Scholar
  58. Bligh EG, Dyer WJ (1957) A rapid method for total lipid extraction and purification. Can. J.Biochem. 37; 911–917.Google Scholar
  59. Blunt JW, DeLuca HF, Schnoes HK (1968) 25-Hydroxycholecalciferol: a biologically active metabolite of cholecalciferol. Biochemistry. 7; 3317–3322.Google Scholar
  60. Bognar A (1992) Determination of vitamin D in food using high performance liquid chromatography. Results of collaborating studies of the working group ‘Vitamin Analysis’ according to Sect. 35 of the German Food Act. Z. Lebsensm. Unters. Forsch. 194; 469–475.Google Scholar
  61. Bouillon R, DeMoor P, Baggiolini EG, et al (1980) A radioimmunoassay for 1,25-dihydroxycholecalciferol. Clin. Chem. 26; 562–567.Google Scholar
  62. Bouillon R, van Herck E, Jans I, et al. (1984) Two direct (non-chromatographic) assays for 25-hydroxyvitamin D. Clin. Chem. 30; 1731–1736.Google Scholar
  63. Bouillon R, Okamura WH, Norman AW (1995) Structure–function relationships in the vitamin D endocrine system. Endocr. Rev. 16; 200–257.Google Scholar
  64. Bouillon R, Verlinden L, Eelen G, De Clercq P, Vandewalle M, Mathieu C, Verstuyf A (2005) Mechanisms for the selective action of Vitamin D analogs. J. Steroid Biochem. Mol. Biol. 97; 21–30.Google Scholar
  65. Brandl M, Wu X, Liu Y, Pease J, Holper M, Hooijmaaijer E, Lu Y, Wu P (2003) Chemical reactivity of Ro-26–9228, 1α-fluoro-25-hydroxy-16,23E-diene-26,27-bishomo-20-epi-cholecalciferol in aqueous solution. J. Pharm. Sci. 92; 1981–1989.Google Scholar
  66. Brooks CJ, Harvey DJ (1969) Comparison of various alkylboronic acids for the characterization of corticosteroids by gas-liquid chromatography-mass spectrometry. Biochem. J. 114; 15P.Google Scholar
  67. Brooks CJ, Middleditch BS (1971) The mass spectrometer as a gas chromatographic detector. Clin. Chim. Acta. 34; 145–157.Google Scholar
  68. Brown AJ, Ritter CS, Weiskopf AS, Vouros P, Sasso GJ, Uskokovic MR, Wang G, Reddy GS (2005) Isolation and identification of 1α-hydroxy-3-epi-vitamin D3, a potent suppressor of parathyroid hormone secretion. J. Cell Biochem. 96; 569–578.Google Scholar
  69. Bush IE (1961) The Chromatography of Steroids. Permagon, Oxford.Google Scholar
  70. Byford V, Strugnell S, Coldwell R, Schroeder N, Makin HL, Knutson JC, Bishop CW, Jones G (2002) Use of vitamin D4 analogs to investigate differences in hepatic and target cell metabolism of vitamins D2 and D3. Biochim. Biophys. Acta. 1583; 151–166.Google Scholar
  71. Byrdwell WC, Devries J, Exler J, Harnly JM, Holden JM, Holick MF, Hollis BW, Horst RL, Lada M, Lemar LE, Patterson KY, Philips KM, Tarrago-Trani MT, Wolf WR (2008) Analyzing vitamin D in foods and supplements: methodologic challenges. Am. J. Clin. Nutr. 88; 554S–557S.Google Scholar
  72. Cali JJ, Russell DW (1991) Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J. Biol. Chem. 266; 7774–7778.Google Scholar
  73. Calverley MJ (1987) Synthesis of MC903, a biologically active vitamin D metabolites analogue. Tetrahedron. 43; 4609–4619.Google Scholar
  74. Calverley MJ (2001) Novel side chain analogs of 1α,25-dihydroxyvitamin D3: design and synthesis of the 21,24-methano derivatives. Steroids. 66; 249–255.Google Scholar
  75. Calverley MJ (2003) Adventures in vitamin D chemistry. Chem. Listy. 97; s246–s248.Google Scholar
  76. Calverley MJ, Jones G (1992) Chapter 7-Vitamin D. In Antitumor Steroids (ed Blickenstaff RT). Academic, San Diego, CA, pp. 193–270.Google Scholar
  77. Calverley MJ, Binderup E, Binderup L (1991) The 20-epi modification in the vitamin D series: selective enhancement of “non-classical” receptor mediated effects. In Vitamin D: Gene Regulation, Structure–Function Analysis and Clinical Application (eds Norman AW, Bouillon R, Thomsett M). De Gruyter, Berlin, pp. 163–164.Google Scholar
  78. Calverley MJ, Bretting C, Grue-Soerensen G (1994) Chemistry and biology of highly active 22-oxy analogs of 20-epi calcitriol with very low binding affinity to the vitamin D receptor. In Vitamin D - A Pluripotent Steroid Hormone: Structural Studies, Molecular Endocrinology and Clinical Applications (eds Norman AW, Bouillon R, Thomasset M). Walter De Gruyter, Berlin, pp. 85–86.Google Scholar
  79. Canadian Dermatological Society (2006) and Canadian Cancer Society, Press Release: Key findings from UV, vitamin D and health conference: National Health Groups Recognize Benefits of Vitamin D, http://www.dermatology.ca/media/news: Toronto, 25 May 2006.
  80. Cannell JJ, Hollis BW (2008) Use of vitamin D in clinical practice. Altern. Med. Rev. 13; 6–20.Google Scholar
  81. Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, Garland CF, Giovannucci E (2006) Epidemic influenza and vitamin D. Epidemiol. Infect. 134; 1129–1140. Epub Sept 7, 2006.Google Scholar
  82. Cannell JJ, Hollis BW, Zasloff M, Heaney RP (2008) Diagnosis and treatment of vitamin D deficiency. Expert Opin Pharmacother. 9; 107–118.Google Scholar
  83. Carter GD, Carter R, Jones J, Berry J (2004a) How accurate are assays for 25-hydroxyvitamin D? Data from the International Vitamin D External Quality Assessment Scheme. Clin. Chem. 50; 2195–2197.Google Scholar
  84. Carter GD, Carter CR, Gunter E, Jones J, Jones G, Makin HL, Sufi S (2004b) Measurement of vitamin D metabolites: an international perspective on methodology and clinical interpretation. J. Steroid Biochem. Mol. Biol. 89–90; 467–471.Google Scholar
  85. Carter GD, Jones JC, Berry JL (2007) The anomalous behaviour of exogenous 25-hydroxyvitamin D in competitive binding assays. J. Steroid Biochem. Mol. Biol. 103; 480–482.Google Scholar
  86. Casetta B, Jans I, Billen J, Vanderschueren D, Bouillon R (2010) Development of a method for the quantification of 1alpha,25(OH)2-vitamin D3 in serum by liquid chromatography tandem mass spectrometry without derivatization. Eur. J. Mass Spectrom. 16; 81–89.Google Scholar
  87. Chen H, McCoy LF, Schleicher RL, Pfeiffer CM (2008) Measurement of 25-hydroxyvitamin D3 (25OHD3) and 25-hydroxyvitamin D2 (25OHD2) in human serum using liquid chromatography–tandem mass spectrometry and its comparison to a radioimmunoassay method. Clin. Chim. Acta. 391; 6–12.Google Scholar
  88. Chen TC, Shao Q, Heath H, et al. (1993) An update on the vitamin-D content of fortified milk from the United States and Canada. N. Engl. J. Med. 329; 1507.Google Scholar
  89. Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, Holick MF (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 460; 213–217. Epub Jan 8, 2007.Google Scholar
  90. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW (2004) Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA. 101; 7711–7715.Google Scholar
  91. Chodynski M, Kutner A (1991) Synthesis of side-chain homologated analogs of 1,25-dihydroxy-cholecalciferol and 1,25-dihydroxyergocalciferol. Steroids. 56; 311–315.Google Scholar
  92. Christakos S, Dhawan P, Liu Y, Peng X, Porta A (2003) New insights into the mechanisms of vitamin D action. J. Cell Biochem. 88; 695–705.Google Scholar
  93. Clemens TL (1990) Useful clinical assays for vitamin-D metabolites. Trends Endocrinol. Metab. 1; 129–133.Google Scholar
  94. Clemens TL, Hendy GN, Graham RF, et al. (1978) A radioimmunoassay for 1,25-dihydroxychole-calciferol. Clin. Sci. 54; 329–332.Google Scholar
  95. Coldwell RD, Trafford DJ, Makin HL, Varley MJ, Kirk DN (1984) Specific estimation of 24,25-dihydroxyvitamin D in plasma by gas chromatography-mass spectrometry. Clin. Chem. 30; 1193–1198.Google Scholar
  96. Coldwell RD, Trafford DJ, Makin HL, Varley MJ (1985) Specific mass fragmentographic assay for 25,26-dihydroxyvitamin D in human plasma using a deuterated internal standard. J. Chromatogr. 338; 289–302.Google Scholar
  97. Coldwell RD, Trafford DJ, Varley MJ, Kirk DN, Makin HL (1989) Measurement of 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D2 and 25,26-dihydroxyvitamin D2 in a single plasma sample by mass fragmentography. Clin. Chim. Acta. 180; 157–168.Google Scholar
  98. Coldwell RD, Trafford DJH, Varley MJ, Kirk DN, Makin HL (1990) Stable isotope-labeled vitamin-D, metabolites and chemical analogs – synthesis and use in mass spectrometric studies. Steroids. 55; 418–432.Google Scholar
  99. Coldwell RD, Trafford DJH, Makin HLJ (1995) Mass-fragmentographic assay for 25-hydroxyvitamin D in plasma without derivatisation: enhanced sensitivity for metabolites of vitamins D2 and D3 after pre-column dehydration. J. Mass Spectrom. 30; 348–356.Google Scholar
  100. Cunningham J, Coldwell RD, Jones G, Tenenhouse HS, Trafford DJ, Makin HL (1990) Plasma 24,25-dihydroxyvitamin D3 concentrations in X-linked hypophosphatemic mice – studies using mass fragmentographic and radioreceptor assays. J. Bone Miner. Res. 5; 173–177.Google Scholar
  101. Curino A, Skliar M, Boland R (1998) Identification of 7-dehydrocholesterol, vitamin D3, 25(OH)-vitamin D3 and 1,25(OH)2 vitamin D3 in Solanum glaucophyllum cultures grown in absence of light. Biochim. Biophys. Acta. 1425; 485–492.Google Scholar
  102. Curino A, Milanesi L, Benassati S, Skliar M, Boland R (2001) Effect of culture conditions on the synthesis of vitamin D3 metabolites in Solanum glaucophyllum grown in vitro. Phytochemistry. 58; 81–89.Google Scholar
  103. Dabek JT, Harkonen M, Wahlroos O, et al. (1981) Assay for plasma 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 by high-performance liquid chromatography. Clin. Chem. 27; 1346–1351.Google Scholar
  104. Dame MC, Pierce EA, Prahl JM, et al. (1986) Monoclonal antibodies to the porcine intestinal receptor for 1,25-dihydoxyvitamin D3: interaction with distinct receptor domains. Biochemistry. 25; 4523–4534.Google Scholar
  105. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D3–1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 142; 3135–3141.Google Scholar
  106. Dauben WG, Funhoff DJH (1988) NMR spectroscopic investigation of previtamin D3: total assignment of chemical shifts and conformational studies. J. Org. Chem. 53; 5376–5379.Google Scholar
  107. Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R (2005) Estimates of optimal vitamin D status. Osteoporos. Int. 16; 713–716.Google Scholar
  108. Dayre McNally J, Matheson LA, Sankaran K, Rosenberg AM (2008) Capillary blood sampling as an alternative to venipuncture in the assessment of serum 25 hydroxyvitamin D levels. J. Steroid Biochem. Mol. Biol. 112; 164–168. Epub Aug 30, 2008 ahead of print.Google Scholar
  109. Delaroff V, Rathie P, Legrand M (1963) Etude de la RMN du precalciferol, du tachysterol et du calciferol. Bull. Soc. Chem. Fr. 1739–1741.Google Scholar
  110. Delgado-Zamarreno MM, Sanchez-Perez A, Gomez-Perez MC, Hernandez-Mendez J (1995) Directly coupled sample treatment high-performance liquid chromatography for onlin automatic determination of liposoluble vitamins in milk. J. Chromatogr. A. 694; 399–406.Google Scholar
  111. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutrit. 80; 1689S–1696S.Google Scholar
  112. DeLuca HF, Suda T, Schnoes HK, Tanaka Y, Holick MF (1970) 25,26-dihydroxycholecalciferol, a metabolite of vitamin D3 with intestinal calcium transport activity. Biochemistry. 9; 4776–4780.Google Scholar
  113. Delvin EE, Dussault M, Glorieux FH (1980) A simplified assay for serum 25-hydroxycalciferol. Clin. Biochem. 13; 106–108.Google Scholar
  114. Dilworth FJ, Williams GR, Kissmeyer AM, Nielsen JL, Binderup E, Calverley MJ, Makin HL, Jones G (1997) The vitamin D analog, KH1060, is rapidly degraded both in vivo and in vitro via several pathways: principal metabolites generated retain significant biological activity. Endocrinology. 138; 5485–5496.Google Scholar
  115. Dimartino G (2007) Convenient analysis of vitamin D in cheese and other food matrixes by liquid chromatography/mass spectrometry. J. AOAC Int. 90; 1340–1345.Google Scholar
  116. Dixon T, Mitchell P, Beringer T, Gallacher S, Moniz C, Patel S, Pearson G, Ryan P (2006) An overview of the prevalence of 25-hydroxy-vitamin D inadequacy amongst elderly patients with or without fragility fracture in the United Kingdom. Curr. Med. Res. Opin. 22; 405–415.Google Scholar
  117. Dusso A, Lopez-Hilker S, Rapp N, Slatopolsky E (1988) Extra-renal production of calcitriol in chronic renal failure. Kidney Int. 34; 368–375.Google Scholar
  118. Dusso AS, Finch J, Brown A, Ritter C, Delmez J, Schreiner G, Slatopolsky E (1991) Extrarenal production of calcitriol in normal and uremic humans. J. Clin. Endocrinol. Metab. 72; 157–164.Google Scholar
  119. Dusso AS, Kamimura S, Gallieni M, Zhong M, Negrea L, Shapiro S, Slatopolsky E (1997) y-Interferon-induced resistance to 1,25-(OH)2D3 in human monocytes and macrophages: a mechanism for the hypercalcemia of various granulomatoses. J. Clin. Endocrinol. Metab. 82; 2222–2232.Google Scholar
  120. Eguchi T, Yoshida M, Ikekawa N (1989) Synthesis and biological activities of 22-hydroxy and 22-methoxy derivatives of 1α,25-dihydroxyvitamin D3: importance of side chain conformation for biological activities. Bioorg. Chem. 17; 294–307.Google Scholar
  121. Eguchi T, Ikekawa N (1990) Conformational analysis of 1α,25-dihydroxyvitamin D3 by nuclear magnetic resonance. Bioorg. Chem. 18; 19–29.Google Scholar
  122. Eguchi T, Kakinuma K, Ikekawa N (1991) Synthesis of 1α-[19-13 C] hydroxyvitamin D3 and carbon-13 NMR analysis of the conformational equilibrium of the A-ring. Bioorg. Chem. 19; 327–332.Google Scholar
  123. Eisman JA, Hamstra AJ, Kream BE, et al. (1976) 1,25-Dihydroxyvitamin D in biological fluids: a simplified and sensitive assay. Science. 193; 1021–1023.Google Scholar
  124. Engstrom GW, Koszewski NJ (1989) Metabolism of vitamin D2 in pig liver homogenates: evidence for a free radical reaction. Arch. Biochem. Biophys. 270; 432–440.Google Scholar
  125. Ersfeld DL, Rao DS, Body JJ, Sackrison JL Jr, Miller AB, Parikh N, Eskridge TL, Polinske A, Olson GT, MacFarlane GD (2004) Analytical and clinical validation of the 25 OH vitamin D assay for the LIAISON automated analyzer. Clin. Biochem. 37; 867–874.Google Scholar
  126. Esvelt RP, DeLuca HF (1981) Calcitroic acid: biological activity and tissue distribution studies. Arch. Biochem. Biophys. 206; 403–413.Google Scholar
  127. Esvelt RP, Schnoes HK, DeLuca HF (1979) Isolation and characterization of 1α-hydroxy-23-carboxy-tetranorvitamin D: a major metabolite of 1,25-dihydroxyvitamin D3. Biochemistry. 18; 3977–3983.Google Scholar
  128. Eyles D, Anderson C, Ko P, Jones A, Thomas A, Burne T, Mortensen PB, Nørgaard-Pedersen B, Hougaard DM, McGrath J (2009) A sensitive LC/MS/MS assay of 25OH vitamin D3 and 25OH vitamin D2 in dried blood spots. Clin. Chim. Acta. 403; 145–151.Google Scholar
  129. Faulkner H, Hussein A, Foran M, Szijarto L (2000) A survey of vitamin A and D contents of fortified fluid milk in Ontario. J. Dairy Sci. 83; 1210–1216.Google Scholar
  130. Fraher LJ, Clemens TL, Papapoulos SE, et al. (1980) Determination of ciruclating 25,26-dihydroxycholecalciferol in man by radioimmunoassay. Clin. Sci. 59; 257–263.Google Scholar
  131. Fraher LJ, Jones G, Clemens TL, et al. (1981) Radioassays of vitamin D2 and D3 metabolites. Advance abstracts of papers for the XIIIth Acta Endocrinological Congress, Cambridge, August 1981. Abstract No. 8. Acta. Endocrinol. (Copenhagen), 97(Suppl 243).Google Scholar
  132. Fraser D, Kodicek E (1970) Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 228; 764–766.Google Scholar
  133. Fraser D, Kooh SW, Kind P, Holick MF, Tanaka Y, DeLuca HF (1973) Pathogenesis of hereditary vitamin D dependency rickets. N. Engl. J. Med. 289; 817–822.Google Scholar
  134. Fraser WD, Durham BH, Berry JL, Mawer EB (1997) Measurement of plasma 1,25 dihydroxyvitamin D using a novel immunoextraction technique and immunoassay with iodine labelled vitamin D tracer. Ann. Clin. Biochem. 34; 632–637.Google Scholar
  135. Fu GK, Portale AA, Miller WL (1997) Complete structure of the human gene for the vitamin D 1α-hydroxylase, P450c1alpha. DNA Cell Biol. 16; 1499–1507.Google Scholar
  136. Fujishima T, Konno K, Nakagawa K, Tanaka M, Okano T, Kurihara M, Miyata N, Takayama H. (2001) Synthesis and biological evaluation of all A-ring stereoisomers of 5,6-trans-2-methyl-1,25-dihydroxyvitamin D3 and their 20-epimers: possible binding modes of potent A-ring analogues to vitamin D receptor. Chem. Biol. 8; 1011–1024.Google Scholar
  137. Fukushima M, Suzuki Y, Tohira Y, Nishii Y, Suzuki M (1976) 25-Hydroxylation of 1α-hydroxy-vitamin D3 in vivo and in perfused rat liver. FEBS Lett. 65; 211–214.Google Scholar
  138. Galdecka E, Galdecki Z, Gorkiewicz Z, Kurek-Tyrlik A, Makaev FZ, Wicha J, Calverley MJ. (1999) Crystal and molecular structure of 3ft-acetoxy-21-(2-hydroxy-2-methylpropoxy)-cholest-5-en-25-ol, the first “double side chain” cholesterol analog investigated by X-ray diffraction. Pol. J. Chem. 73; 547–555.Google Scholar
  139. Gamiz-Gracia L, Jimenez-Carmona MM, de Castro MDL (2000) Determination of vitamins D2 and D3 in pharmaceuticals by supercritical-fluid extraction and HPLC separation with UV detection. Chromatographia. 51; 428–432.Google Scholar
  140. Gaskell SJ (1990) Quantification of steroid conjugates using fast atom bombardment mass spectrometry. Steroids. 55; 458–462.Google Scholar
  141. Gaskell SJ, Brownsey BG (1983) Immunoadsorption to improve gas chromatography/high-resolution mass spectrometry of estradiol-17beta in plasma. Clin. Chem. 29; 677–680.Google Scholar
  142. Glendenning P, Taranto M, Noble JM, Musk AA, Hammond C, Goldswain PR, Fraser WD, Vasikaran SD (2006) Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann. Clin. Biochem. 43; 23–30.Google Scholar
  143. Gonzalez EA, Martin KJ (1995) Renal osteodystrophy: pathogenesis and management. Nephrol.Dial. Transplant. 10; 13–21.Google Scholar
  144. Gonzalez EA, Sachdeva A, Oliver DA, Martin KJ (2004) Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. Am. J. Nephrol. 24; 503–510.Google Scholar
  145. Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Blanco-Navarro I, Blazquez-Garcia S, Perez-Sacristan B (2006) Simultaneous determination of vitamins A, E and 25-OH-vitamin D: application in clinical assessments. Clin. Biochem. 39; 180–182. Epub Dec 1, 2005.Google Scholar
  146. Grant WB, Garland CF (2002) Evidence supporting the role of vitamin D in reducing the risk of cancer. J. Intern. Med. 252; 178–179.Google Scholar
  147. Grant WB, Garland CF (2004) A critical review of studies on vitamin D in relation to colorectal cancer. Nutr. Cancer. 48; 115–123.Google Scholar
  148. Grant WB, Garland CF (2008) The health benefits of vitamin D greatly outweigh the health risks. Bioessays. 30; 506–507; author reply 510–511.Google Scholar
  149. Grant WB, Holick MF (2005) Benefits and requirements of vitamin D for optimum health. Alt. Med. Rev. 10; 94–111.Google Scholar
  150. Gray RW, Omdahl JL, Ghazarian JG, DeLuca HF (1972) 25-Hydroxycholecalciferol-1-hydroxylase. Subcellular location and properties. J. Biol. Chem. 247; 7528–7532.Google Scholar
  151. Gregorio C, Eduardo S, Rodrigues LC, Regueira MA, Fraga R, Riveiros R, Maestro M, Mouriño A (2007) Synthesis of two carboxylic haptens for raising antibodies to 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3. J. Steroid Biochem. Mol. Biol. 103; 227–230.Google Scholar
  152. Guillemant J, Taupin P, Le HT, et al. (1999) Vitamin D status during puberty in French healthy male adolescents. Osteoporosis. Int. 10; 222–225.Google Scholar
  153. Guo T, Taylor RL, Singh RJ, Soldin SJ (2006) Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin. Chim. Acta. 372; 76–82.Google Scholar
  154. Guo Y-D, Strugnell S, Back DW, et al. (1993) Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc. Natl. Acad. Sci. USA. 90; 8668–8672.Google Scholar
  155. Gupta RP, He YA, Patrick KS, Halpert JR, Bell NH (2005) CYP3A4 is a vitamin D-24- and 25-hydroxylase: analysis of structure function by site-directed mutagenesis. J. Clin. Endocrinol. Metab. 90; 1210–1219.Google Scholar
  156. Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW (2003) A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc. Natl. Acad. Sci. USA. 100; 14754–14759.Google Scholar
  157. Haddad JG, Stamp TC (1974) Circulating 25-hydroxyvitamin D in man. Am. J. Med. 57; 57–62.Google Scholar
  158. Hagar AF, Madsen L, Wales L, Bradford HB (1994) Reversed-phase liquid chromatographic determination of vitamin D in milk. J. AOAC. 77; 1047–1051.Google Scholar
  159. Halket JM, Lisboa BP (1978) An approach to the recognition and quantitation of vitamin D and its metabolites using gas chromatography-mass spectrometry. Acta. Endocrinol. (Kbh). 87; 120–121.Google Scholar
  160. Halket JM, Ganschow I, Lisboa BP (1980) Gas chromatographic-mass spectrometric properties of boronate esters of 24R,25-dihydroxycholecalciferol. J. Chromatogr. 192; 434–440.Google Scholar
  161. Hanold KA, Fisher SM, Cormia PH, Miller CE, Syage JA (2004) Atmospheric pressure photo-ionization. 1. General properties for LC-MS. Anal. Chem. 276; 2842–2851.Google Scholar
  162. Hart HE, Greenwald AB (1979) Scintillation proximity assay (SPA) – a new method of immuno-assay. Mol. Immunol. 16; 265–267.Google Scholar
  163. Hathcock JN, Shao A, Vieth R, Heaney R (2007) Risk assessment for vitamin D. Am. J. Clin. Nutr. 85; 6–18.Google Scholar
  164. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J. Bone Miner. Res. 13; 325–349.Google Scholar
  165. Hayen H, Karst U (2003) Strategies for the liquid chromatographic-mass spectrometric analysis of non-polar compounds. J. Chromatogr. A. 1000; 549–565.Google Scholar
  166. Hayes CE, Acheson DE (2008) A unifying multiple sclerosis etiology linking virus infection, sunlight, and vitamin D, through viral interleukin-10. Med. Hypotheses. 71; 85–90.Google Scholar
  167. Heaney RP (2004) Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am. J. Clin. Nutrit. 80(Suppl); 1706S-1709S.Google Scholar
  168. Heaney RP (2005) The Vitamin D requirement in health and disease. J. Steroid Biochem. Mol. Biol. 97; 13–19.Google Scholar
  169. Heaney RP, Armas LA, Shary JR, Bell NH, Binkley N, Hollis BW (2008) 25-Hydroxylation of vitamin D: relation to circulating vitamin D3 under various input conditions. Am. J. Clin.Nutr. 87; 1738–1742.Google Scholar
  170. Helmer B, Schnoes HK, DeLuca HF (1985) Proton nuclear magnetic resonance studies of the conformations of vitamin D compounds in various solvents. Arch. Biochem. Biophys. 241; 608–615.Google Scholar
  171. Henry HL, Norman AW (1978) Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 201; 835–837.Google Scholar
  172. Heudi O, Trisconi MJ, Blake CJ (2004) Simultaneous quantification of vitamins A, D3 and E in fortified infant formulae by liquid chromatography-mass spectrometry. J. Chromatogr. A. 1022; 115–123.Google Scholar
  173. Hewison M, Adams JS (2005) Chapter 79: extra-renal 1α-hydroxylase activity and human disease. In Vitamin D, 2nd edn (eds Feldman D, Pike JW, Glorieux FH). Elsevier, New York, pp. 1379–1402.Google Scholar
  174. Higashi T (2006) Trace determination of steroids causing age-related diseases using LC/MS combined with detection oriented derivatization. Chem. Pharm. Bull. 54; 1479–1485.Google Scholar
  175. Higashi T, Shimada K (2004) Derivatization of neutral steroids to enhance their detection characteristics in liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 378; 875–882.Google Scholar
  176. Higashi T, Kobayashi N, Ohmi H, Hayashi Y, Shimada K (1998) Enzyme-linked immunosorbent assay for 24,25-dihydroxyvitamin D3. Anal. Chim. Acta. 365; 151–158.Google Scholar
  177. Higashi T, Mitamura K, Ohmi H, Yamada N, Shimada K, Tanaka K, Honjo H (1999a) Levels of 24,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 3-sulphate in human plasma. Ann. Clin. Biochem. 36; 43–47.Google Scholar
  178. Higashi T, Horike M, Kikuchi R, Shimada K (1999b) In vitro and in vivo glucuronidation of 24,25-dihydroxyvitamin D3. Steroids. 64; 715–725.Google Scholar
  179. Higashi T, Kikuchi R, Miura K, Shimada K, Hiyamizu H, Ooi H, Iwabuchi Y, Hatakeyama S, Kubodera N (1999c) New metabolic pathway of (24R)-24,25-dihydroxyvitamin D3: epimeriza-tion of the 3-hydroxy group. Biol. Pharm. Bull. 22; 767–769.Google Scholar
  180. Higashi T, Miura K, Kitahori J, Shimada K (1999d) Usefulness of derivatization in high-performance liquid chromatography/tandem mass spectrometry of conjugated vitamin D metabolites. Anal. Sci. 15; 619–623.Google Scholar
  181. Higashi T, Miura K, Kikuchi R, Shimada K, Hiyamizu H, Ooi H, Iwabuchi Y, Hatakeyama S, Kubodera N (2000) Characterization of new conjugated metabolites in bile of rats administered 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Steroids. 65; 281–294.Google Scholar
  182. Higashi T, Awada D, Shimada K (2001a) Determination of 24,25-dihydroxyvitamin D3 in human plasma using liquid chromatography-mass spectrometry after derivatization with a Cookson-type reagent. Biomed. Chromatogr. 15; 133–140.Google Scholar
  183. Higashi T, Awada D, Shimada K (2001b) Simultaneous determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma by liquid chromatography–tandem mass spectrometry employing derivatization with a Cookson-type reagent. Biol. Pharm. Bull. 24; 738–743.Google Scholar
  184. Higashi T, Homma S, Iwata H, Shimada K (2002a) Characterization of urinary metabolites of vitamin D3 in man under physiological conditions using liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 29; 947–955.Google Scholar
  185. Higashi T, Takido N, Yamauchi A, Shimada K (2002b) Electron-capturing derivatization of neutral steroids for increasing sensitivity in liquid chromnatography/negative atmospheric pressure ionization-mass spectrometry. Anal. Sci. 18; 1301–1307.Google Scholar
  186. Higashi T, Awada D, Shimada K (2002c) Liquid chromatography–mass spectrometric method combined with derivatization for determination of 1α-hydroxyvitamin D3 in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 772; 229–238.Google Scholar
  187. Higashi T, Yamauchi A, Shimada K (2003) Application of 4-(4 nitrophenyl)-1,2,4-triazoline-3,5-dione to analysis of 25-hydroxyvitamin D3 in human plasma by liquid chromatography/ electron capture atmospheric pressure chemical ionization-mass spectrometry. Anal. Sci. 19; 941–943.Google Scholar
  188. Higashi T, Sakajiri K, Shimada K (2004) Analysis of C-3 epimerization in (24R)-24,25-dihydroxyvitamin D3 catalyzed by hydroxysteroid dehydrogenase. J. Pharm. Biomed. Anal. 36; 429–436.Google Scholar
  189. Higashi T, Shibayama Y, Fuji M, Shimada K (2008) Liquid chromatography–tandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status. Anal. Bioanal. Chem. 391; 229–238.Google Scholar
  190. Higashi T, Shimada K, Toyo’oka T (2009) Advances in determination of vitamin D related compounds in biological samples using liquid chromatography-mass spectrometry: a review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009 Nov 18. [Epub ahead of print].Google Scholar
  191. Holden JM, Lemar LE (2008) Assessing vitamin D contents in foods and supplements: challenges and needs. Am. J. Clin. Nutr. 88; 551S–553S.Google Scholar
  192. Holick MF (1990) The use and interpretation of assays for vitamin-D and its metabolites. J. Nutr. 120; 1464–1469.Google Scholar
  193. Holick MF (2003) Vitamin D: a millenium perspective. J. Cell Biochem. 88; 296–307.Google Scholar
  194. Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers and cardiovascular disease. Am. J. Clin. Nutr. 80(Suppl); 1678S–1688S.Google Scholar
  195. Holick MF (2005) Chapter 3: photobiology of vitamin D. In Vitamin D, 2nd edn (eds Feldman D, Pike JW, Glorieux FH). Elsevier, New York, pp. 37–46.Google Scholar
  196. Holick MF (2006) Resurrection of vitamin D deficiency and rickets. J. Clin. Invest. 116; 2062–2072.Google Scholar
  197. Holick MF (2007) Vitamin D deficiency. N. Engl. J. Med. 357; 266–281.Google Scholar
  198. Holick MF (2008) Vitamin D Status: measurement, interpretation, and clinical application. Ann.Epidemiol. 19; 73–78. Epub Mar 8, 2008 ahead of print.Google Scholar
  199. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am. J. Clin. Nutr. 87; 1080S-1086S.Google Scholar
  200. Holick MF, Schnoes HK, DeLuca HF, Suda T, Cousins RJ (1971) Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry.10; 2799– 2804.Google Scholar
  201. Holick MF, Schnoes HK, DeLuca HF, Gray RW, Boyle IT, Suda T (1972) Isolation and identification of 24,25-dihydroxycholecalciferol, a metabolite of vitamin D made in the kidney. Biochemistry. 11; 4251–4255.Google Scholar
  202. Holick MF, Kleiner-Bossaller A, Schnoes HK, Kasten PM, Boyle IT, DeLuca HF (1973) 1,24,25-Trihydroxyvitamin D3. A metabolite of vitamin D3 effective on intestine. J. Biol. Chem. 248; 6691–6696.Google Scholar
  203. Holick MF, Shao Q, Liu WW, Chen TC (1992) The vitamin D content of fortified milk and infant formula. N. Engl. J. Med. 326; 1178–1181.Google Scholar
  204. Holick MF, Biancuzzo RM, Chen TC, Klein EK, Young A, Bibuld D, Reitz R, Salameh W, Ameri A, Tannenbaum AD (2008) Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J. Clin. Endocrinol. Metab. 93; 677–681.Google Scholar
  205. Hollis BW (1984) Comparison of equilibrium and dis-equilibrium assay conditions for ergocalciferol, cholecalciferol and their major metabolites. J. Steroid Biochem. 21; 81–86.Google Scholar
  206. Hollis BW (1986) Asay of circulating 1,25-dihydroxyvitamin D involving a novel single-cartridge extraction and purification procedure. Clin. Chem. 32; 2060–2063.Google Scholar
  207. Hollis BW (1995) 1,25-Dihydroxyvitamin D3-26,23-lactone interferes in determination of 1,25-dihydroxyvitamin D by RIA after immunoextraction. Clin. Chem. 41; 1313–1314.Google Scholar
  208. Hollis BW (1997) Quantitation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D by radio-immunoassay using radioiodinated tracers. Methods Enzymol. 282; 174–186.Google Scholar
  209. Hollis BW (2000) Comparison of commercially available 125 I-based RIA methods for the determination of circulating 25-hydroxyvitamin D. Clin. Chem. 46; 1657–1661.Google Scholar
  210. Hollis BW (2004) Editorial: the determination of circulating 25-hydroxyvitamin D: no easy task. J. Clin Endocrinol Metab. 89; 3149–3151.Google Scholar
  211. Hollis BW (2005a) Chapter 58: detection of vitamin D and its major metabolites. In Vitamin D, 2nd edn (eds Feldman D, Pike JW, Glorieux FH). Elsevier, New York, pp. 931–950.Google Scholar
  212. Hollis BW (2005b) Circulating 25-hydroxyvitamin D levels indicative of Vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for Vitamin D. J. Nutrit. 135; 317–322.Google Scholar
  213. Hollis BW (2006) Laboratory reporting of 25-hydroxyvitamin D results: potential for clinical misinterpretation. Clin. Chem. 52; 2124–2125.Google Scholar
  214. Hollis BW (2008) Measuring 25-hydroxyvitamin D in a clinical environment: challenges and needs. Am. J. Clin. Nutr. 88; 507S–510S.Google Scholar
  215. Hollis BW, Frank NE (1985) Solid phase extraction system for vitamin D and its major metabolites in human plasma. J. Chromatogr. 343; 43–49.Google Scholar
  216. Hollis BW, Horst RL (2007) The assessment of circulating 25(OH)D and 1,25(OH)2D: where we are and where we are going. J. Steroid Biochem. Mol. Biol. 103; 473–476.Google Scholar
  217. Hollis BW, Kilbo T (1988) The assay of circulating 1,25(OH) 2 D using non-end-capped C18 silica (C18 -OH): performance and validation. In Vitamin D: Molecular Cellular and Clinical Endocrinology (eds Norman AW, Schaefer K, Grigoleit H-G, von Herrath D). Walter de Gruyter, Berlin, pp. 710–719.Google Scholar
  218. Hollis BW, Napoli JL (1985) Improved radioimmunoassay for vitamin D and its use in assessing vitamin D status. Clin. Chem. 31; 1815–1819.Google Scholar
  219. Hollis BW, Roos BA, Draper HH, Lambert PW (1981) Vitamin D and its metabolites in human and bovine milk. J. Nutr. 111; 1240–1248.Google Scholar
  220. Hollis BW, Iskersky VN, Chang MK (1989) In vitro metabolism of 25-hydroxyvitamin D3 by human trophoblastic homogenates, mitochondria, and microsomes: lack of evidence for the presence of 25-hydroxyvitamin D3–1a - and 24R-hydroxylases. Endocrinology. 125; 1224–1230.Google Scholar
  221. Hollis BW, Kamerud JQ, Selvaag SR, Lorenz JD, Napoli JL (1993) Determination of vitamin D status by radioimmunoassay with an 125I-labeled tracer. Clin. Chem. 39; 529–533.Google Scholar
  222. Holmberg I, Kristiansen T, Sturen M (1984) Determination of 25-hydroxyvitamin D in serum by high-performance liquid chromatography and isotope dilution mass spectrometry. Scand. J. Clin. Lab. Invest. 44; 275–282.Google Scholar
  223. Horst RL (1979) 25-OHD3 26,23-lactone: a metabolite of vitamin D3 that is 5 times more potent than 25-OHD3 in the rat plasma competitive protein binding radioassay. Biochem. Biophys. Res. Commun. 89; 286–293.Google Scholar
  224. Horst RL (1985) Recent advances in the quantitation of vitamin D and vitamin D metabolites. In Vitamin D: Basic and Clinical Aspects (ed Kumar R). Martinu Nijhoff, Boston, MA, pp. 423–478.Google Scholar
  225. Horst RL, Littledike ET, Riley JL, Napoli JL (1981) Quantitation of vitamin D and its metabolites and their plasma concentrations in five species of animals. Anal. Biochem. 116; 189–203.Google Scholar
  226. Horst RL, Reinhardt TA, Hollis BW (1990) Improved methodology for the analysis of plasma vitamin-D metabolites. Kidney Int. 38; S28–S35.Google Scholar
  227. Horst RL, Reinhardt TA, Reddy S (2005) Vitamin D metabolism. In Vitamin D, 2nd edn (eds Feldman D, Pike JW, Glorieux FH). Academic, London, pp. 15–36.Google Scholar
  228. Houghton LA, Vieth R (2006) The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am. J. Clin. Nutr. 84; 694–607.Google Scholar
  229. Huang M, LaLuzerne P, Winters D, Sullivan D (2009) Measurement of vitamin D in foods and nutritional supplements by liquid chromatography/tandem mass spectrometry. J. AOAC Int. 92; 1327–1335.Google Scholar
  230. Hummer L, Christiansen C (1984) A sensitive and selective radioimmunoassay for serum 24,25-dihydroxycholecalciferol in man. Clin. Endocrinol. 21; 71–79.Google Scholar
  231. Hummer L, Nilas L, Tjellesen L, et al. (1984) A selective and simplified radioimmunoassay of 25-hydroxyvitamin D3. Scand. J. Lab. Clin. Invest. 44; 163–167.Google Scholar
  232. Hummer L, Johansen JS, Christiansen C (1985) Radioimmunoassay for 25,26-dihydroxyvitamin D3. In Vitamin D. Chemical, Biochemical and Clinical Update (eds Norman AW, Schaefer K, Grigoleit HG, Herrath DV). Walter de Gruyter, Berlin, pp. 830–831.Google Scholar
  233. Hypponen E, Power C (2007) Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 85; 860–868.Google Scholar
  234. Hyppönen E, Turner S, Cumberland P, Power C, Gibb I (2007) Serum 25-hydroxyvitamin D measurement in a large population survey with statistical harmonization of assay variation to an international standard. J. Clin. Endocrinol. Metab. 92; 4615–4622.Google Scholar
  235. Ibrahim F, Parmentier C, Boudou P (2007) Divergence in classification of 25-hydroxyvitamin D status with respect to immunoassays. Clin. Chem. 53; 363–364.Google Scholar
  236. Ichikawa F, Sato K, Nanjo M, Nishii Y, Shinki T, Takahashi N, Suda T (1995) Mouse primary osteoblasts express vitamin D3 25-hydroxylase mRNA and convert 1α-hydroxyvitamin D3 into 1α,25-dihydroxyvitamin D3. Bone. 16; 129–135.Google Scholar
  237. Ikekawa N, Koizumi N (1976) Separation of vitamin D metabolites and their analogues by high-pressure liquid chromatography. J. Chromatogr. 119; 227–232.Google Scholar
  238. Ishigai M, Arai S, Ishitani Y, Kumaki K (1998a) In vivo metabolism of the vitamin D analog, 22-oxacalcitriol: evidence for side-chain truncation and 17-hydroxylation. J. Steroid Biochem. Mol. Biol. 66; 281–293.Google Scholar
  239. Ishigai M, Asoh Y, Kumaki K (1998b) Determination of 22-oxacalcitriol, a new analog of 1α,25-dihydroxyvitamin D3, in human serum by liquid chromatography-mass spectrometry. J. Chromatogr.B Biomed. Sci. Appl. 706; 261–267.Google Scholar
  240. Ishigai M, Ishitani Y, Kumaki K (1997) Characteristics of mass spectrometric analyses coupled to gas chromatography and liquid chromatography for 22-oxacalcitriol, a vitamin D3 analog, and related compounds. J. Chromatogr. B Biomed. Sci. Appl. 704; 11–17.Google Scholar
  241. Ishizuka S, Kurihara N, Reddy SV, Cornish J, Cundy T, Roodman GD (2005) (23S)-25-Dehydro-1α-hydroxyvitamin D3-26,23-lactone, a vitamin D receptor antagonist that inhibits osteoclast formation and bone resorption in bone marrow cultures from patients with Paget’s disease. Endocrinology. 146; 2023–2030.Google Scholar
  242. IUPAC-IUB (1981) Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of vitamin D. Recommendations. Mol. Cell Biochem. (1982) 49; 177–181, Eur. J. Biochem. (1982) 124; 223–227.Google Scholar
  243. Jardine I, Scanlan GF, Mattox VR, et al. (1984) Analysis of steroid and vitamin D glucuronides and sulfates by fast atom bombardment mass spectrometry. Biomed. Mass Spectrom. 11; 4–9.Google Scholar
  244. Jones G (1978) Assay of vitamin D2 and D3, and 25-hydroxyvitamin D2 and D3 in human plasma by high-performance liquid chromatography. Clin. Chem. 24; 287–294.Google Scholar
  245. Jones G (1980) Ternary solvent mixtures for improved resolution of hydroxylated metabolites of vitamin D2 and vitamin D3 during high-performance liquid chromatography. J. Chromatogr. 221; 27–37.Google Scholar
  246. Jones G (2007) Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1α-hydroxylase in the classical and non-classical actions of 1α,25-dihydroxyvitamin D3. Semin. Dial. 20; 316–324.Google Scholar
  247. Jones G (2008) Chapter 83: Vitamin D and analogues. In Principles of Bone Biology, 3rd edn (eds Bilezekian JP, Raisz LG, Rodan GA). Academic Press, London, pp. 1777–1799.Google Scholar
  248. Jones G, DeLuca HF (1975) High-pressure liquid chromatography: separation of the metabolites of vitamins D2 and D3 on small-particle silica columns. J. Lipid Res. 16; 448–453.Google Scholar
  249. Jones G, Makin HLJ (2000) Vitamin Ds: metabolites and analogs. In Modern Chromatographic Analysis of Vitamins, 3rd edn (eds DeLeenheer AP, Lambert WE,VanBocxlaer JF). Marcel Dekker, New York, pp. 75–141.Google Scholar
  250. Jones G, Byrnes B, Palma F, Segev D, Mazur Y (1980) Displacement potency of vitamin D2analogs in competitive protein binding assays for 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3. J. Clin. Endocrinol. Metab. 50; 773–775.Google Scholar
  251. Jones G, Kano K, Yamada S, Furusawa T, Takayama H, Suda T (1984) Identification of 24,25,26,27-tetranor-23-hydroxyvitamin D3 as a product of the renal metabolism of 24,25-dihydroxyvitamin D3. Biochemistry. 23; 3749–3754.Google Scholar
  252. Jones G, Seamark DA, Trafford DJH, Makin HLJ (1985) Vitamin D: cholecalciferol, ergocalciferol and hydroxylated metabolites. In Modern Chromatographic Analysis of Vitamins, 1st edn (eds De Leenheer AP, Lambert WE, DeRuyter MGM). Marcel Dekker, New York, pp. 73–128.Google Scholar
  253. Jones G, Vriezen D, Lohnes D, Palda V, Edwards NS (1987) Side-chain hydroxylation of vitamin D3 and its physiological implications. Steriods. 49; 29–53.Google Scholar
  254. Jones G, Edwards N, Vriezen D, Porteous C, Trafford DJ, Cunningham J, Makin HL (1988) Isolation and identification of seven metabolites of 25-hydroxydihydrotachysterol3 formed in the isolated perfused rat kidney: a model for the study of side-chain metabolism of vitamin D. Biochemistry. 27; 7070–7079.Google Scholar
  255. Jones G, Trafford DJH, Makin HLJ, Hollis BW (1992) Vitamin D: cholecalciferol, ergocalciferol and hydroxylated metabolites. In Modern Chromatographic Analysis of Vitamins, 2nd edn (eds De Leenheer AP, Lambert WE, Nelis HJ). Marcel Dekker, New York, pp. 73–151.Google Scholar
  256. Jones G, Byford V, Makin HLJ, Kremer R, Rice RH, deGraffenried LA, Knutson JC, Bishop CW (1996) Anti-proliferative activity and target cell catabolism of the vitamin D analog 1α,24(S)-(OH)2D2 in normal and immortalized human epidermal cells. Biochem. Pharmacol. 52; 133–140.Google Scholar
  257. Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol. Rev. 78; 1193–1231.Google Scholar
  258. Jones G, Majub HLJ (2000) Vitamin Ds: metabolities and analogs. In Modern Chromatographic Analysis of Vitamins, 3rd edn (eds DeKeenheer AP, Lambert WE, VanBocxlaer JF). Marcel Dekker, New York, pp. 75–141.Google Scholar
  259. Jones G, Byford V, West S, Masuda S, Ibrahim G, Kaufmann M, Knutson J, Strugnell S, Mehta R (2006) Hepatic activation and inactivation of clinically-relevant vitamin D analogs and prodrugs. Anticancer Res. 26; 2589–2596.Google Scholar
  260. Jones G, Horst R, Carter G, Makin HLJ (2007) Contemporary diagnosis and treatment of vitamin D-related disorders. J. Bone Miner. Res. 22; V11–V15.Google Scholar
  261. Jongen MJ, van der Vijgh WJ, Willems HJ, Netelenbos JC (1981) Analysis for 1,25-dihydroxyvitamin D in human plasma, after a liquid-chromatographic purification procedure, with a modified competitive protein-binding assay. Clin. Chem. 27; 444–450.Google Scholar
  262. Jongen MJ, Van Ginkel FC, van der Vijgh WJ, Kuiper S, Netelenbos JC, Lips P (1984a) An international comparison of vitamin D metabolite measurements. Clin. Chem. 30; 399–403.Google Scholar
  263. Jongen MJ, van der Vijgh WJ, Lips P, Netelenbos JC (1984b) Measurement of vitamin D metabolites in anephric subjects. Nephron. 36; 230–234.Google Scholar
  264. Jordan PH, Read G, Hargreaves T (1991) Determination of 25-hydroxyvitamin-D3 in human serum by fluorescence labelling and high-performance liquid chromatography Analyst. 116; 1347–1351.Google Scholar
  265. Justova V, Starka L (1981) Separation of functional hydroxymetabolites of vitamin D, by thin layer chromatography. J. Chromatogr. 209; 337–340.Google Scholar
  266. Kamao M, Tatematsu S, Hatakeyama S, Ozono K, Kubodera N, Reddy GS, Okano T (2003) Two novel metabolic pathways of 22-oxacalcitriol (OCT). J. Biol. Chem. 278; 1463–1471.Google Scholar
  267. Kamao M, Tatematsu S, Hatakeyama S, Sakaki T, Sawada N, Inouye K, Ozono K, Kubodera N, Reddy GS, Okano T (2004) C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-lalpha or C-24 hydroxylation. J. Biol. Chem. 279; 15897–15907.Google Scholar
  268. Kamao M, Tsugawa N, Suhara Y, Wada A, Mori T, Murata K, Nishino R, Ukita T, Uenishi K, Tanaka K, Okano T (2007) Quantification of fat-soluble vitamins in human breast milk by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 859; 192–200.Google Scholar
  269. Kao PC, Heser DW (1984) Simultaneous determination of 25-hydroxy and 1,25-dihydroxyvita-min D from a single sample by dual cartridge extraction. Clin. Chim. Acta. 30; 56–61.Google Scholar
  270. Kimball SM, Vieth R (2007) A comparison of automated methods for the quantitation of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. Clin. Biochem. 40; 1305–1310.Google Scholar
  271. Kissmeyer AM, Binderup L (1991) Calcipotriol (MC 903V pharmacokinetics in rats and biological activities of metabolites. A comparative study with l,25(OH)_D. Biochem. Pharmacol. 41; 1601–1606.Google Scholar
  272. Kissmeyer AM, Sonne K (2001) Sensitive analysis of 1α,25-dihydroxyvitamin D3 in biological fluids by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 935; 93–103.Google Scholar
  273. Kissmeyer A-M, Mortensen JT (2000) Pharmacokinetics and metabolism of a vitamin D analogue (seocalcitol) in rat and minipig. Xenobiotica. 30; 815–830.Google Scholar
  274. Kissmeyer A-M, Sonne K, Binderup E (2000) Determination of the vitamin D analog EB1089 (seocalcitol) in human and pig serum using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 740; 117–128.Google Scholar
  275. Kitanaka S, Takeyama K, Muramma A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, Kato S (1998) Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N. Engl. J. Med. 338; 653–661.Google Scholar
  276. Kobayashi N, Ueda K, Hisada A, Shimada K (1991) Development of enzyme immunoassay for plasma 25-hydroxyvitamin D3. J. Pharmacobio-Dynam. 14; S89.Google Scholar
  277. Kobayashi N, Asano T, Kitahori J, Shimada K, Kubodera N, Watanabe H (1992) Production and specificrficity of anti-22-oxacalcitriol antisera. Chem. Pharm. Bull. 40; 1520–1522.Google Scholar
  278. Kobayashi N, Ueda K, Tsutsumi M, Tabata Y, Shimada K (1993a) Enzyme immunoassay for plasma 25-hydroxyvitamin D3 employing immunoaffinity chromatography as a pretreatment method. J. Steroid Biochem. Mol. Biol. 44; 93–100.Google Scholar
  279. Kobayashi N, Hisada A, Shimada K (1993b) Syntheses of novel 25-hydroxyvitamin D3 haptens having chemical bridges at the C-11alpha-position. J. Chem. Soc. Perkin. Trans. I; 31–37.Google Scholar
  280. Kobayashi N, Takama A, Shiomura K, Tabata Y, Takaqi K, Shimada K (1994a) Production of a group-specific antibody to 1α,25-dihydroxyvitamin D and its derivatives having 1α,3β-dihy-droxylated A-ring structure. Steroids. 59; 404–411.Google Scholar
  281. Kobayashi N, Kitahori J, Mano H, Shimada K (1994b) Syntheses of 11α-(3-carboxypropanoyloxy)-1α,25-dihydroxyvitamin D3 and 11α- (4-carboxybutanoyloxy)-lα,25-dihydroxyvitamin D3: novel haptenic derivatives for production of highly specific antibodies to 1α,25-dihydroxyvitamin D. J. Chem. Soc. Perkin. Trans. I; 1809–1815.Google Scholar
  282. Kobayashi N, Hisada A, Shimada K (1994c) Specificity of the polyclonal antibodies raised against a novel 25-hydroxyvitamin D3-bovine serum albumin conjugate linked through the C-11 alpha position. J. Steroid Biochem. Mol. Biol. 48; 567–572.Google Scholar
  283. Kobayashi N, Mano H, Imazu T, Shimada K (1995) Tandem immunoaffinity chromatography for plasma 1α,25-dihydroxyvitamin D3 utilizing two antibodies having different specificities: a novel and powerful pretreatment tool for 1α,25-dihydroxyvitamin D3 radioreceptor assays. J. Steroid Biochem. Mol. Biol. 54; 217–226.Google Scholar
  284. Kobayashi N, Higashi T, Saito K, Murayama T, Douya R, Shimada K (1997a) Specificity of polyclonal antibodies raised against a novel 24,25-dihydroxyvitamin D3-bovine serum albumin conjugant linked through the C-11alpha or C-3 position. J. Steroid Biochem. Mol. Biol. 62; 79–87.Google Scholar
  285. Kobayashi N, Imazu T, Ebisawa A, Shimada K (1997b) Production and characterization of monoclonal antibodies against a novel 1α,25-dihydroxyvitamin D3-bovine serum albumin conjugate linked through the 11alpha-position. J. Steroid Biochem. Mol. Biol. 63; 127–137.Google Scholar
  286. Kobayashi N, Sato A, Takagi K, Shimada K (1997c) Production and characterization of monoclonal antibodies against two haptenic derivatives of 1α,25-dihydroxyvitamin D3 conjugated with bovine serum albumin through the C-3 or C-24 position. Biol. Pharm. Bull. 20; 948–953.Google Scholar
  287. Kobayashi Y, Taguchi T, Mitsuhashi S, Eguchi T, Ohshima E, Ikekawa N (1982) Studies on organic fluorine compounds. XXXIX. Studies on steroids. LXXIX. Studies of 1α,25-dihy-droxy-26,26,26,27,27,27-hexafluoro vitamin D3. Chem. Pharm. Bull. (Tokyo) 30; 4297–4303.Google Scholar
  288. Koizumi N, Fujimoto Y, Takeshita T, Ikekawa N (1979) Carbon-13 nuclear magnetic resonance of 24-substituted steroids. Chem. Pharm. Bull. 27; 38–42.Google Scholar
  289. Kolodziejski W, Wozniak K, Herold J, Dominiak PM, Kutner A (2005) Crystal and molecular structure of 1a-hydroxylated analogs of vitamins D. J. Mol. Struct. 734; 149–155.Google Scholar
  290. Komuro S, Nakatsuka I, Yoshitake A, et al. (1994) Quantitative determination of F -1,25(OH)2vitamin D3, in human serum by gas chromatography mass spectrometry with high-resolution selected ion monitoring. Biol. Mass Spectrom. 23; 33–38.Google Scholar
  291. Konno K, Fujishima T, Maki S, Liu Z, Miura D, Chokki M, Ishizuka S, Yamaguchi K, Kan Y, Kurihara M, Miyata N, Smith C, DeLuca HF, Takayama H (2000) Synthesis, biological evaluation, and conformational analysis of A-ring diastereomers of 2-methyl-1,25-dihydroxyvitamin D3 and their 20-epimers: unique activity profiles depending on the stereochemistry of the A-ring and at C-20. J. Med. Chem. 43; 4247–4265.Google Scholar
  292. Koszewski NJ, Reinhardt TA, Beitz DC, Napoli JL, Baggiolini EG, Uskokovic MR, Horst RL (1987) Use of Fourier transform proton NMR in the identification of vitamin D2 metabolites. Anal. Biochem. 162; 446–452.Google Scholar
  293. Koszewski NJ, Reinhardt TA, Napoli JL, Beitz DC, Horst RL (1988) 24,26-Dihydroxyvitamin D2: a unique physiological metabolite of vitamin D2. Biochemistry. 27; 5785–5790.Google Scholar
  294. Kotovych G, Aarts GHM, Bock K (1980) High-field NMR studies on vitamins and prostaglan-dins. Part 4. A proton magnetic resonance nuclear Overhauser enhancement study. Application to vitamin Blderivatives D2 and D3. Can. J. Chem. 58; 1206–1210.Google Scholar
  295. Koyama H, Prahl JM, Uhland A, Nanjo M, Inaba M, Nishizawa Y, Morii H, Nishii Y, DeLuca HF (1992) A new, highly sensitive assay for 1,25-dihydroxyvitamin D not requiring high-performance liquid chromatography: application of monoclonal antibody against vitamin D receptor to radioreceptor assay. Anal. Biochem. 205; 213–219.Google Scholar
  296. Kruk C, Jans AWH, Lugtenburg J (1985) Two-dimensional INADEQUATE carbon-13 NMR study on vitamin D3. Magn. Reson. Chem. 23; 267–270.Google Scholar
  297. Kusudo T, Sakaki T, Abe D, Fujishima T, Kittaka A, Takayama H, Ohta M, Inouye K (2003) Metabolism of 20-epimer of 1α,25-dihydroxyvitamin D3 by CYP24: species-based difference between humans and rats. Biochem. Biophys. Res. Commun. 309; 885–892.Google Scholar
  298. Kusudo T, Sakaki T, Abe D, Fujishima T, Kittaka A, Takayama H, Hatakeyama S, Ohta M, Inouye K (2004) Metabolism of A-ring diastereomers of 1α,25-dihydroxyvitamin D3 by CYP24A1. Biochem. Biophys. Res. Commun. 321; 774–782.Google Scholar
  299. La Mar GN, Budd DL (1974) Elucidation of the solution conformation of the A ring in vitamin D using proton coupling constants and a shift reagent. J. Am. Chem. Soc. 96; 7317–7324.Google Scholar
  300. Lamberg-Allardt C (2006) Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 92; 33–38. Epub Feb 28, 2006.Google Scholar
  301. Lambert PW, DeOreo PB, Hollis BW, Fu IY, Ginsberg DJ, Roos BA (1981) Concurrent measurement of plasma levels of vitamin D3 and five of its metabolites in normal humans, chronic renal failure patients, and anephric subjects. J. Lab. Clin. Med. 98; 536–548 [Retraction in: Lambert PW, DeOreo PB, Hollis B, Fu IY, Ginsberg DJ, Roos B, Behrman RE (1984) J. Lab. Clin. Med. 104; 618.Google Scholar
  302. Lambert PW, Stern PH, Avioli RC, Brackett NC, Turner RT, Greene A, Fu IY, Bell NH (1982) Evidence for extrarenal production of 1α,25-dihydroxyvitamin D in man. J. Clin. Invest. 69; 722–725.Google Scholar
  303. Leino A, Turpeinen U, Koskinen P (2008) Automated measurement of 25-OH vitamin D3 on the Roche Modular E170 analyzer. Clin. Chem. 54 (12); 2059–2062. Epub Oct 16, 2008 ahead of print.Google Scholar
  304. Lensmeyer GL, Wiebe DA, Binkley N, Drezner MK (2006a) HPLC method for 25-hydroxyvita-min D measurement: comparison with contemporary assays. Clin. Chem. 52; 1120–1126. Epub Mar 30, 2006.Google Scholar
  305. Lensmeyer GL, Wiebe DA, Binkley N, Drezner MK (2006b) Response to Schmidt (2006) Clin. Chem. 52; 2305–2306.Google Scholar
  306. Letourneux Y, Khuong-Huu Q, Gut M, Lukacs G (1975) Identification of C-22 epimers in steroids by carbon-13 nuclear magnetic resonance spectroscopy. J. Org. Chem. 40; 1674–1675.Google Scholar
  307. Levan LW, Knutson JC, Valliere CR, et al. (1994) A sensitive and specific assay for calcipotriol (MC 903) in serum or plasma. Proceedings of the 9th Workshop on Vitamin D, Orlando, FL, p. 204.Google Scholar
  308. Lim HW, Gilchrest BA, Cooper KD, Bischoff-Ferrari HA, Rigel DS, Cyr WH, Miller S, DeLeo VA, Lee TK, Demko CA, Weinstock MA, Young A, Edwards LS, Johnson TM, Stone SP (2005) Sunlight, tanning booths, and vitamin D. J. Am. Acad. Dermatol. 52; 868–876.Google Scholar
  309. Lin R, White JH (2004) The pleiotropic actions of vitamin D. Bioessays. 26; 21–28.Google Scholar
  310. Lind C, Chen J, Byrjalsen I (1997) Enzyme immunoassay for measuring 25-hydroxyvitamin D3 in serum. Clin. Chem. 43; 943–949.Google Scholar
  311. Lindback B, Berlin T, Bjorkhem I (1987) Three commercial kits and one liquid-chromatographic method evaluated for determining 25-hydroxyvitamin D3 in serum. Clin. Chem. 33; 1226–1227.Google Scholar
  312. Lips P (2004) Which circulating level of 25-hydroxyvitamin D is appropriate? J. Steroid Biochem. Mol. Biol. 89–90; 611–614.Google Scholar
  313. Lips P (2006) Vitamin D physiology. Prog. Biophys. Mol. Biol. 92; 4–8.Google Scholar
  314. Lips P, Chapuy MC, Dawson-Hughes B, Pols HA, Holick MF (1999) An international comparison of serum 25-hydroxyvitamin D measurements. Osteoporos. Int. 9; 394–397.Google Scholar
  315. Lisboa BP, Halket JM (1979) A study of some derivatives of vitamins D and related compounds by open tubular capillary column gas chromatography-mass spectrometry. In Recent Developments in Chromatography and Electrophoresis (eds Frigerio A, Renoz L). Elsevier, Amsterdam, pp. 141–162.Google Scholar
  316. Litwiller RD, Mattox VR, Jardine I, et al. (1982) Evidence for a monoglucuronide of 1,25-dihy-droxyvitamin D3 in rat bile. J. Biol. Chem. 257; 7491–7494.Google Scholar
  317. Liu PT, Stenger S, Li H, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 311; 1770–1773.Google Scholar
  318. Lohnes D, Jones G (1987) Side chain metabolism of vitamin D3 in osteosarcoma cell line UMR-106. Characterization of products. J. Biol. Chem. 262; 14394–14401.Google Scholar
  319. Lohnes D, Jones G (1992) Further, 25-dihydroxy vitamin D metabolism of 1 3 in target cells. J. Nutr. Sci. Vitaminol. (Tokyo). Spec No; 75–78.Google Scholar
  320. Lu Z, Chen TC, Zhang A, Persons KS, Kohn N, Berkowitz R, Martinello S, Holick MF (2007) An evaluation of the vitamin D3 content in fish: is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? J. Steroid Biochem. Mol. Biol. 103; 642–644.Google Scholar
  321. Luque de Castro MD, Fernandez-Romero JM, Ortiz-Boyer F, Quesada JM (1999) Determination of vitamin D3 metabolites: state-of-the-art and trends. J. Pharm. Biomed. Anal. 20; 1–17.Google Scholar
  322. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Invest. 76; 1536–1538.Google Scholar
  323. Makin G, Lohnes D, Byford V, Ray R, Jones G (1989) Target cell metabolism of 1,25-(OH)2D3 to calcitroic acid: evidence for a pathway in kidney and bone involving 24-oxidation. Biochem. J. 262; 173–180.Google Scholar
  324. Makin HLJ, Trafford DJH (1985) Measurement of vitamin D and its metabolites by gas chromatography-mass spectrometry. In Vitamin D: Basic and Clinical Applications (ed Kumar R). Martinus Nijhoff, Boston, MA, pp. 497–521.Google Scholar
  325. Makin HLJ, Coldwell RD, Trafford DJH (1991) Assays for vitamin D and its metabolites: do we need to improve accuracy and precision? In Vitamin D. Gene Regulation, Structure–Function Analysis and Clinical Application (eds Norman AW, Bouillon R, Thomasset M). Walter de Gruyter, Berlin, pp. 635–643.Google Scholar
  326. Makin HLJ, Jones G, Calverley MJ (1995) Analysis of vitamin D, its metabolites and structural analogues. In Analysis of Steroids (eds Makin HLJ, Gower DB, Kirk DN). Blackie, Glasgow, UK, pp. 562–620.Google Scholar
  327. Manolagas SC (1986) Cytoreceptor assay for 1,25-dihydroxyvitamin D. Methods Enzymol. 123;190–199.Google Scholar
  328. Marchiani S, Bonaccorsi L, Ferruzzi P, Crescioli C, Muratori M, Adorini L, Forti G, Maggi M, Baldi E (2006) The vitamin D analogue BXL-628 inhibits growth factor-stimulated proliferation and invasion of DU145 prostate cancer cells. J. Cancer Res. Clin. Oncol. 132; 408–416.Google Scholar
  329. Martinez I, Saracho R, Montenegro J, Llach F (1996) A deficit of calcitriol synthesis may not be the initial factor in the pathogenesis of secondary hyperparathyroidism. Nephrol. Dial. Transplant. 11; 22–28.Google Scholar
  330. Mason RS, Lissner D, Reek C, et al. (1979) Assay of 1,25- and 24,25-dihydroxycholecalciferol in human serum - some technical considerations. In Vitamin D: Basic Research and Its Clinical Application (eds Norman AW, Schaefer K, Herrath DV, Grigoleit H-G, Coburn JW, DeLuca HF, Mawer EB, Suda T). Walter de Gruyter, Berlin, pp. 243–250.Google Scholar
  331. Masuda S, Jones G (2006) Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol. Cancer Ther. 5; 797–808.Google Scholar
  332. Masuda S, Okano T, Matsuoka S, et al. (1991) A sensitive method for the determination of 1,25-dihy-droxyvitamin D in plasma by using calf thymus receptor. J. Pharmacobio-Dynam. 14; S88.Google Scholar
  333. Masuda S, Okano T, Matsuoka S, et al. (1993) Gross and separative determination of 1α,25-dihydroxyvitamin D2 and 1α,25-dihydroxyvitamin D3 in plasma using calf thymus receptor. J. Nutr. Sci. Vitaminol. 39; 101–114.Google Scholar
  334. Masuda S, Byford V, Kremer R, Makin HL, Kubodera N, Nishii Y, Okazaki A, Okano T, Kobayashi T, Jones G (1996) In vitro metabolism of the vitamin D analog, 22-oxacalcitriol, using cultured osteosarcoma, hepatoma, and keratinocyte cell lines. J. Biol. Chem. 271; 8700–8708.Google Scholar
  335. Masuda S, Okano T, Kamao M, Kanedai Y, Kobayashi T (1997) A novel high-performance liquid chromatographic assay for vitamin D metabolites using a coulometric electrochemical detector. J. Pharm. Biomed. Anal. 15; 1497–1502.Google Scholar
  336. Masuda S, Kamao M, Schroeder NJ, Makin HL, Jones G, Kremer R, Rhim J, Okano T (2000) Characterization of 3-epi-1α,25-dihydroxyvitamin D3 involved in 1α,25-dihydroxyvitamin D3 metabolic pathway in cultured cell lines. Biol. Pharm. Bull. 23; 133–139.Google Scholar
  337. Masuda S, Gao M, Zhang A, Kaufmann M, Jones G (2003) Importance of Cytochrome P450-mediated metabolism in the mechanism of action of vitamin D analogs. In Vitamin D Analogs in Cancer Prevention and Therapy (eds Reichrath J, Friedrich M, Tilgen W). Springer, Germany. Proceedings of Conference held in Homburg, Saar, Germany, May 3–4, 2002, pp. 189–202.Google Scholar
  338. Masuda S, Kaufmann M, Byford V, Gao M, St-Arnaud R, Arabian A, Makin HLJ, Knutson JC, Strugnell S, Jones G (2004) Insights into vitamin D metabolism using CYP24 over-expression and knockout systems in conjunction with liquid chromatography/mass spectrometry (LC/ MS). J. Steroid Biochem. Mol. Biol. 89–90; 149–153.Google Scholar
  339. Masuda S, Byford V, Arabian A, Sakai Y, Demay MB, St-Arnaud R, Jones G (2005) 25-dihydroxy vitamin D altered pharmacokinetics of 1 and 25-hydroxyvitamin D3 in the blood and tissues of the 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) null mouse. Endocrinology. 146; 825–834.Google Scholar
  340. Masuda S, Strugnell SA, Knutson JC, St-Arnaud R, Jones G (2006) Evidence for the activation of 1α-hydroxyvitamin D2 by 25-hydroxyvitamin D-24-hydroxylase: delineation of pathways involving lα,24-dihydroxyvitamin D, and 1α,25-dihydroxyvitamin D. Biochim. Biophys. Acta. 1761; 221–234.Google Scholar
  341. Mata-Granados JM, Luque de Castro MD, Quesada JM (2004) Fully automated method for the determination of 24,25(OH)2 and 25(OH) D3 hydroxyvitamins, and Vitamins A and E in human serum by HPLC. J. Pharmaceut. Biomed. Anal. 35; 575–582.Google Scholar
  342. Matthews EW, Byfield PG, Colston KW, Evans IM, Galante LS, Macintyre I (1974) Separation of hydroxylated derivatives of vitamin D, by high speed liquid chromatography (HSLC). FEBS. Lett. 48; 122–125.Google Scholar
  343. Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography- tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and Dr Clin. Chan. 51; 1683–1690.Google Scholar
  344. Mawer EB (1980) Clinical implications of measurements of circulating vitamin D metabolites. Clin. Endocrinol. Metab. 9; 63–79.Google Scholar
  345. Mawer EB, Berry JL, Cundall JP, et al. (1990) A sensitive radioimmunoassay using a monoclonal antibody that is equipotent for ercalcitriol and calcitriol (1,25-dihydroxyvitamin D, and vitamin D3). Clin. Chim. Acta. 19; 199–209.Google Scholar
  346. Mawer EB, Jones G, Davies M, Still PE, Byford V, Schroeder NJ, Makin HL, Bishop CW, Knutson JC (1998) Unique 24-hydroxylated metabolites represent a significant pathway of metabolism of vitamin D, in humans: 24-hydroxyvitamin D, and 1,24-dihydroxyvitamin D, detectable in human serum. J. Clin. Endocrinol. Metab. 83; 2156–2166.Google Scholar
  347. Mayer E, Schmidt-Gayk H (1984) Interlaboratory comparison of 25-hydroxyvitamin D determination. Clin. Chem. 30; 1199–1204.Google Scholar
  348. McCollum EV, Simmonds N, Becker JE, Shipley PG (1922) Studies on experimental rickets, XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J. Biol. Chem. 53; 293–312.Google Scholar
  349. McGraw CA, Hug G (1990) Simultaneous measurement of 25-hydroxyvitamin D, 24,25-dihy-droxyvitamin D, and 1,25-dhydroxyvitamin D without use of HPLC. Med. Lab. Sci. 47; 17–25.Google Scholar
  350. Mehta R, Hawthorne M, Uselding L, Albinescu D, Moriarty R, Christov K, Mehta R (2000) Prevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in rats by lalpha-hydroxyvitamin D(5). J. Natl. Cancer Inst. 92; 1836–1840.Google Scholar
  351. Mehta RG (2004) Stage-specific inhibition of mammary carcinogenesis by 1α-hydroxyvitamin D3. Eur. J. Cancer. 40; 2331–2337.Google Scholar
  352. Melamed ML, Michos ED, Post W, Astor B (2008a) 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch. Intern. Med. 168; 1629–1637.Google Scholar
  353. Melamed ML, Muntner P, Michos ED, Uribarri J, Weber C, Sharma J, Raggi P (2008b) Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: results from NHANES 2001 to 2004. Arterioscler. Thromb. Vasc. Biol. 28; 1179–1185.Google Scholar
  354. Mellanby E, Cantag MD, (1919) Experimental investigation on rickets. Lancet. 196; 407–412.Google Scholar
  355. Midland MM, Plumet J, Okamura WH (1993) Studies of vitamin D (calciferol) and its analogs. Effect of C20 stereochemistry on the conformational profile of the side chains of vitamin D analogs. Bioorg. Med. Chem. Lett. 3; 1799–1804.Google Scholar
  356. Mizhiritskii MD, Konstantinovskii LE, Vishkautsan R (1996) 2D NMR study of solution conformations and complete 1H and 13C chemical shifts. Assignments of vitamin D metabolites and analogs. Tetrahedron. 52; 1239–1252.Google Scholar
  357. Monkawa T, Yoshida T, Wakino S, Shinki T, Anazawa H, Deluca HF, Suda T, Hayashi M, Saruta T (1997) Molecular cloning of cDNA and genomic DNA for human 25-hydroxyvitamin D, 1α-hydroxylase. Biochem. Biophys. Res. Commun. 239; 527–533.Google Scholar
  358. Morisaki M, Koizumi N, Ikekawa N, Takeshita T, Ishimoto S (1975) Synthesis of active forms of vitamin D. Part IX. Synthesis of 1α, 24-dihydroxycholecalciferol. J. Chem. Soc. [Perkin 1]. 1421–1424.Google Scholar
  359. Murao N, Ishigai M, Sekiguchi N, Takahashi T, Aso Y (2005a) Ferrocene-based Diels-Alder derivatization for the determination of 1α-hydroxyvitamin D3 in rat plasma by high-performance liquid chromatography-electrospray tandem mass spectrometry. Anal. Biochem. 346; 158–166.Google Scholar
  360. Murao N, Ohishi N, Nabuchi Y, Ishigai M, Kawanishi T, Aso Y (2005b) The determination of 2β-(3-hydroxypropoxy)- 1α,25-dihydroxyvitamin D3, (ED-71) in human serum by high-performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 823; 61–68.Google Scholar
  361. Murayama E, Miyamoto K, Kubodera N, Mori T, Matsunga I (1986) Synthetic studies of vitamin D3 analogues. VIII. Synthesis of 22-oxavitamin D3 analogues. Chem. Pharm. Bull. (Tokyo). 34; 4410–4413.Google Scholar
  362. Nair PP, DeLeon S (1968) Stereochemical studies on the microquantitative detection of vitamin D by gas-liquid chromatography. Arch. Biochem. Biophys. 128; 663–672.Google Scholar
  363. Nair PP, Bucana C, DeLeon S, Turner DA (1965) Gas chromatographic studies of vitamins D2 and D3. Anal. Chem. 37; 631–636.Google Scholar
  364. Napoli JL, Sommerfeld JL, Pramanik BC, Gardner R, Sherry AD, Partridge JJ, Uskokovic MR, Horst RL (1983) 19-nor-10-ketovitamin D derivatives: unique metabolites of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3. Biochemistry. 22; 3636–3640.Google Scholar
  365. Nicholson GC, Kent JC, Gutteridge DH, et al. (1985) Estimation of 1,25-dihydroxyvitamin D by cytoreceptor and competitive protein binding assays without high pressure liquid chromatography. Clin. Endocrinol. 22; 597–609.Google Scholar
  366. Nishii Y, Sato K, Kobayashi T (1993) The development of vitamin D3 analogues for the treatment of osteoporosis. Osteoporos. Int. 3; 190–193.Google Scholar
  367. Norman AW (1979) In Vitamin D: The Calcium Homeostatic Hormone. Academic Press, pp. 50 & 85.Google Scholar
  368. Norman AW (1972) Problems relating to the definition of an international unit for vitamin D and its metabolites. J. Nutr. 102; 1243–1246.Google Scholar
  369. Norman AW, Bouillon R, Whiting SJ, Vieth R, Lips P (2007) 13th Workshop consensus for vitamin D nutritional guidelines. J. Steroid Biochem. Mol. Biol. 103; 204–205.Google Scholar
  370. Oftebro H, Falch JA, Holmberg I, Haug E (1988) Validation of a radioreceptor assay for 1,25-dihydroxy vitamin D using selected ion monitoring GC-MS. Clin. Chim. Acta. 176; 157–168.Google Scholar
  371. Ohno A, Shimizu M, Yamada S (2002) Fluorinated vitamin D analogs to probe the conformation of vitamin D in its receptor complex: 19F-NMR studies and biological activity. Chem. Pharm. Bull. 50; 475–483.Google Scholar
  372. Ohyama Y, Okuda K (1991) Isolation and characterization of a cytochrome P-450 from rat kidney mitochondria that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3. J. Biol. Chem. 266; 8690–8695.Google Scholar
  373. Ohyama Y, Noshiro M, Okuda K (1991) Cloning and expression of cDNA encoding 25-hydroxyvitamin D3 24-hydroxylase. FEBS Lett. 278; 195–198.Google Scholar
  374. Ohyama Y, Ozono K, Uchida M, Yoshimura M, Shinki T, Suda T, Yamamoto O (1996) Functional assessment of two vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J. Biol. Chem. 271; 30381–30385.Google Scholar
  375. Okamura WH, Midland MM, Norman AW, Hammond MW, Dormanen MC, Nemere I (1995) Biochemical significance of the 6-s- cis conformation of the steroid hormone 1α,25-dihydroxy vitamin D3 based on the provitamin D skeleton. Ann. NY Acad. Sci. 761; 344–348.Google Scholar
  376. Okamura WH, Zhu GD, Hill DK, Thomas RJ, Ringe K, Borchardt DB, Norman AW, Mueller LJ (2002) Synthesis and NMR studies of 13 C-labeled vitamin D metabolites. J. Org. Chem. 67; 1637–1650.Google Scholar
  377. Okano T, Mizuno K, Matsuyama N, et al. (1979) Gas-liquid chromatography-mass spectrometric identification of previtamin D3 and vitamin D3 in the skin of vitamin D-deficient rats irradiated with ultraviolet light. Recl. Trav. Chim. Pays-Bas. 98; 253–257.Google Scholar
  378. Olsen RA, Struppe J, Elliott DW, Thomas RJ, Mueller LJ (2003) Through-bond 13C–13C correlation at the natural abundance level: refining dynamic regions in the crystal structure of vitamin D3 with solid-state NMR. J. Am. Chem. Soc. 125; 11784–11785.Google Scholar
  379. Ornoy A, Goodwin D, Noff D, Edelstein S (1978) 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 276; 517–519.Google Scholar
  380. Ortiz-Boyer F, Fernandez-Romero JM, Luque de Castro MD, Quesada JM (1998) Quantitation of circulating hydroxyvitamin D3 in human plasma by a continuous cleanup/concentration procedure prior to HPLC-UV detection. Clin. Chim. Acta. 274; 139–149.Google Scholar
  381. Ostermeyer U, Schmidt T (2006) Vitamin D and provitamin D in fish: determination by HPLC with electrochemical detection. Eur. Food Res. Technol. 222; 403–413.Google Scholar
  382. Ovesen L, Brot C, Jakobsen J (2003) Food contents and biological activity of 25-hydroxyvitamin D: a vitamin D metabolite to be reckoned with? Ann. Nutr. Metab. 47; 107–113.Google Scholar
  383. Paaren HE, Hamer DE, Schnoes HK, DeLuca HF (1978) Direct C-1 hydroxylation of vitamin D compounds: convenient preparation of 1α-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3, and 1α- hydroxyvitamin D2. Proc. Natl. Acad. Sci. USA. 75; 2080–2081.Google Scholar
  384. Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, Goltzman D (2004) Inactivation of the 25-hydroxyvitamin D 1α -hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J. Biol. Chan. 279; 16754–16766.Google Scholar
  385. Parise RA, Egorin MJ, Kanterewicz B, Taimi M, Petkovich M, Lew AM, Chuang SS, Nichols M, El-Hefnawy T, Hershberger PA (2006) CYP24, the enzyme that catabolizes the antiprolifera-tive agent vitamin D, is increased in lung cancer. Int. J. Cancer. 119; 1819–1828.Google Scholar
  386. Parviainen MT, Savolainen KE, Korhonen PH, et al. (1981) An improved method for routine determination of vitamin D and its hydroxylated metabolites in serum from children and adults. Clin. Chim. Acta. 114; 233–247.Google Scholar
  387. Penau H, Hagemann G (1946) Helvet. Chim. Acata 29; 136.Google Scholar
  388. Pelc B, Marshall DH (1978) Thermal transformation of cholecalciferol between 100–170°C. Steroids. 31; 23–29.Google Scholar
  389. Perales S, Delgado MM, Alegria A, Barbera R, Farre R (2005a) Liquid chromatographic determination of vitamin D3 in infant formulas and fortified milk. Anal. Chim. Acta. 543; 58–63.Google Scholar
  390. Perales S, Alegria A, Brabera R, Farre R (2005b) Review: determination of vitamin D in dairy products by high performance liquid chromatography. Food Sci. Technol. Int. 11; 451–462.Google Scholar
  391. Perlman KL, Sicinski RR, Schnoes HK, DeLuca HF (1990) 1α,25-Dihydroxy-19-nor-vitamin D3, a novel vitamin D-related compound with potential therapeutic activity. Tetrahedron. Lett. 31; 1823–1824.Google Scholar
  392. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA (2005) Dietary and serum phosphorus regulate fibroblast growth factor-23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 146; 5358–5364.Google Scholar
  393. Phillipou G, Bigham DA, Seamark RF (1975) Steroid t-butyldimethylsilyl ethers as derrivatives for mass fragmentography. Steroids. 26; 516–524.Google Scholar
  394. Phinney KW (2008) Development of a standard reference material for vitamin D in serum. Am. J. Clin. Nutr. 88; 511S-512S.Google Scholar
  395. Pike JW (1991) Vitamin D3 receptors: structure and function in transcription. Annu. Rev. Nutr. 11; 189–216.Google Scholar
  396. Poon PMK, Mak YT, Pang CP (1993) Gas chromatographic mass fragmentographic determination of serum 1α,25-dihydroxyvitamin D3. Clin. Biochem. 26; 461–469.Google Scholar
  397. Porteous C, Coldwell RD, Trafford DJH, et al. (1987) Recent developments in the measurement of vitamin D and its metabolites in human body fluids. J. Steroid Biochem. 28; 785–801.Google Scholar
  398. Prosser D, Kaufmann M, O’Leary B, Byford V, Jones G (2007) Single A326G mutation converts hCYP24A1 from a 25-OH-D3 -24-hydroxylase into -23-hydroxylase generating 1α,25-(OH)2D3–26,23-lactone. Proc. Natl. Acad. Sci. USA. 104; 12673–12678.Google Scholar
  399. Prosser DE, Jones G (2004) Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem. Sci. 29; 664–673.Google Scholar
  400. Przybelski RJ, Binkley NC (2007) Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch. Biochem. Biophys. 460; 202–205.Google Scholar
  401. Qaw F, Calverley MJ, Schroeder NJ, et al. (1993) In vivo metabolism of the vitamin D analog, dihydrotachysterol: evidence for formation of 1α,25- and 1β,25-dihydroxy-dihydrotachysterol metabolites and studies of their biological activity. J. Biol. Chem. 268; 282–292.Google Scholar
  402. Qian H, Sheng M (1998) Simultaneous determination of fat-soluble vitamins A, D and E and pro-vitamin D2 in animal feeds by one-step extraction and high-performance liquid chromatography analysis. J. Chromatogr. A. 825; 127–133.Google Scholar
  403. Quarles LD (2003) FGF-23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am. J. Physiol. Endocrinol. Metab. 285; E1–E9.Google Scholar
  404. Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature. 398; 824–828.Google Scholar
  405. Rahmaniyan R, Patrick K, Bell N (2005) Characterization of recombinant CYP2C11: a vitamin D 25-hydroxylase and 24-hydroxylase. Am. J. Physiol. Endo. 288; 753–760.Google Scholar
  406. Reddy GS, Tserng KY (1989) Calcitroic acid, end product of renal metabolism of 1,25-dihy-droxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 28; 1763–1769.Google Scholar
  407. Reddy GS, Muralidharan KR, Okamura WH, Tserng KY, McLane JA (2001) Metabolism of 1α,25-dihydroxyvitamin D3, and its C-3 epimer 1α,25-dihydroxy-3-epi-vitamin D3, in neonatal human keratinocytes. Steroids. 66; 441–450.Google Scholar
  408. Reddy GS, Omdahl JL, Robinson M, Wang G, Palmore GT, Vicchio D, Yergey AL, Tserng KY, Uskokovic MR (2006) 23-carboxy-24,25,26,27 tetranorvitamin D3 (calcioic acid) and 24-car-boxy-25,26,27-trinorvitamin D, (cholacalcioic acid): end products of 25-hydroxyvitamin D, metabolism in rat kidney through C-24 oxidation pathway. Arch. Biochem. Biophys. 455; 18–30.Google Scholar
  409. Reddy GS, Robinson M, Wang G, Palmore GT, Gennaro L, Vouros P, De Clercq P, Vandewalle M, Young W, Ling S, Verstuyf A, Bouillon R (2007) Removal of C-ring from the CD-ring skeleton of 1α,25-dihydroxyvitamin D3 does not alter its target tissue metabolism significantly. Arch. Biochem. Biophys. 460; 254–261. Epub Nov 21, 2006.Google Scholar
  410. Redhwi AA, Anderson DC, Smith GN (1981) A simple method for the isolation of vitamin D metabolites from plasma extracts. Steroids. 39; 149–154.Google Scholar
  411. Reinhardt TA, Hollis BW (1986) A 1,25-dihydroxyvitmaitap assajmot requiring high-peformance liquid chromatography. Methods Enzymol. 123; 176–185.Google Scholar
  412. Reinhardt TA, Horst RL, Littledike ET, et al. (1982) 1,25-Dihw;oxyvitamin D, receptor in bovine thymus gland. Biochem. Biophys. Res. Comm. 106; 1012–1018.Google Scholar
  413. Reinhardt TA, Horst RL, Orf J, et al. (1984) A microassay for 1,25-dihydroxyvitamin D not requiring high-performance liquid chromatography: application of clinical studies. J. Clin. Endocrinol. Metab. 58; 91–98.Google Scholar
  414. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell. 5; 173–179.Google Scholar
  415. Rosenthal AM, Jones G, Kooh SW, Fraser D (1980) 25-hydroxyvitamin D, metabolism by isolated perfused rat kidney. Am. J. Physiol. 239; E12–E20.Google Scholar
  416. Roth HJ, Zahn I, Alkier R, Schmidt H (2001) Validation of the first automated chemiluminescence protein-binding assay f«the detection of 25-hydroxycalciferol. Clin. Lab. 47; 357–365.Google Scholar
  417. Roth HJ, Schmidt-Gayk H, Weber H, Niederau C (2008) Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography–tandem mass spectrometry as a reference. Ann. Clin. Biochem. 45; 153–159.Google Scholar
  418. Rovner AJ, O’Brien KO (2008) Hypovitaminosis D among healthy children in the United States: a review of the current evidence. Arch. Pediatr. Adolesc. Med. 162; 513–519.Google Scholar
  419. Saenger AK, Laha TJ, Bremner DE, Sadrzadeh SM (2006) Quantification of serum 25-hydroxyvitamin D2 and D3 using HPLC-tandem mass spectrometry and examination of reference intervals for diagnosis of vitamin D deficiency. Am. J. Clin. Pathol. 125; 914–920.Google Scholar
  420. Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, Liebhaber SA, Cooke NE (1999) Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J. Clin. Invest. 103; 239–251.Google Scholar
  421. Sakaki T, Sawada N, Abe D, Komai K, Shiozawa S, Nonaka Y, Nakagawa K, Okano T, Ohta M, Inouye K (2003) Metabolism of 26,26,26,27,27,27-F6-la,25-dihydroxyvitamin D3 by CYP24: species-based difference between humans and rats. Biochem. Pharmacol. 65; 1957–1965.Google Scholar
  422. Sato T, Kawakami Y, Nagai Y, Kawai T, Kozaki T, Nezu Y, Kobayashi T (1990) Effect of solvents on the thermal isomerization of 1α-hydroxyprevitamin D3, diacetate to 1α-hydroxyvitamin D3, diacetate. J. Nutr. Sci. Vitaminol (Tokyo). 36; 299–309.Google Scholar
  423. Sawada N, Sakaki T, Ohta M, Inouye K (2000) Metabolism of vitamin D3 by human CYP27A1. Biochem. Biophys. Res. Comm. 273; 977–984.Google Scholar
  424. Sawada M, Kusudo T, Sakaki T, Hatakeyama S, Hanada M, Abe D, Kamao M, Okano T, Inouye K (2004) Novel metabolism of 1α,25-dihydroxyvitamin D3 with C24-C25 bond cleavage catalyzed by human CYP24A1. Biochemistry. 43; 4530–4537.Google Scholar
  425. Scharla S, Schmidt-Gayk H, Reichel H, Mayer E (1984) A sensitive and simplified radioimmu-noassay for 1,25-dihydroxyvitamin D3. Clin. Chim. Acta. 142; 325–338.Google Scholar
  426. Schmidt JA (2006) Measurement of 25-hydroxyvitamin D revisited. Clin. Chem. 52; 2304–2305.Google Scholar
  427. Schroeder NJ, Trafford DJH, Cunningham J, et al. (1993) In vivo dihydrotachysterol2 metabolism in normal man: formation of 1α,25- and 1β,25-dihydroxylated metabolites and effect on endogenous parathyroid hormone and 1α,25-dihydroxyvitamin D concentration. Abstract for 15th Annual Meeting of the ASBMR, Tampa, FL. J. Bone Miner. Res. 8; S217.Google Scholar
  428. Schroeder NJ, Trafford DJH, Cunningham J, et al. (1994a) In vivo dihydrotachysterol2 metabolism in normal man: formation of 1α,25- and 1p\25-dihydroxylated metabolites and effect on endogenous parathyroid hormone and 1α,25-dihydroxyvitamin D concentration. J. Clin. Endocrinol. Metab. 78; 1481–1487.Google Scholar
  429. Schroeder NJ, Trafford DJ, Cunningham J, Jones G, Makin HL (1994b) In vivo dihydrotachysterol2 metabolism in normal man: 1 alpha- and 1 beta-hydroxylation of 25-hydroxydihydrotachy-sterol2 and effects on plasma parathyroid hormone and 1 alpha,25-dihydroxyvitamin D3 concentrations. J. Clin. Endocrinol. Metab. Jun; 78; 1481–7. PubMed PMID: 8200953.Google Scholar
  430. Schwartz GG, Hulka BS (1990) Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). Anticancer Res. 10; 1307–1311.Google Scholar
  431. Schwartz GG, Skinner HG (2007) Vitamin D status and cancer: new insights. Curr. Opin. Clin. Nutr. Metab. Care. 10; 6–11.Google Scholar
  432. Seamark DA, Trafford DJH, Makin HLJ (1980a) The estimation of vitamin D and some metabolites in human plasma by mass fragmentography. Clin. Chim. Acta. 106; 51–62.Google Scholar
  433. Seamark DA, Trafford DJH, Makin HLJ (1980b) A new procedure for the formation of isotachys-terol derivatives of subnanomole quantities of ergocalciferol, cholecalciferol and its metabolites prior to gas liquid chromatography. J. Steroid Biochem. 13; 1057–1063.Google Scholar
  434. Seamark DA, Trafford DJH, Hiscocks PG, et al. (1980c) High-performance liquid chromatography of vitamin D: enhanced ultraviolet absorbance by prior conversion to isotachysterol derivatives. J. Chromatogr. 197; 271–273.Google Scholar
  435. Seamark DA, Trafford DJH, Makin HLJ (1981) The estimation of vitamin D and its metabolites in human plasma. J. Steroid Biochem. 14; 111–123.Google Scholar
  436. Seiden-Long I, Vieth R (2007) Evaluation of a 1,25-dihydroxyvitamin D enzyme immunoassay. Clin. Chem. 53; 1104–1108. Epub Apr 13, 2007.Google Scholar
  437. Shackleton CHL, Whitney JO (1980) Use of Sep-Pak cartridges for urinary steroid extraction: evaluation of the method for use prior to gas chromatographic analysis. Clin. Chim. Acta. 107; 231–243.Google Scholar
  438. Shankar VN, Dilworth FJ, Makin HL, Schroeder NJ, Trafford DJ, Kissmeyer AM, Calverley MJ, Binderup E, Jones G (1997) Metabolism of the vitamin D analog EB1089 by cultured human cells: redirection of hydroxylation site to distal carbons of the side-chain. Biochem. Pharmacol. 53; 783–793.Google Scholar
  439. Shankar VN, Propp AE, Schroeder N, Surber BW, Makin HL, Jones G (2001a) In vitro metabolism of 19-nor-1α,25-(OH)2D2 in cultured cell lines: inducible synthesis of lipid- and water-soluble metabolites. Arch. Biochem. Biophys. 387; 297–306.Google Scholar
  440. Shankar VN, Byford V, Prosser DE, Schroeder NJ, Makin HL, Wiesinger H, Neef G, Steinmeyer A, Jones G (2001b) Metabolism of a 20-methyl substituted series of vitamin D analogs by cultured human cells: apparent reduction of 23-hydroxylation of the side chain by the 20-methyl group. Biochem. Pharmacol. 61; 893–902.Google Scholar
  441. Shevde NK, Plum LA, Clagett-Dame M, Yamamoto H, Pike JW, DeLuca HF (2002) A potent analog of 1α,25-dihydroxyvitamin D3 selectively induces bone formation. Proc. Natl. Acad. Sci. USA. 99; 13487–13491.Google Scholar
  442. Sheves M, Berman E, Mazur Y, Zaretskii ZVI (1979) Use of 2 H NMR and mass spectrometry for the investigation of the vitamin D3-previtamin D3 equilibrium. J. Am. Chem. Soc. 101; 1882–1883.Google Scholar
  443. Shimada K, Mizuguchi T (1992) Sensitive and stable Cookson-type reagent for derivatization of conjugated dienes for high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A. 606; 133–135.Google Scholar
  444. Shimada K, Oe T, Mizuguchi T (1991) Cookson-type reagents - highly sensitive derivatization reagents for conjugated dienes in high-performance liquid chromatography. Analyst. 116; 1393–1397.Google Scholar
  445. Shimada K, Mitamura K, Kaji H, et al. (1994) Retention behaviour of conjugated metabolites of vitamin D and related compounds in high-performance liquid chromatography. J. Chromatogr. Sci. 32; 107–111.Google Scholar
  446. Shimada K, Mitamura K, Kitama N, Kawasaki M (1997) Determination of 25-hydroxyvitamin D3 in human plasma by reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl. 689; 409–414.Google Scholar
  447. Shimada K, Mitamura K, Higashi T (2001) Gas chromatography and high-performance liquid chromatography of natural steroids. J. Chromatogr. A. 935; 141–172.Google Scholar
  448. Shimizu M, Yamada S (1991) New high sensitive, specific, and accurate method for assaying vitamin D metabolites (the first practical fluorometric assay method for vitamin D). In Vitamin D. Gene Regulation, Structure–Function Analysis and Clinical Application (eds Norman AW, Bouillon R, Thomasset M). Walter de Gruyter, Berlin, pp. 644–645.Google Scholar
  449. Shimizu M, Kamachi S, Nishii Y, et al. (1991) Synthesis of a reagent for fluorescence-labeling of vitamin D and its use in assaying vitamin D metabolites. Anal. Biochem. 194; 77–81.Google Scholar
  450. Shimizu M, Gao Y, Aso T, Nakatsu K, Yamada S (1992) Fluorometric assay of 25-hydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3 in plasma. Anal. Biochem. 1992 Aug 1 204; 258–264.Google Scholar
  451. Shimizu M, Yamazaki T, Yamada S (1993) Fluorescence-labeling reaction of vitamin-D metabolites and analogs with fluorescent 1,2,4-triazoline-3,5-dione (DMEQ-TAD). Bioorg. Med. Chem. Lett. 3; 1809–1814.Google Scholar
  452. Shimizu M, Iwasaki Y, Ishida H, Yamada S (1995) Determination of 25-hydroxyvitamin D3 in human plasma using a non-radioactive tetranorvitamin D analogue as an internal standard. J. Chromatogr. B Biomed. Appl. 672; 63–71.Google Scholar
  453. Shimizu M, Wang X, Yamada S (1997) Fluorimetric assay of 1α,25-dihydroxyvitamin D3 in human plasma. J. Chromatog.r B Biomed. Sci. Appl. 690; 15–23.Google Scholar
  454. Shinki T, Jin CH, Nishimura A, Nagai Y, Ohyama Y, Noshiro M, Okuda K, Suda T (1992) Parathyroid hormone inhibits 25-hydroxyvitamin D3 -24-hydroxylase mRNA expression stimulated by 1α,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J. Biol. Chem. 267; 13757–13762.Google Scholar
  455. Shinkyo R, Sakaki T, Kamakura M, Ohta M, Inouye K (2004) Metabolism of vitamin D by human microsomal CYP2R1. Biochem. Biophys. Res. Commun. 324; 451–457.Google Scholar
  456. Shultz TD, Fox J, Heath H 3rd, Kumar R (1983) Do tissues other than the kidney produce 1,25-dihy-droxyvitamin D3 in vivo? A reexamination. Proc. Natl. Acad. Sci. USA. 80; 1746–1750.Google Scholar
  457. Sicinska W (2006) DFT calculation of nitrogen chemical shifts in the active site of vitamin D receptor. Pol. J. Chem. 80; 1177–1183.Google Scholar
  458. Sicinska W, Westler WM, DeLuca HF (2005) NMR assignments of tryptophan residue in apo and holo LBD-rVDR. Proteins. 61; 461–467.Google Scholar
  459. Sicinski RR, Perlman KL, DeLuca HF (1994) Synthesis and biological activity of 2-hydroxy and 2-alkoxy analogs of 1α,25-dihydroxy-19-norvitamin D3. J. Med. Chem. 37; 3730–3738.Google Scholar
  460. Sicinski RR, Prahl JM, Smith CM, DeLuca HF (1998) New 1α,25-Dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxym-ethyl, 2-methyl, and 2-methylene analogs. J. Med. Chem. 41; 4662–4674.Google Scholar
  461. Sicinski RR, Rotkiewicz P, Kolinski A, Sicinska W, Prahl JM, Smith CM, DeLuca HF (2002) 2-Ethyl and 2-ethylidene analogues of 1α,25-dihydroxy-19-norvitamin D3: synthesis, confor-mational analysis, biological activities, and docking to the modeled rVDR ligand binding domain. J. Med. Chem. 45; 3366–3380.Google Scholar
  462. Sievenpiper JL, McIntyre EA, Verrill M, Quinton R, Pearce SH (2008) Unrecognised severe vitamin D deficiency. BMJ. 336; 1371–1374.Google Scholar
  463. Singh RJ (2008) Are clinical laboratories prepared for accurate testing of 25-hydroxy vitamin D? Clin. Chem. 54; 221–223.Google Scholar
  464. Singh RJ (2010) Quantitation of 25-OH-vitamin D (25-OHD) using liquid tandem mass spectrometry (LC-MS-MS). Methods Mol. Biol. 603; 509–517.Google Scholar
  465. Singh RJ, Taylor RL, Reddy GS, Grebe SK (2006) C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J. Clin. Endocrinol. Metab. 91; 3055–3061.Google Scholar
  466. Sklan D, Budowski P, Katz M (1973) Determination of 25-hydroxycholecalciferol by combined thin layer and gas chromatography. Anal Biochem. 56; 606–609.Google Scholar
  467. Sliva MG, Sanders JK (1996) Vitamin D in infant formula and enteral products by liquid chromatography: collaborative study. J. AOAC Int. 79; 73–80.Google Scholar
  468. Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A, Tuckey RC (2005) The cytochrome P450scc system opens an alternate pathway of vitamin D, metabolism. FEBS J. 272; 4080–4090.Google Scholar
  469. Slominski A, Semak I, Wortsman J, Zjawiony J, Li W, Zbytek B, Tuckey RC (2006) An alternative pathway of vitamin D metabolism. Cytochrome P450scc(CYPllAl)-mediated conversion to 20-hydroxyvitamin D2 and 17,20 dihydroxyvitamin D2. FEBS. J. 273; 2891–2901. Erratum in: FEBS J. 2006 Sept 273(17); 4129.Google Scholar
  470. Smolders J, Damoiseaux J, Menheere P, Hupperts R (2008) Vitamin D as an immune modulator in multiple sclerosis, a review. J. Neuroimmunol. 194; 7–17.Google Scholar
  471. Soerensen H, Binderup L, Calverley MJ, Hoffmeyer L, Andersen NR (1990) In vitro metabolism of Calcipotriol (MC 903), a vitamin D analog. Biochem. Pharmacol. 39; 391–393.Google Scholar
  472. Sorensen OH, Lund B, Thode JD, Storm TL, Lund B, Brahm M, Friedberg M, Holmegaard SN (1986) Effect of sunlight exposure on circulating 1,25-dihydroxyvitamin D in hemodialyzed patients and of exogenous parathyroid hormone in anephric patients. Acta. Med. Scand. 219; 215–219.Google Scholar
  473. Souberbielle JC, Fayol V, Sault C, Lawson-Body E, Kahan A, Cormier C (2005) Assay-specific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays. Clin. Chan. 51; 395–400.Google Scholar
  474. St-Arnaud R (1999) Targeted inactivation of vitamin D hydroxylases in mice. Bone 25; 27–29.Google Scholar
  475. St-Arnaud R, Messerlian S, Moir JM, Omdahl JL, Glorieux FH (1997) The 25-hydroxyvitamin D1-alpha-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J. Bone Miner. Res. 12; 1552–1559.Google Scholar
  476. St-Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, Depovere J, Mathieu C, Christakos S, Demay MB, Glorieux FH (2000) Deficient mineralization of intramembra-nous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D Endocrinology 141 2658 2666 D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 141; 2658–2666.Google Scholar
  477. Staffas A, Nyman A; Nordic Committee on Food Analysis (2003) Determination of cholecalciferol (vitamin D3) in selected foods by liquid chromatography: NMKL collaborative study. J. AOAC Int. 86; 400–406.Google Scholar
  478. Stern PH (1981) A monolog on analogs: in vitro effects of vitamin D metabolites and consideration of the mineralization question. Calcif. Tissue Int. 33; 1–4.Google Scholar
  479. Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C (2006) Immune regulation of 25-hydroxyvitamin-D3-la -hydroxylase in human monocytes. J. Bone Miner. Res. 21; 37–47.Google Scholar
  480. Strugnell S, Byford V, Makin HL, Moriarty RM, Gilardi R, LeVan LW, Knutson JC, Bishop CW, Jones G (1995) 1α,24(S)-dihydroxyvitamin D2: a biologically active product of 1α-hydroxyvitamin D2 made in the human hepatoma, Hep3B. Biochem. J. 310; 233–241.Google Scholar
  481. Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW (2008) Structural analysis of CYP2R1 in complex with vitamin D3. J. Mol. Biol. 380; 95–106.Google Scholar
  482. Stumpft WE (1995) Vitamin D sites and mechanisms of action: a histochemical perspective. Reflections on the utility of autoradiography and cytopharmacology for drug targeting. Histochem. Clin. Biol. 104; 417–427.Google Scholar
  483. Suda T, DeLuca HF, Schnoes HK, Blunt JW (1969) Isolation and identification of 25-hydroxyer-gocalciferol. Biochemistry. 8; 3515–3520.Google Scholar
  484. Sutton AL, MacDonald PN (2003) Vitamin D: more than a “bone-a-fide” hormone. Mol. Endocrinol. 17; 777–791.Google Scholar
  485. Syage JA, Evans MD (2001) Photoionization mass spectrometry: a powerful new tool for drug discovery. Pharmagenomics. 16; 14–21.Google Scholar
  486. Szejtli J, Bolla-Pusztai E, Szabó P, Ferenczy T (1980) Enhancement of stability and biological effect of cholecalciferol by β-cyclodextrin complexation. Pharmazie. 35; 779–787.Google Scholar
  487. Tachibana Y, Tsuii M (2001) Study on the metabolites of 1α,25-dihydroxyvitamin D4. Steroids. 66; 93–97.Google Scholar
  488. Tachibana Y, Tsuji M, Yokoyama S, Tejima T (1999) Metabolic study on active form of vitamin D4. Tennen. Yuki. Kagobutsu. Toronkai. Koen. Yoshishu. 41; 607–612.Google Scholar
  489. Tai SS, Bedner M, Phinney KW (2010) Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography–tandem mass spectrometry. Anal. Chem. 82; 1942–1948.Google Scholar
  490. Takahashi M, Sakakibara Y (1995) Studies of the syntheses of vitamin D derivatives. III. 1H-NMR signal assignment of the 21-H of (24S)-1α-hydroxyvitamin D2. Nippon. Kagaku. Kaishi. 160–162.Google Scholar
  491. Takahashi T, Yamamoto R (1969) Studies on the stability of vitamin D2 powder preparations. III Structure of a new isomer of vitamin D2. Yakugaku. Zasshi. 89; 919–924.Google Scholar
  492. Takamura K, Hoshino H, Harima N, et al. (1991) Identification of vitamin-D2 by thermospray-interface mass spectrometry. J. Chromatogr. 543; 241–243.Google Scholar
  493. Takeda K, Kominato K, Sugita A, Iwasaki Y, Shimazaki M, Shimizu M (2006) Isolation and identification of 2α,25-dihydroxyvitamin D3, a new metabolite from Pseudonocardia autotrophica 100U-19 cells incubated with vitamin D3. Steroids. 71; 736–744.Google Scholar
  494. Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S (1997) 25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science. 277; 1827–1830.Google Scholar
  495. Tanabe M, Harada M, Odawara F, Ikuta S, Nakagawa N, Otani M (1991) Synthesis and assignment of novel [125I]-labeled 1 alpha,25-dihydroxyvitamin D3 derivatives. J. Nutr. Sci. Vitaminol. (Tokyo). 37; 139–147.Google Scholar
  496. Tanner JT, Barnett SA, Mountford MK (1993) Analysis of milk-based infant formula. Phase IV. Iodide, linoleic acid, and vitamins D and K: U.S. Food and Drug Administration-Infant Formula Council: collaborative study. J. AOAC Int. 76; 1042–1056.Google Scholar
  497. Teegarden D, Meredith SC, Sitrin MD (1991) Determination of the affinity of vitamin-D metabolites to serum vitamin-D binding protein using assay employing lipid-coated polystyrene beads. Anal. Biochem. 199; 293–399.Google Scholar
  498. Tenenhouse HS, Yip A, Jones G (1988) Increased renal catabolism of 1,25-dihydroxyvitamin D3 in murine X-linked hypophosphatemic rickets. J. Clin. Invest. 81; 461–465.Google Scholar
  499. Terry AH, Sandrock T, Meikle AW (2005) Measurement of 25-hydroxyvitamin D by the Nichols ADVANTAGE, DiaSorin LIAISON, DiaSorin RIA, and liquid chromatography–tandem mass spectrometry. Clin. Chem. 51; 1565–1566.Google Scholar
  500. Thierry-Palmer M, Gray TK (1983) Separation of the hydroxylated metabolites of vitamin D3 by high-performance thin-layer chromatography. J. Chromatogr. 262; 460–463.Google Scholar
  501. Thompson JN, Hatina G, Maxwell WB, Duval S (1982) High performance liquid chromato-graphic determination of vitamin D in fortified milks, margarine, and infant formulas. J. Assoc. Off. Anal. Chem. 65; 624–631.Google Scholar
  502. Tomiyama S, Nitta T, Yamada S (1994) Gas chromatography/mass spectrometric analysis of 24R,25-dihydroxyvitamin D3 using 24R,25-dihydroxy[6,19,19-2H]vitamin D3 as internal standard. Steroids. 59; 559–563.Google Scholar
  503. Trafford DJ, Makin HL (1983) Studies on the presence of 25-hydroxyvitamin D in human saliva. Clin. Chim. Acta. 129; 19–25.Google Scholar
  504. Trafford DJ, Coldwell RD, Makin HL (1991) Gas chromatography-mass spectrometry in the investigation of on-column dehydration of steroid hormones during gas-liquid chromatography. J. Pharm. Biomed. Anal. 9; 1095–1105.Google Scholar
  505. Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R (1998) Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am. J. Clin. Nutr. 68; 854–858.Google Scholar
  506. Tsugawa N, Suhara Y, Kamao M, Okano T (2005) Determination of 25-hydroxyvitamin D in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Anal. Chem. 77; 3001–3007.Google Scholar
  507. Tsukida K, Akutsu K, Ito M (1976) Simultaneous determination of eight vitamin D2 isomers by proton magnetic resonance spectroscopy. J. Nutr. Sci. Vitaminol. (Tokyo). 22; 7–13.Google Scholar
  508. Tsukida K, Akutsu K, Saiki K (1975) Application of a shift reagent in nuclear magnetic resonance spectroscopy. Part V Carbon-13 nuclear magnetic resonance spectra of vitamins D and related compounds. J. Nutr. Sci. Vitaminol. 21; 411–420.Google Scholar
  509. Tucker G, Gagnon RE, Haussler MR (1973) Vitamin D3-25-hydroxylase: tissue occurrence and apparent lack of regulation. Arch. Biochem. Biophys. 155; 47–57.Google Scholar
  510. Turnbull H, Trafford DJH, Makin HLJ (1982) A rapid and simple method for the measurement of plasma 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 using Sep-Pak C18 cartridges and a single high-performance liquid chromatographic step. Clin. Chim. Acta. 120; 65–76.Google Scholar
  511. Turpeinen U, Hohenthal U, Stenman U-H (2003) Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. Clin. Chem. 49; 1521–1524.Google Scholar
  512. Upreti P, Mistry VV, Warthesen JJ (2002) Estimation and fortification of vitamin D3 in pasteurized process cheese. J Dairy Sci. 85; 3173–3181.Google Scholar
  513. Usui E, Noshiro M, Okuda K (1990) Molecular cloning of cDNA for vitamin D3 25-hydroxylase from rat liver mitochondria. FEBS Lett. 262; 135–138.Google Scholar
  514. Vaask, Pomerleau J, Pudule I, Grinberga D, Abaravicius A, Robertson A, McKee M (2004) Comparison of the micro-nutrica nutritional analysis program and the Russian food composition database using data from the Baltic nutrition surveys. Eur. J. Clin. Nutr. 58; 573–579.Google Scholar
  515. Valliere CR, Knutson JC, Levan LW, et al. (1994) Microcolumn HPLC assay for 1,25-(OH) 2D3 in serum compared to a competitve radioreceptor assay. Proceedings of the 9th Workshop on Vitamin D, Orlando, FL, p. 203.Google Scholar
  516. vanHoof HJC, Swinkels LMJW, vanStevenhagen JJ, et al. (1993) Advantages of paper chromatography as a preparative step in the assay of 1,25-dhydroxyvitamin D. J. Chromatogr. 621; 33–39.Google Scholar
  517. van Hoof HJ, Swinkels LM, Ross HA, Sweep CG, Benraad TJ (1998) Determination of non-protein-bound plasma 1,25-dihydroxyvitamin D by symmetric(rate) dialysis. Anal. Biochem. 258; 176–183.Google Scholar
  518. van Hoof HJ, van der Mooren MJ, Swinkels LM, Sweep CG, Merkus JM, Benraad TJ (1999) Female sex hormone replacement therapy increases serum free 1,25-dihydroxyvitamin D3: a 1-year prospective study. Clin. Endocrinol. (Oxf). 50; 511–516.Google Scholar
  519. van Hoof HJ, de Sevaux RG, van Baelen H, Swinkels LM, Klipping C, Ross HA, Sweep CG. (2001) Relationship between free and total 1,25-dihydroxyvitamin D in conditions of modified binding. Eur. J. Endocrinol. 144; 391–396.Google Scholar
  520. Vicchio D, Yergey A, O’Brien K, Allen L, Ray Holick M (1993) Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol. Mass Spectrom. 22; 53–58.Google Scholar
  521. Vieth R (2004) Why the optimal requirement for Vitamin D3 is probably much higher than what is officially recommended for adults. J. Steroid Biochem. Mol. Biol. 89–90; 575–579.Google Scholar
  522. Vieth R (2006) What is the optimal vitamin D status for health?. Prog. Biophys. Mol. Biol. 92; 26–32.Google Scholar
  523. Vieth R, Bischoff-Ferrari H, Boucher BJ, Dawson-Hughes B, Garland CF, Heaney RP, Holick MF, Hollis BW, Lamberg-Allardt C, McGrath JJ, Norman AW, Scragg R, Whiting SJ, Willett WC, Zittermann A (2007) The urgent need to recommend an intake of vitamin D that is effective. Am. J. Clin. Nutr. 85; 649–650.Google Scholar
  524. Vogeser M (2010) Quantification of circulating 25-hydroxyvitamin D by liquid chromatography–tandem mass spectrometry. J. Steroid Biochem. Mol. Biol. [E-pub ahead of print] March 4 2010.Google Scholar
  525. Vogeser M, Kyriatsoulis A, Huber E, Kobold U (2004) Candidate reference method for the quantification of circulating 25-hydroxyvitamin D3 by liquid chromatography–tandem mass spectrometry. Clin. Chem. 50; 1415–1417.Google Scholar
  526. Vreeken RJ, Honing M, van Barr BL, Ghijsen RT, de Jong GJ, Brinkman UA (1993) On-line post-column Diels Alder derivatization for the determination of vitamin D3 and its metabolites by liquid chromatography/thermospray mass spectrometry. Biol. Mass Spectrom. 22; 621–632.Google Scholar
  527. Wang K, Davis PP, Crews T, Gabriel L, Edom RW (1996) An electron-capture dienophile derivatization agent for increasing sensitivity: determination of a vitamin D analog (Ro 24–2090) in plasma samples with liquid chromatography/mass spectrometry. Anal. Biochem. 243; 28–40.Google Scholar
  528. Wang XX, Shimizu M, Numano F, Asaoka H, Yamada S (1997) Multiple fluorometric assay of three major vitamin D-3 metabolites (25-hydroxyvitamin D-3, 24,25-dihydroxyvitamin D-3 and 1,25-dihydroxyvitamin D-3) in plasma and its application to clinical studies. Analyt. Sci. 13; 255–261.Google Scholar
  529. Watson D, Setchell KD, Ross R (1991) Analysis of vitamin D and its metabolites using ther-mospray liquid chromatography/mass spectrometry. Biomed. Chromatogr. 5; 153–160.Google Scholar
  530. Weinstein EA, Rao DS, Siu-Caldera ML, Tserng KY, Uskokovic MR, Ishizuka S, Reddy GS. (1999) Isolation and identification of 1alpha-hydroxy-24-oxovitamin D3 and 1alpha,23-dihydroxy-24-oxovitamin D3: metabolites of 1alpha,24(R)-dihydroxyvitamin D3 produced in rat kidney. Biochem. Pharmacol. 58; 1965–1973.Google Scholar
  531. Weiskopf AS, Vouros P, Cunniff J, Binderup E, Bjorkling F, Binderup L, White M-C, Posner GH (2001) Examination of structurally selective derivatization of vitamin D3 analogues by electro- spray mass spectrometry. J. Mass Spectrom. 36; 71–78.Google Scholar
  532. Wheeler MJ (1993) The Immunoassay Kit Directory Vol 2: Part 2 Steroid and Thyroid Hormones. Kluwer, Lancaster, UK.Google Scholar
  533. White JH (2004) Profiling 1,25-dihydroxyvitamin Deregulated gene expression by microarray analysis. J. Steroid Biochem. Mol. Biol. 89–90; 239–244.Google Scholar
  534. Whitfield GK, Jurutka PW, Haussler C, et al. (2005) Chapter 13: nuclear receptor: structure–function, molecular control of gene transcription and novel bioactions. In Vitamin D, 2nd edn (eds Feldman D, Pike JW, Glorieux FH). Elsevier, New York, pp. 219–262.Google Scholar
  535. Whiting SJ, Green TJ, Calvo MS (2007) Vitamin D intakes in North America and Asia-Pacific countries are not sufficient to prevent vitamin D insufficiency. J. Steroid Biochem. Mol. Biol. 103; 626–630.Google Scholar
  536. Wildermuth S, Dittrich K, Schmidtgayk H, et al. (1993) Scintillation proximity assay for calcitriol in serum without high pressure liquid chromatography. Clin. Chim. Acta. 220; 61–70.Google Scholar
  537. Willnow TE, Nykjaer A (2005) Chapter 10: endocytic pathways for 25-hydroxyvitamin D3. In Vitamin D, 2nd edn (eds Feldman D, Pike JW, Glorieux FH). Elsevier, New York, pp. 153–1639.Google Scholar
  538. Wilson SR, Tulchinsky ML, Wu YH (1993) Electrospray ionization mass spectrometry of vitamin-D derivatives. Bioorg. Med. Chem. Lett. 3; 1805–1808.Google Scholar
  539. Wing RM, Okamura WH, Rego A, Pirio MR, Norman AW (1975) Vitamin D and its analogs. VII. Solution conformations of vitamin D3 and 1α,25-dihydroxyvitamin D3 by high-resolution proton magnetic resonance spectroscopy. J. Am. Chem. Soc. 97; 4980–4985.Google Scholar
  540. Withold W, Wolff T, Degenhardt S, Reinauer H (1995) Evaluation of a radioimmunoassay for determination of calcitriol in human sera employing a 125 I-labelled tracer. Eur. J. Clin. Chem. Clin. Biochem. 33; 959–963.Google Scholar
  541. Wootton AM (2005) Improving the measurement of 25-hydroxyvitamin D. Clin. Biochem. Rev. 26; 33–36.Google Scholar
  542. Wu H, Tang G (1998) [Determination of vitamin D3 in health-care foods fortified with calcium by reversed-phase high performance liquid chromatography]. Se Pu. 16; 274–275 (chinese).Google Scholar
  543. Yamada S, Nakayama K, Takayama H, Shinki T, Takasaki Y, Suda T (1984) Isolation, identification, and metabolism of (23S,25R)-25-hydroxyvitamin D3 -26,23-lactol. A biosynthetic precursor of (23S,25R)-25-hydroxyvitamin D3-26,23-lactone. J. Biol. Chem. 259; 884–889.Google Scholar
  544. Yamada S, Yamamoto K, Takayama H, Hayashi T, Miyaura C, Tanaka H, Abe E, Suda T (1987) Isolation, identification, and chemical synthesis of 8α,25-dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one. A new metabolite of 25-hydroxyvitamin D3 produced by mouse myeloid leukemia cells (M1). J. Biol. Chem. 262; 12939–12944.Google Scholar
  545. Yamamoto K, Uchida E, Urushino N, Sakaki T, Kagawa N, Sawada N, Kamakura M, Kato S, Inouye K, Yamada S (2005) Identification of the amino acid residue of CYP27B1 responsible for binding of 25-hydroxyvitamin D3 whose mutation causes vitamin D-dependent rickets type 1. J. Biol. Chem. 280; 30511–30516.Google Scholar
  546. Yeung B, Vouros P (1995) The role of mass spectrometry in vitamin D research. Mass Spectrom. Rev. 14; 179–194.Google Scholar
  547. Yeung, B, Reddy GS, Vouros B (1992) Abstracts for the 40th American Society for Mass Spectrometry Conference on Mass Spectrometry and Allied Topics, Washington DC, p. 1089.Google Scholar
  548. Yeung B, Vouros P, Reddy GS (1993) Characterization of vitamin D3 metabolites using continuous-flow fast atom bombardment tandem mass spectrometry and high-performance liquid chromatography. J. Chromatogr. 645; 115–123.Google Scholar
  549. Yeung B, Vouros P, Siu-Caldera ML, Reddy GS (1995) Characterization of the metabolic pathway of 1,25-dihydroxy-16-ene vitamin D3 in rat kidney by on-line high performance liquid chromatography-electrospray tandem mass spectrometry. Biochem. Pharmacol. 49; 1099–1110.Google Scholar
  550. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, Masushige S, Fukamizu A, Matsumoto T, Kato S (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat. Genet. 16; 391–396.Google Scholar
  551. Zagalak B, Curtius HC, Foschi R, Wipf G, Redweik U, Zagalak MJ (1978) Mass fragmentographic determination of cholecalciferol and 25-hydroxycholecalciferol in human serum. Experientia. 34; 1537–1539.Google Scholar
  552. Zagalak B, Neuheiser F, Zagalak MJ, Kuster T, Curtius HC, Exner GU, Franconi S, Prader A (1983) In Chromatography and Mass Spectrometry in Biomedical Sciences (ed Frigerio A), Vol 2. Elsevier, Amsterdam, p. 347.Google Scholar
  553. Zerwekh JE (2004) The measurement of vitamin D: analytical aspects. Ann. Clin. Biochem. 41; 272–281.Google Scholar
  554. Zerwekh JE (2008) Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 87; 1087S–1091S.Google Scholar
  555. Zhang F, Nunes M, Segmuller B, Dunphy R, Hesse RH, Setty SK (2006) Degradation chemistry of a Vitamin D analogue (ecalcidene) investigated by HPLC-MS, HPLC-NMR and chemical derivatization. J. Pharm. Biomed. Anal. 40; 850–863.Google Scholar
  556. Zhu GD, Van Haver D, Jurriaans H, De Clercq PJ (1994) 11-Fluoro-la-hydroxyvitamin D3: the quest for experimental evidence of the folded vitamin D conformation. Tetrahedron. 50; 7049–7060.Google Scholar
  557. Zimmermann DR, Reinhardt TA, Kremer R, Beitz DC, Reddy GS, Horst RL (2001) Calcitroic acid is a major metabolite in the metabolism of 1α-hydroxyvitamin D,. Arch. Biochem. Biophys. 392; 14–22.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hugh L. J. Makin
    • 1
    Email author
  • Glenville Jones
    • 2
  • Martin Kaufmann
    • 2
  • Martin J. Calverley
    • 3
  1. 1.Bart’s and the LondonQueen Mary School of Medicine and DentistryLondonUK
  2. 2.Departments of Biochemistry and MedicineQueen’s UniversityKingstonCanada
  3. 3.Formerly at the Department of Medicinal ChemistryLEO PharmaBallerupDenmark

Personalised recommendations