Skip to main content

The diverse roles of J-proteins, the obligate Hsp70 co-chaperone

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology
  • 326 Accesses

Abstract

Hsp70s and J-proteins, which constitute one of the most ubiquitous types of molecular chaperone machineries, function in a wide variety of cellular processes. J-proteins play a central role by stimulating an Hsp70's ATPase activity, thereby stabilizing its interaction with client proteins. However, while all J-proteins serve this core purpose, individual proteins are both structurally and functionally diverse. Some, but not all, J-proteins interact with client polypeptides themselves, facilitating their binding to an Hsp70. Some J-proteins have many client proteins, others only one. Certain J-proteins, while not others, are tethered to particular locations within a cellular compartment, thus “recruiting” Hsp70s to the vicinity of their clients. Here we review recent work on the diverse family of J-proteins, outlining emerging themes concerning their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aron R, Lopez N, Walter W, Craig EA, Johnson J (2005) In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 169:1873–1882

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Walter W, Yan W, Craig EA (1996) Functional interaction of cytosolic Hsp70 and DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16:4378–4386

    CAS  PubMed  Google Scholar 

  • Beilharz T, Egan B, Silver PA, Hofmann K, Lithgow T (2003) Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J Biol Chem 278:8219–8223

    Article  CAS  PubMed  Google Scholar 

  • Berjanskii MV, Riley MI, Xie A, Semenchenko V, Folk WR, Van Doren SR (2000) NMR structure of the N-terminal J domain of murine polyomavirus T antigens. Implications for DnaJ-like domains and for mutations of T antigens. J Biol Chem 275:36094–36103

    Article  CAS  PubMed  Google Scholar 

  • Borges JC, Fischer H, Craievich AF, Ramos CH (2005) Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures. J Biol Chem 280:13671–13681

    Article  CAS  PubMed  Google Scholar 

  • Braell W, Schlossman D, Schmid S, Rothmann J (1984) Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J Cell Biol 99:734–741

    Article  CAS  PubMed  Google Scholar 

  • Brodsky FM (2004) Cell biology: clathrin's Achilles' ankle. Nature 432:568–569

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bukau B (2005) Ribosomes catch Hsp70s. Nat Struct Mol Biol 12:472–473

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ, Douglas MG (1991) Characterization of YDJ1: A yeast homologue of the bacterial dnaJ protein. J Cell Biol 114:609–621

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ, Tsai J, Casey PJ, Douglas MG (1992) Farnesylation of YDJ1p is required for function at elevated growth temperatures in S. cerevisiae. J Biol Chem 267:18890–18895

    CAS  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaption of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed  Google Scholar 

  • Corsi AK, Schekman R (1997) The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J Cell Biol 137:1483–1493

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Marszalek J (2002) A specialized mitochondrial molecular chaperone system: a role in formation of Fe/S centers. Cell Mol Life Sci 59:1658–1665

    Article  CAS  PubMed  Google Scholar 

  • Craig EA, Eisenman HC, Hundley HA (2003) Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr Opin Microbiol 6:157–162

    Article  CAS  PubMed  Google Scholar 

  • Cupp-Vickery JR, Vickery LE (2000) Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. J Mol Biol 304:835–845

    Article  CAS  PubMed  Google Scholar 

  • D'Silva P, Liu Q, Walter W, Craig EA (2004) Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane. Nat Struct Mol Biol 11:1084–1091

    Article  PubMed  CAS  Google Scholar 

  • D'Silva PD, Schilke B, Walter W, Andrew A, Craig EA (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci U S A 100:13839–13844

    Article  ADS  PubMed  CAS  Google Scholar 

  • D'Silva P, Schilke B, Walter W, Craig EA (2005) Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane. Proc Natl Acad Sci U S A 102:12419–12424

    Article  ADS  PubMed  CAS  Google Scholar 

  • Deuerling E, Bukau B (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit Rev Biochem Mol Biol 39:261–277

    Article  CAS  PubMed  Google Scholar 

  • Dudek J, Volkmer J, Bies C, Guth S, Muller A, Lerner M, Feick P, Schafer KH, Morgenstern E, Hennessy F, et al (2002) A novel type of co-chaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 21:2958–2967

    Article  CAS  PubMed  Google Scholar 

  • Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis: similarities to and differences from its bacterial counterparts. J Biol Chem 278:29719–29727

    Article  CAS  PubMed  Google Scholar 

  • Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig E, Marszalek J (2004) Sequence specific interactions between mitochondrial Fe/S scaffold protein Isu1 and Hsp70 Ssq1 is essential for their in vivo function. J Biol Chem 279:29167–29174

    Article  CAS  PubMed  Google Scholar 

  • Erbse A, Mayer MP, Bukau B (2004) Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans 32:617–621

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Lee S, Ren H, DM C (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15:761–773

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Ren HY, Lee P, Caplan AJ, Cyr DM (2005) The type I Hsp40 zinc finger-like region is required for Hsp70 to capture non-native polypeptides from Ydj1. J Biol Chem 280:695–702

    CAS  PubMed  Google Scholar 

  • Feldheim D, Rothblatt J, Schekman R (1992) Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol Cell Biol 12:3288–3296

    CAS  PubMed  Google Scholar 

  • Fotin A, Cheng Y, Grigorieff N, Walz T, Harrison SC, Kirchhausen T (2004a) Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432:649–653

    Article  CAS  ADS  PubMed  Google Scholar 

  • Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T (2004b) Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432:573–579

    Article  CAS  ADS  PubMed  Google Scholar 

  • Frazier A, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer H, et al (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 11:226–233

    Article  CAS  PubMed  Google Scholar 

  • Gall WE, Higginbotham MA, Chen C, Ingram MF, Cyr DM, Graham TR (2000) The auxilin-like phosphoprotein Swa2p is required for clathrin function in yeast. Curr Biol 10:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld HJ, Schirra C, Bujard H, Bukau B (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma 32. EMBO J 15:607–617

    CAS  PubMed  Google Scholar 

  • Gässler C, Buchberger A, Laufen T, Mayer M, Schroder H, Valencia A, Bukau B (1998) Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci U S A 95:15229–15234

    Article  ADS  PubMed  Google Scholar 

  • Genevaux P, Schwager F, Georgopoulos C, Kelley WL (2002) Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genetics 162:1045–1053

    CAS  PubMed  Google Scholar 

  • Greene M, Maskos K, Landry S (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci U S A 95:6108–6113

    Article  CAS  ADS  PubMed  Google Scholar 

  • Gruschus JM, Han CJ, Greener T, Ferretti JA, Greene LE, Eisenberg E (2004) Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. Biochemistry 43:3111–3119

    Article  CAS  PubMed  Google Scholar 

  • Han W, Christen P (2003) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

    Article  CAS  PubMed  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    Article  CAS  PubMed  Google Scholar 

  • Hermann J, Stuart R, Craig E, Neupert W (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J Cell Biol 127:893–902

    Article  Google Scholar 

  • High S, Abell BM (2004) Tail-anchored protein biosynthesis at the endoplasmic reticulum: the same but different. Biochem Soc Trans 32:659–662

    Article  CAS  PubMed  Google Scholar 

  • Hoff KG, Silberg JJ, Vickery LE (2000) Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci U S A 97:7790–7795

    Article  CAS  ADS  PubMed  Google Scholar 

  • Hoff KG, Ta DT, Tapley TL, Silberg JJ, Vickery LE (2002) Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem 277:27353–27359

    Article  CAS  PubMed  Google Scholar 

  • Holstein SE, Ungewickell H, Ungewickell E (1996) Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin. J Cell Biol 135:925–937

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Flanagan JM, Prestegard JH (1999) The influence of C-terminal extension on the structure of the “J-domain” in E. coli DnaJ. Prot Sci 8:203–214

    Article  CAS  Google Scholar 

  • Huang P, Gautschi M, Walter W, Rospert S, Craig EA (2005) The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 12:497–504

    Article  CAS  PubMed  Google Scholar 

  • Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E (2002) The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci U S A 99:4203–4208

    Article  CAS  ADS  PubMed  Google Scholar 

  • Hundley HA, Walter W, Bairstow S, Craig EA (2005) Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308:1032–1034

    Article  CAS  ADS  PubMed  Google Scholar 

  • Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL, Michaelis S (2004) Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J Biol Chem 279:38369–38378

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Taylor AB, Prasad K, Ishikawa-Brush Y, Hart PJ, Lafer EM, Sousa R (2003) Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. Biochemistry 42:5748–5753

    Article  CAS  PubMed  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Craig EA (2001) An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 52:851–856

    Article  Google Scholar 

  • Kim S, Schilke B, Craig E, Horwich A (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc Natl Acad Sci U S A 95:12860–12865

    Article  CAS  ADS  PubMed  Google Scholar 

  • Knieszner H, Schilke B, Dutkiewicz R, D'Silva P, Cheng S, Ohlson M, Craig EA, Marszalek J (2005) Compensation for a defective interaction of the Hsp70 Ssq1 with the mitochondrial Fe-S cluster scaffold ISU. J Biol Chem 280:28966–28972

    Article  CAS  PubMed  Google Scholar 

  • Kozany C, Mokranjac D, Sichting M, Neupert W, Hell K (2004) The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 11:234–241

    Article  CAS  PubMed  Google Scholar 

  • Krzewska J, Langer T, Liberek K (2001) Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett 489:92–96

    Article  CAS  PubMed  Google Scholar 

  • Landry S (2003) Swivels and stators in the Hsp40-Hsp70 chaperone machine. Structure 8:799–807

    Google Scholar 

  • Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992) Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689

    Article  CAS  ADS  PubMed  Google Scholar 

  • Li J, Qian X, Sha B (2003) The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W (2004) The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J Biol Chem 279:38047–38054

    Article  CAS  PubMed  Google Scholar 

  • Liberek K, Wall D, Georgopoulos C (1995) The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator. Proc Natl Acad Sci U S A 92:6224–6228

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lill R, Muhlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141

    Article  CAS  PubMed  Google Scholar 

  • Linke K, Wolfram T, Bussemer J, Jakob U (2003) The roles of the two zinc binding sites in DnaJ. J Biol Chem 278:44457

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Krzewska J, Liberek K, Craig EA (2001) Mitochondrial Hsp70 Ssc1: role in protein folding. J Biol Chem 276:6112–6118

    Article  CAS  PubMed  Google Scholar 

  • Lopez N, Aron R, Craig EA (2003) Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ(+)]. Mol Biol Cell 14:1172–1181

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Cyr DM (1998a) The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 273:5970–5978

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Cyr DM (1998b) Protein folding activity of Hsp70 is modified differentially by the Hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem 273:27824–27830

    Article  CAS  PubMed  Google Scholar 

  • Lyman SK, Schekman R (1997) Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88:85–96

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Yamout M, Legge GB, Zhang O, Wright PE, Dyson HJ (2000) Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J Mol Biol 300:805–818

    Article  CAS  PubMed  Google Scholar 

  • Mayer M (2004) Timing the catch. Nat Struct Mol Biol 11:6–8

    Article  CAS  PubMed  Google Scholar 

  • McClellan AJ, Brodsky JL (2000) Mutation of the ATP-binding pocket of SSA1 indicates that a functional interaction between Ssa1p and Ydj1p is required for post-translational translocation into the yeast endoplasmic reticulum. Genetics 156:501–512

    CAS  PubMed  Google Scholar 

  • Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J 18:1492–1505

    Article  CAS  PubMed  Google Scholar 

  • Misselwitz B, Staeck O, Rapoport T (1998) J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol Cell 2:593–603

    Article  CAS  PubMed  Google Scholar 

  • Misselwitz B, Staeck O, Matlack KE, Rapoport TA (1999) Interaction of BiP with the J-domain of the Sec63p component of the endoplasmic reticulum protein translocation complex. J Biol Chem 274:20110–20115

    Article  CAS  PubMed  Google Scholar 

  • Mokranjac D, Sichting M, Neupert W, Hell K (2003) Tim14, a novel key component of the import motor of the Tim23 protein translocase of mitochondria. EMBO J 22:4945–4956

    Article  CAS  PubMed  Google Scholar 

  • Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236–250

    Article  CAS  PubMed  Google Scholar 

  • Pishvaee B, Costaguta G, Yeung BG, Ryazantsev S, Greener T, Greene LE, Eisenberg E, McCaffery JM, Payne GS (2000) A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2:958–963

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Li Z, Sha B (2001) Cloning, expression, purification and preliminary X-ray crystallographic studies of yeast Hsp40 Sis1 complexed with Hsp70 Ssa1 C-terminal lid domain. Acta Crystallogr D Biol Crystallogr 57:748–750

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Hou W, Zhengang L, Sha B (2002) Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1. Biochem J 361:27–34

    Article  CAS  PubMed  Google Scholar 

  • Qian YQ, Patel D, Hartl FU, McColl DJ (1996) Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J Mol Biol 260:224–235

    Article  CAS  PubMed  Google Scholar 

  • Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, Acton TB, Honig B, Montelione GT, Kennedy MA (2004) Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J Mol Biol 344:567–583

    Article  CAS  PubMed  Google Scholar 

  • Rowley N, Prip-Buus C, Westermann B, Brown C, Schwarz E, Barrell B, Neupert W (1994) Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77:249–259

    Article  CAS  PubMed  Google Scholar 

  • Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Schlenstedt G, Harris S, Risse B, Lill R, Silver PA (1995) A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J Cell Biol 129:979–988

    Article  CAS  PubMed  Google Scholar 

  • Sha B, Lee S, Cyr DM (2000) The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure Fold Des 8:799–807

    Article  CAS  PubMed  Google Scholar 

  • Silberstein S, Schlenstedt G, Silver PA, Gilmore R (1998) A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol 143:921–933

    Article  CAS  PubMed  Google Scholar 

  • Slepenkov SV, Witt SN (2002) The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol Microbiol 45:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Dafforn TR, Kent H, Sims CA, Khubchandani-Aswani K, Zhang L, Saibil HR, Pearse BM (2004) Location of auxilin within a clathrin cage. J Mol Biol 336:461–471

    Article  CAS  PubMed  Google Scholar 

  • Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA (1998) Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci U S A 95:15223–15228

    Article  CAS  ADS  PubMed  Google Scholar 

  • Suh WC, Lu CZ, Gross CA (1999) Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem 274:30534–30539

    Article  CAS  PubMed  Google Scholar 

  • Truscott KN, Voos W, Frazier AE, Lind M, Li Y, Geissler A, Dudek J, Muller H, Sickmann A, Meyer HE, et al (2003) A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 163:707–713

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354

    Article  CAS  PubMed  Google Scholar 

  • Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–635

    Article  CAS  ADS  PubMed  Google Scholar 

  • Voisine C, Cheng YC, Ohlson M, Schilke B, Hoff K, Beinert H, Marszalek J, Craig E (2001) Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98:1483–1488

    Article  CAS  ADS  PubMed  Google Scholar 

  • Wagner I, Arlt H, van Dyck L, Langer T, Neupert T (1994) Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded protein in mitochondria. EMBO J 13:5135–5145

    CAS  PubMed  Google Scholar 

  • Wall D, Zylicz M, Georgopoulos C (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J Biol Chem 269:5446–5451

    CAS  PubMed  Google Scholar 

  • Wall D, Zylicz M, Georgopoulos C (1995) The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J Biol Chem 270:2139–2144

    Article  CAS  PubMed  Google Scholar 

  • Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  CAS  PubMed  Google Scholar 

  • Westermann B, Neupert W (1997) Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast. J Mol Biol 272:477–483

    Article  CAS  PubMed  Google Scholar 

  • Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Li J, Jin Z, Fu Z, Sha B (2005) The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J Mol Biol 346:1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Craig EA (1999) The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol Cell Biol 19:7751–7758

    CAS  PubMed  Google Scholar 

  • Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17:4809–4817

    Article  CAS  PubMed  Google Scholar 

  • Youker RT, Walsh P, Beilharz T, Lithgow T, Brodsky JL (2004) Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol Biol Cell 15:4787–4797

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Craig .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Craig, E.A., Huang, P., Aron, R., Andrew, A. (2006). The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. In: Reviews of Physiology, Biochemistry and Pharmacology. Springer, Berlin/Heidelberg. https://doi.org/10.1007/s10254-005-0001-8

Download citation

  • DOI: https://doi.org/10.1007/s10254-005-0001-8

  • Published:

  • Publisher Name: Springer, Berlin/Heidelberg

Publish with us

Policies and ethics