Skip to main content

The epithelial sodium channel: from molecule to disease

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 151))

Abstract

Genetic analysis has demonstrated that Na absorption in the aldosterone-sensitive distal nephron (ASDN) critically determines extracellular blood volume and blood pressure variations. The epithelial sodium channel (ENaC) represents the main transport pathway for Na+ absorption in the ASDN, in particular in the connecting tubule (CNT), which shows the highest capacity for ENaC-mediated Na+ absorption. Gain-of-function mutations of ENaC causing hypertension target an intracellular proline-rich sequence involved in the control of ENaC activity at the cell surface. In animal models, these ENaC mutations exacerbate Na+ transport in response to aldosterone, an effect that likely plays an important role in the development of volume expansion and hypertension. Recent studies of the functional consequences of mutations in genes controlling Na+ absorption in the ASDN provide a new understanding of the molecular and cellular mechanisms underlying the pathogenesis of salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the ENaC by Nedd4 in Liddle’s syndrome. J Clin Invest 103:667–673

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Burg MB (1982) Sodium transport in the rabbit connecting tubule. Am JPhysiol 243:F330–F334

    CAS  Google Scholar 

  • Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37834–37839

    Article  PubMed  CAS  Google Scholar 

  • Auberson M, Hoffmann-Pochon N, Vandewalle A, Kellenberger S, Schild L (2003) ENaC mutants causing Liddle’s syndrome retain ability to respond to aldosterone and vasopressin. Am J Physiol Renal Physiol 285:F459–F471

    PubMed  Google Scholar 

  • Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B (1998) Role of γ-ENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. J Clin Invest 102: 1634–1640

    PubMed  CAS  Google Scholar 

  • Bonny O, Rossier BC (2002) Disturbances of Na/K balance: pseudohypoaldosteronism revisited. J Am Soc Nephrol 13:2399–2414

    Article  PubMed  CAS  Google Scholar 

  • Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23: 146–158

    Article  PubMed  CAS  Google Scholar 

  • Burch LH, Talbot CR, Knowles MR, Canessa CM, Rossier BC, Boucher RC (1995) Relative expression of the human ENaC subunits in normal and cystic fibrosis airways. Am J Physiol 269:C511–C518

    PubMed  CAS  Google Scholar 

  • Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Article  PubMed  CAS  Google Scholar 

  • Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive ENaC is made of three homologous subunits. Nature 367:463–467

    Article  PubMed  CAS  Google Scholar 

  • Chang SS, Gründer S, Hanukoglu A, Rösler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12:248–253

    Article  PubMed  CAS  Google Scholar 

  • Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci 96:2514–2519

    Article  PubMed  CAS  Google Scholar 

  • Coscoy S, Lingueglia E, Lazdunski M, Barbry P (1998) The phe-met-arg-phe-amide-activated sodium channel is a tetramer. J Biol Chem 273:8317–8322

    Article  PubMed  CAS  Google Scholar 

  • Costanzo LS (1984) Comparison of calcium and sodium transport in early and late rat distal tubules: effect of amiloride. Am J Physiol 246:F937–F945

    PubMed  CAS  Google Scholar 

  • Dahlmann A, Pradervand SP, Hummler E, Rossier BC, Frindt G, Palmer LG (2003) Mineralocorticoid regulation of ENaC is maintained in a mouse model of Liddle’s syndrome. Am J Physiol Renal Physiol 285:F310–F318

    PubMed  CAS  Google Scholar 

  • Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates ENaC cell surface expression. EMBO J 20:7052–7059

    Article  PubMed  CAS  Google Scholar 

  • Dijkink L, Hartog A, Van Os CH, Bindels RJM (2002) The epithelial sodium channel ENaC is intracellularly located as a tetramer. Pflugers Arch-Eur J Physiol 444:549–555

    Article  CAS  Google Scholar 

  • Dinudom A, Young JA, Cook DI (1993) Amiloride-sensitive Na+ current in the granular duct cells of mouse mandibular glands. Pflugers Arch. 423:164–166

    Article  PubMed  CAS  Google Scholar 

  • Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593

    Article  PubMed  CAS  Google Scholar 

  • Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC (1994) Cell-specific expression of epithelial sodium channel α, β, and γ subunits in aldosterone-responsive epithelia from the rat: Localization by in situ hybridization and immunocytochemistry. J Cell Biol 127:1907–1921

    Article  PubMed  CAS  Google Scholar 

  • Epple HJ, Amasheh S, Mankertz J, Goltz M, Schulzke JD, Fromm M (2000) Early aldosterone effect in distal colon by transcriptional regulation of ENaC subunits. Am J Physiol Gastrointest Liver Physiol 278:G718–G724

    PubMed  CAS  Google Scholar 

  • Farman N, Talbot CR, Boucher R, Fay M, Canessa C, Rossier B, Bonvalet JP (1997) Noncoordinated expression of α, β, and γ subunit mRNAs of epithelial Na+ channel along rat respiratory tract. Am J Physiol Cell Physiol 272:C131–C141

    CAS  Google Scholar 

  • Firsov D, Schild L, Gautschi I, Mérillat AM, Schneeberger E, Rossier BC (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach. Proc Natl Acad Sci 93: 15370–15375

    Article  PubMed  CAS  Google Scholar 

  • Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel ENaC. EMBO J 17:344–352

    Article  PubMed  CAS  Google Scholar 

  • Firsov D, Robert-Nicoud M, Gruender S, Schild L, Rossier BC (1999) Mutational analysis of cysteine-rich domains of the epithelium sodium channel ENaC—identification of cysteines essential for channel expression at the cell surface. J Biol Chem 274:2743–2749

    Article  PubMed  CAS  Google Scholar 

  • Frindt G, Palmer LG (2003) Na channels in the rat connecting tubule. Am J Physiol Renal Physiol

    Google Scholar 

  • Frindt G, Masilamani S, Knepper MA, Palmer LG (2001) Activation of epithelial Na channels during shortterm Na deprivation. Am J Physiol 280:F112–F118

    CAS  Google Scholar 

  • Frindt G, McNair T, Dahlmann A, Jacobs-Palme E, Palmer LG (2002) Epithelial Na channels and short-term renal response to salt deprivation. Am J Physiol Renal Physiol 283:F717–F726

    PubMed  Google Scholar 

  • Geller DS, Rodriguezsoriano J, Boado AV, Schifter S, Bayer M, Chang SS, Lifton RP (1998) Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type 1. Nat Genet 19: 279–281

    Article  PubMed  CAS  Google Scholar 

  • Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FTF, Sigler PB, Lifton RP (2000) Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Grantham JJ, Burg MB, Orloff J (1970) The nature of transtubular sodium and potassium transport in isolated rabbit renal cortical collecting tubules. J Clin Invest 49:1815–1826

    Article  PubMed  CAS  Google Scholar 

  • Grunder S, Firsov D, Chang SS, Jaeger NF, Gautschi I, Schild L, Lifton RP, Rossier BC (1997) A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 16:899–907

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC (1992) Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 19:12–18

    Google Scholar 

  • Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frokiaer J, Knepper MA, Nielsen S (2001) Immunocytochemical and immunoelectron microscopic localization of α-, β-, and γ-ENaC in rat kidney. Am J Physiol Renal Physiol 280:F1093–F1106

    PubMed  CAS  Google Scholar 

  • Hanukoglu A (1991) Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab 73:936–944

    Article  PubMed  CAS  Google Scholar 

  • Hanwell D, Ishikawa T, Saleki R, Rotin D (2002) Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin-Darby canine kidney cells. J Biol Chem 277:9772–9779

    Article  PubMed  CAS  Google Scholar 

  • Hawk CT, Li L, Schafer JA (1996) AVP and aldosterone at physiological concentrations have synergistic effects on Na+ transport in rat CCD. Kidney Int Suppl 57:S35–41

    PubMed  CAS  Google Scholar 

  • Henry PC, Kanelis V, O’Brien MC, Kim B, Gautschi I, Forman-Kay J, Schild L, Rotin D (2003) Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J Biol Chem 278: 20019–20028

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen TP, Hannila-Handelberg T, Petajaniemi N, Kantola I, Tikkanen I, Virtamo J, Gautschi I, Schild L, Kontula K (2002) Liddle’s syndrome associated with a point mutation in the extracellular domain of the epithelial sodium channel gamma subunit. J Hypertens 20:2383–2390

    Article  PubMed  CAS  Google Scholar 

  • Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher RC, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in a ENaC-deficient mice. Nat Genet 12:325–328

    Article  PubMed  CAS  Google Scholar 

  • Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O (2001a) A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J 15:204–214

    Article  PubMed  CAS  Google Scholar 

  • Kamynina E, Tauxe C, Staub O (2001b) Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na+ channel regulation. Am J Physiol Renal Physiol 281:F469–F477

    PubMed  CAS  Google Scholar 

  • Kanelis V, Rotin D, Forman-Kay JD (2001) Solution structure of a Nedd4 WW domain-ENaC peptide complex. Nat Struct Biol 8:407–412

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    PubMed  CAS  Google Scholar 

  • Kellenberger S, Gautschi I, Schild L (1999a) A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci 96:4170–4175

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger S, Hoffmann-Pochon N, Gautschi I, Schneeberger E, Schild L (1999b) On the molecular basis of ion permeation in the epithelial Na+ channel. J Gen Physiol 114:13–30

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger S, Gautschi I, Schild L (2002) An external site controls closing of the epithelial Na+ channel ENaC. J Physiol London 543:413–424

    Article  PubMed  CAS  Google Scholar 

  • Koefoed-Johnson V, Ussing HH (1958) The nature of frog skin potential. Acta Physiol Scand 42:298–308

    Article  Google Scholar 

  • Kosari F, Sheng SH, Li JQ, Mak DD, Foskett JK, Kleyman TR (1998) Subunit stoichiometry of the epithelial sodium channel. J Biol Chem 273:13469–13474

    Article  PubMed  CAS  Google Scholar 

  • Liddle GW, Bledsoe T, Coppage WS (1963) A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76:199–213

    CAS  Google Scholar 

  • Lifton RP (1996) Molecular genetics of human blood pressure variation. Science 272:676–680

    Article  PubMed  CAS  Google Scholar 

  • Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension (review). Cell 104: 545–556

    Article  PubMed  CAS  Google Scholar 

  • Lindemann B (1996) Taste reception. Physiol Rev 76:718–766

    PubMed  CAS  Google Scholar 

  • Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P (1993) Expression cloning of an epithelial amiloride-sensitive Na+ channel. FEBS Lett 318:95–99

    Article  PubMed  CAS  Google Scholar 

  • Loffing J, Kaissling B (2003) Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Renal Physiol 284:F628–F643

    PubMed  CAS  Google Scholar 

  • Loffing J, Loffing-Cueni D, Macher A, Hebert SC, Olson B, Knepper MA, Rossier BC, Kaissling B (2000a) Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex. Am J Physiol Renal Physiol 278:F530–F539

    PubMed  CAS  Google Scholar 

  • Loffing J, Pietri L, Aregger F, Bloch-Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B (2000b) Differential subcellular localization of ENaC subunits in mouse kidney in response to high-and low-Na diets. Am J Physiol Renal Physiol 279:F252–F258

    PubMed  CAS  Google Scholar 

  • Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JGJ, Bindels RJM, Kaissling B (2001a) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027

    PubMed  CAS  Google Scholar 

  • Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F (2001b) Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol 280:F675–F682

    PubMed  CAS  Google Scholar 

  • May A, Puoti A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel a subunit in A6 renal cells. J Am Soc Nephrol 8:1813–1822

    PubMed  CAS  Google Scholar 

  • McDonald FJ, Yang BL, Hrstka RF, Drummond HA, Tarr DE, McCray PB, Stokes JB, Welsh MJ, Williamson RA (1999) Disruption of the β subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci 96:1727–1731

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Schafer JA (2002) cAMP increases density of ENaC subunits in the apical membrane of MDCK cells in direct proportion to amiloride-sensitive Na+ transport. J Gen Physiol 120:71–85

    Article  PubMed  CAS  Google Scholar 

  • Naray FT, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G (1999) SgK is an aldosterone-induced kinase in the renal collecting duct—effects on epithelial Na+ channels. J Biol Chem 274:16973–16978

    Article  Google Scholar 

  • Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci 92:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Palmer LG, Frindt G (1986) Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci 83:2727–2770

    Google Scholar 

  • Palmer LG, Edelman IS, Lindemann B (1980) Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J Membr Biol 57:59–71

    Article  PubMed  CAS  Google Scholar 

  • Pradervand SP, Barker PM, Wang Q, Ernst SA, Beermann F, Grubb BR, Burnier M, Schmidt A, Bindels RM, Gatzy JT, Rossier BC, Hummler E (1999) Salt restriction induces pseudohypoaldosteronism type 1 in mice expressing low levels of the b-subunit of the amiloride-sensitive epithelial sodium channel. Proc Natl Acad Sci 96:1732–1737

    Article  PubMed  CAS  Google Scholar 

  • Robert-Nicoud M, Flahaut M, Elalouf JM, Nicod M, Salinas M, Bens M, Doucet A, Wincker P, Artiguenave F, Horisberger JD, Vandewalle A, Rossier BC, Firsov D (2001) Transcriptome of a mouse kidney cortical collecting duct cell line: effects of aldosterone and vasopressin. Proc Natl Acad Sci 98:2712–2716

    Article  PubMed  CAS  Google Scholar 

  • Rossier BC, Pradervand SP, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897

    Article  PubMed  CAS  Google Scholar 

  • Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC (2003) Collecting duct-specific gene inactivation of αENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112:554–565

    Article  PubMed  CAS  Google Scholar 

  • Schaedel C, Marthinsen L, Kristoffersson AC, Kornfalt R, Nilsson KO, Orlenius B, Holmberg L (1999) Lung symptoms in pseudohypoaldosteronism type 1 are associated with deficiency of the α-subunit of the epithelial sodium channel. J Pediatr 135:739–745

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Canessa CM, Shimkets RA, Gautschi I, Lifton RP, Rossier BC (1995) A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci 92:5699–5703

    Article  PubMed  CAS  Google Scholar 

  • Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the b subunit of the epithelial sodium channel. Cell 79:407–414

    Article  PubMed  CAS  Google Scholar 

  • Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ (1995) Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83:969–978

    Article  PubMed  CAS  Google Scholar 

  • Snyder PM, Bucher DB, Olson DR (2000) Gating induces a conformational change in the outer vestibule of ENaC. J Gen Physiol 116:781–790

    Article  PubMed  CAS  Google Scholar 

  • Snyder PM, Olson DR, Thomas BC (2002) Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 277:5–8

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na channel ENaC by ubiquitination. EMBO J 16:6325–6336

    Article  PubMed  CAS  Google Scholar 

  • Staub O, Dho S, Henry PC, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380

    PubMed  CAS  Google Scholar 

  • Talbot CL, Bosworth DG, Briley EL, Fenstermacher DA, Boucher RC, Gabriel SE, Barker PM (1999) Quantitation and localization of ENaC subunit expression in fetal, newborn, and adult mouse lung. Am J Respir Cell Mol Biol 20: 398–406

    PubMed  CAS  Google Scholar 

  • van Balkom BW, Graat MP, van Raak M, Hofman E, van der Sluijs SP, Deen PM (2004) Role of cytoplasmic termini in sorting and shuttling of the aquaporin-2 water channel. Am J Physiol Cell Physiol 286:C372–C379

    Article  PubMed  Google Scholar 

  • Verrey F, Hummler E, Schild L, Rossier BC (2001) Control of Na+ transport by aldosterone. In: Seldin DW, Giebisch G (eds) The kidney. Lippincott, Philadelphia, pp 1441–1472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Schild .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Schild, L. (2004). The epithelial sodium channel: from molecule to disease. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0023-7

Download citation

  • DOI: https://doi.org/10.1007/s10254-004-0023-7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22096-1

  • Online ISBN: 978-3-540-44423-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics