Skip to main content

Uptake of binary actin ADP-ribosylating toxins

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 152))

Abstract

The focus of this article is on the cellular uptake mechanism of the family of binary actin ADP-ribosylating toxins from clostridia. These toxins are special-type AB toxins, because they are composed of two nonlinked proteins, which have to assemble on the surface of eukaryotic cells to act cytotoxically. The enzymatically active component (A), ADP-ribosylates G-actin in the cytosol of target cells. This leads to a complete depolymerization of the actin filaments and, thereby, to rounding up of cultured cells. The second component of these toxins, the binding/translocation component (B), mediates the transport of the enzyme component into the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B.:

Bacillus

C.:

Clostridium

C2I:

Enzyme component of C2 toxin

C2II:

Binding/translocation component of C2 toxin

CHO:

Chinese hamster ovary

DHFR:

Dihydrofolate reductase

ER:

Endoplasmic reticulum

Ia:

Enzyme component of iota toxin

Ib:

Binding/translocation component of iota toxin

MTX:

Methotrexate

PA:

Anthrax protective antigen

v-ATPase:

Vesicular-type H+-ATPase

VIP:

Vegetative insecticidal protein

Hsp:

Heat shock protein

References

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Barth H, Just I (2000) Clostridium botulinum C3 exoenzyme and C3-like transferases. In: Handbook of Experimental Pharmacology. Springer, Heidelberg Berlin New York, pp 207–233

    Google Scholar 

  • Barth H, Blöcker D, Aktories K (2002a) The uptake machinery of clostridial actin ADP-ribosylating toxins—a cell delivery system for fusion proteins and polypeptide drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 366:501–512

    Article  CAS  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998a) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66:1364–1369

    PubMed  CAS  Google Scholar 

  • Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK (1999) Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J Biol Chem 274:27407–27414

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998b) Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. J Biol Chem 273: 29506–28511

    Article  PubMed  CAS  Google Scholar 

  • Barth H, Roebling R, Fritz M, Aktories K (2002b) The binary Clostridium botulinum C2 toxin as a protein delivery system. J Biol Chem 277:5074–5081

    Article  PubMed  CAS  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ, Finkelstein A. (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phopholipid bilayers. Proc Natl Acad Sci USA 86:2209–2213

    Article  PubMed  CAS  Google Scholar 

  • Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K (2000) The C-terminus of component C2II of Clostridium botulinum C2 toxin is essentiell for receptor binding. Infect Immun 68:4566–4573

    Article  PubMed  Google Scholar 

  • Blöcker D, Behlke J, Aktories K, Barth H (2001) Cellular uptake of the binary Clostridium perfringens iota-toxin. Infect Immun 69:2980–2987

    Article  PubMed  CAS  Google Scholar 

  • Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003) Clostridium botulinum C2 toxin: Low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278:37360–37367)

    Article  PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1984) NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci USA 81:3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Carton I, Trouet D, Hermans D, Barth H, Aktories K, Droogmans G, Jorgensen NK, Hoffmann EK, Nilius B, Eggermont J (2002) RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells. Am J Physiol Cell Physiol 283:C115–C125

    PubMed  CAS  Google Scholar 

  • Dreikhausen U, Varga G, Hofmann F, Barth H, Aktories K, Resch K, Szamel M (2001) Regulation by rho family GTPases of IL-1 receptor induced signaling: C3-like chimeric toxin and Clostridium difficile toxin B inhibit signaling pathways involved in IL-2 gene expression. Eur J Immmunol 31:1610–1619

    Article  CAS  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Woude GFV (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280: 734–737

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–2334

    Article  PubMed  CAS  Google Scholar 

  • Fritz G, Schroeder P, Aktories K (1995) Isolation and characterization of a Clostridium botulinum C2 toxin-resistant cell line: Evidence for possible involvement of the cellular C2II receptor in growth regulation. Infect Immun 63:2334–2340

    PubMed  CAS  Google Scholar 

  • Fujii N, Kubota T, Shirakawa S, Kimura K, Ohishi I, Moriishi K, Isogai E, Isogai H (1996) Characterization of component-I gene of botulinum C2 toxin and PCR detection of its gene in clostridial species. Biochem Biophys Res Commun 220:353–359

    Article  PubMed  CAS  Google Scholar 

  • Galle J, Mameghani A, Bolz SS, Gambaryan S, Gorg M, Quaschning T, Raff U, Barth H, Seibold S, Wanner C, Pohl U (2003) Oxidized LDL and its compound lysophosphatidylcholine potentiate AngII-induced vasoconstriction by stimulation of RhoA. J Am Soc Nephrol 14:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69: 6004–6011

    Article  PubMed  Google Scholar 

  • Hahn A, Barth H, Kress M, Mertens PR, Goppelt-Strübe M (2002) Role of Rac and Cdc42 in lysophosphatidic acid-mediated cyclooxygenase-2 gene expression. Biochem J 362:33–40

    Article  PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  PubMed  CAS  Google Scholar 

  • Haug G, Aktories K, Barth H (2004) The host cell chaperone Hsp90 is necessary for cytotoxic action of the binary iota-like toxins. Infect Immun 72:3066–3068

    Article  PubMed  CAS  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003a) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 274: 32266–32274

    Article  CAS  Google Scholar 

  • Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003b) Cellular uptake of Clostridium botulinum C2 toxin: Membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284–15291

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Just I, van Damme J, Vandekerckhove J, Aktories K (1993) NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum. J Biol Chem 268:23215–23218

    PubMed  CAS  Google Scholar 

  • Kimura K, Kubota T, Ohishi I, Isogai E, Isogai H, Fujii N (1998) The gene for component-II of botulinum C2 toxin. Vet Microbiol 62:27–34

    Article  PubMed  CAS  Google Scholar 

  • Klimpel KR, Molloy SS, Thomas G, Leppla SH (1992) Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA 89: 10277–10281

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457

    Article  PubMed  CAS  Google Scholar 

  • Knapp O, Benz R, Gibert M, Marvaud JC, Popoff MR (2002) Interaction of the binding component of Clostridium perfringens iota-toxin with lipid bilayer membranes: demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277:6143–6152

    Article  PubMed  CAS  Google Scholar 

  • Leemhuis J, Boutillier S, Barth H, Feuerstein TJ, Brock C, Nürnberg B, Aktories K, Meyer DK (2004) Rho GTPases and Phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem 279:585–596

    Article  PubMed  CAS  Google Scholar 

  • Leppla S (1982) Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    Article  PubMed  CAS  Google Scholar 

  • Leppla SH (1991) Purification and characterization of adenylyl cyclase from Bacillus anthracis. In: Johnson A, Corbin JD (eds) Methods in enzymology, Vol 195. Academic Press, San Diego, pp 153–168

    Google Scholar 

  • Leppla SH (1995) Anthrax toxins. In: Moss J, Iglewski B, Vaughan M, Tu AT (eds) Bacterial toxins and virulence factors in disease. Marcel Dekker, New York, pp 543–572

    Google Scholar 

  • Linseman DA, Laessig T, Meintzer MK, McClure M, Barth H, Aktories K, Heidenreich KA (2001) An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276:39123–39131

    Article  PubMed  CAS  Google Scholar 

  • Marvaud JC, Smith T, Hale ML, Popoff MR, Smith LA, Stiles BG (2001) Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect Immun 69:2435–2441

    Article  PubMed  CAS  Google Scholar 

  • Marvaud JC, Stiles BG, Chenal A, Gillet D, Gibert M, Smith LA, Popoff MR (2002) Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J Biol Chem 277: 43659–43666

    Article  PubMed  CAS  Google Scholar 

  • Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur J Biochem 194:237–241

    Article  PubMed  CAS  Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647–653

    Article  PubMed  CAS  Google Scholar 

  • Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612

    PubMed  CAS  Google Scholar 

  • Mogridge J, Cunningham K, Lacy DB, Mourez M, Collier RJ (2002) The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc Natl Acad Sci USA 99:7045–7048

    Article  PubMed  CAS  Google Scholar 

  • Mourez M, Lacy DB, Cunningham K, Legmann R, Sellman BR, Mogridge J, Collier RJ (2002) 2001: a year of major advances in anthrax toxin research. Trends Microbiol 10:287–293

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Voets T, Prenen J, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J. (1999) Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J Physiol 516: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I (2000) Structure and function of actin-adenosine-diphosphate-ribosylating toxins. In: Aktories K, Just I (eds) Bacterial protein toxins. Springer, Heidelberg Berlin New York, pp 253–273

    Google Scholar 

  • Ohishi I, DasGupta BR (1987) Molecular structure and biological activities of Clostridium botulinum C2 toxin. In: Eklund MW, Dowell VR (eds) Avian botulism. Thomas, Springfield, pp 223–247

    Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    PubMed  CAS  Google Scholar 

  • Ohishi I, Odagiri Y (1984) Histopathological effect of Botulinum C2 toxin on mouse intestines. Infect Immun 43:54–58

    PubMed  CAS  Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR (1993) Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 61:5147–5156

    PubMed  CAS  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    PubMed  CAS  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddingtom RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Milward FW, Bancillon B, Boquet P (1989) Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp2 cells. Infect Immun 57:2462–2469

    PubMed  CAS  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a clostridium difficile strain. Infect Immun 56:2299–2306

    PubMed  CAS  Google Scholar 

  • Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, Vanderspek JC, Murphy JR (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol 160:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-Kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  Google Scholar 

  • Sakr S, Eddy R, Barth H, Xie B, Greenberg S, Maxfield FR, Tabas I (2001) An in-vitro model for the uptake and degradation of lipoproteins by arterial-wall mocrophages during atheriogenesis. J Biol Chem 276: 37649–37658

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Van Deurs B (2002) Membrane traffic exploited by protein toxins. Annu Rev Cell Dev Biol 18: 1–24

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes: formation of cation-selective channels and inhibition of channel function by chloroquine and peptides. J Biol Chem 269:16706–16711

    PubMed  CAS  Google Scholar 

  • Simpson LL (1981) The origin, structure, and pharmacological activity of Botulinum toxin. Pharmacol Rev 33: 155–187

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984a) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230:665–669

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984b) The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin1. J Pharmacol Exp Ther 229:182–187

    PubMed  CAS  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228

    PubMed  CAS  Google Scholar 

  • Simpson LL, Zepeda H, Ohishi I (1988) Partial characterization of the enzymatic activity associated with the binary toxin (type C2) produced by Clostridium botulinum. Infect Immun 56:24–27

    PubMed  CAS  Google Scholar 

  • Songer JG (1996) Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9:216–234

    PubMed  CAS  Google Scholar 

  • Stiles BG, Hale ML, Marvaud JC, Popoff MR (2002) Clostridium perfringens iota toxin: Characterization of the cell-associated iota b complex. Biochem J 367:801–808

    Article  PubMed  CAS  Google Scholar 

  • Stiles BG, Hale ML, Marvaud J-C, Popoff M (2000) Clostridium perfringens iota toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry. Infect Immun 68:3475–3484

    Article  PubMed  CAS  Google Scholar 

  • Stiles BG, Wilkens TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:683–688

    PubMed  CAS  Google Scholar 

  • Stiles BG, WilkinsTD (1986) Clostridium perfringens iota toxin: Synergism between two proteins. Toxicon 24:767–773

    Article  PubMed  CAS  Google Scholar 

  • Strey A, Janning A, Barth H, Gerke V (2002) Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Lett 517:261–266

    Article  PubMed  CAS  Google Scholar 

  • Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N, Sakurai J (2003) Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol 325:471–483

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/g-actin in arginine 177. J Biol Chem 263:696–700

    PubMed  CAS  Google Scholar 

  • Vischer UM, Barth H, Wollheim CB (2000) Regulated von willebrand factor secretion is associated with agonist-specific patterns of cytoskeletal remodeling in cultured endothelial cells. Arterioscler Thromb Vasc Biol 20:883–891

    PubMed  CAS  Google Scholar 

  • Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 149:263–270

    Article  PubMed  CAS  Google Scholar 

  • Warren G, Koziel M, Mullins MA, Nye G, Carr B, Desai N, Kostichka K, Duck N, Estruch JJ (1996) Novel pesticidal proteins and strains. Patent WO96/10083

    Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263: 13739–13742

    PubMed  CAS  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    Article  PubMed  CAS  Google Scholar 

  • Werner G, Hagenmaier H, Drautz H, Baumgartner A, Zahner H (1984) Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J Antibiotics 37:110–117

    CAS  Google Scholar 

  • Wesche J, Elliott JL, Falnes PO, Olsnes S, Collier RJ (1998) Characterization of membrane translocation by anthrax protective antigen. Biochemistry 37:15737–15746

    Article  PubMed  CAS  Google Scholar 

  • Wille M, Just I, Wegner A, Aktories K (1992) ADP-ribosylation of the gelsolin-actin complex by clostridial toxins. J Biol Chem 267:50–55

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Barth .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Barth, H. (2004). Uptake of binary actin ADP-ribosylating toxins. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0029-1

Download citation

Publish with us

Policies and ethics