Skip to main content

Organic cation transporters

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 150))

Abstract

Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na+- and Cl-dependent monoamine neurotransmitter transporters (SLC6-family), high-affinity choline transporters (SLC5-family), and high-affinity thiamine transporters (SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acara M, Rennick B (1973) Regulation of plasma choline by the renal tubule: bidirectional transport of choline. Am J Physiol 225:1123–1128

    PubMed  CAS  Google Scholar 

  • Akaike N, Yatani A, Nishi K, Oyama Y, Kuraoka S (1984) Permeability to various cations of the voltage-dependent sodium channel of rat single heart cells. J Pharmacol Exp Ther 228:225–229

    PubMed  CAS  Google Scholar 

  • Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I (1992) Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci USA 89:8472–8476

    PubMed  CAS  Google Scholar 

  • Apparsundaram S, Ferguson SM, George AL Jr, Blakely RD (2000) Molecular cloning of a human, hemicholinium-3-sensitive choline transporter. Biochem Biophys Res Commun 276:862–867

    PubMed  CAS  Google Scholar 

  • Apparsundaram S, Ferguson SM, Blakely RD (2001) Molecular cloning and characterization of a murine hemicholinium-3-sensitive choline transporter. Biochem Soc Trans 29:711–716

    PubMed  CAS  Google Scholar 

  • Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H (2001) Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol 281:F454–F468

    PubMed  CAS  Google Scholar 

  • Bahn A, Prawitt D, Buttler D, Reid G, Enklaar T, Wolff NA, Ebbinghaus C, Hillemann A, Schulten H-J, Gunawan B, Füzesi L, Zabel B, Burckhardt G (2000) Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochem Biophys Res Commun 275:623–630

    PubMed  CAS  Google Scholar 

  • Barendt WM, Wright SH (2002) The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem 277:22491–22496

    PubMed  CAS  Google Scholar 

  • Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A, Mössner R, Westphal H, Lesch KP (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylene-dioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655

    PubMed  CAS  Google Scholar 

  • Berardi S, Stieger B, Hagenbuch B, Carafoli E, Krähenbühl S (2000) Characterization of L-carnitine transport into rat skeletal muscle plasma membrane vesicles. Eur J Biochem 267:1985–1994

    PubMed  CAS  Google Scholar 

  • Besseghir K, Pearce LB, Rennick B (1981) Renal tubular transport and metabolism of organic cations by the rabbit. Am J Physiol Renal Physiol 241:F308–F314

    CAS  Google Scholar 

  • Blakely RD, De Felice LJ, Hartzell HC (1994) Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol 196:263–281

    PubMed  CAS  Google Scholar 

  • Borowsky B, Hoffman BJ (1995) Neurotransmitter transporters: molecular biology, function, and regulation. Int Rev Neurobiol 38:139–199

    PubMed  CAS  Google Scholar 

  • Borst SE, Snellen H G (2001) Metformin, but not exercise training, increases insulin responsiveness in skeletal muscle of Sprague-Dawley rats. Life Sci 69:1497–1507

    PubMed  CAS  Google Scholar 

  • Bossuyt X, Müller M, Hagenbuch B, Meier PJ (1996) Polyspecific steroid and drug clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther 276:891–896

    PubMed  CAS  Google Scholar 

  • Bowman HM, Hook JB (1972) Sex differences in organic ion transport by rat kidney. Proc Soc Exp Biol Med 141:258–262

    PubMed  CAS  Google Scholar 

  • Bravo D, Parsons S M (2002) Microscopic kinetics and structure-function analysis in the vesicular acetylcholine transporter. Neurochem Int 41:285–289

    PubMed  CAS  Google Scholar 

  • Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJG (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 61:853–860

    PubMed  CAS  Google Scholar 

  • Brooks H, Krähenbühl S (2001) Identification and tissue distribution of two differentially spliced variants of the rat carnitine transporter OCTN2. FEBS Lett 508:175–180

    PubMed  CAS  Google Scholar 

  • Bruss M, Kunz J, Lingen B, Bönisch H (1993) Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter. Hum Genet 91:278–280

    PubMed  CAS  Google Scholar 

  • Bryan-Lluka LJ, Westwood NN, O’Donnell SR (1992) Vascular uptake of catecholamines in perfused lungs of the rat occurs by the same process as uptake1 in noradrenergic neurones. Naunyn Schmiedebergs Arch Pharmacol 345:319–326

    PubMed  CAS  Google Scholar 

  • Budiman T, Bamberg E, Koepsell H, Nagel G (2000) Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J Biol Chem 275:29413–29420

    PubMed  CAS  Google Scholar 

  • Burckhardt BC, Brai S, Wallis S, Krick W, Wolff NA, Burckhardt G (2003) Transport of cimetidine by flounder and human renal organic anion transporter 1. Am J Physiol Renal Physiol 284:F503–F509

    PubMed  CAS  Google Scholar 

  • Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278:F853–F866

    PubMed  CAS  Google Scholar 

  • Burwinkel B, Kreuder J, Schweitzer S, Vorgerd M, Gempel K, Gerbitz K-D, Kilimann MW (1999) Carnitine transporter OCTN2 mutations in systemic primary carnitine deficiency: a novel Arg169Gln mutation and a recurrent Arg282ter mutation associated with an unconventional splicing abnormality. Biochem Biophys Res Commun 261:484–487

    PubMed  CAS  Google Scholar 

  • Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H (1996a) Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271:32599–32604

    PubMed  CAS  Google Scholar 

  • Busch AE, Quester S, Ulzheimer J C, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H (1996b) Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett 395:153–156

    PubMed  CAS  Google Scholar 

  • Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer J C, Sonders M S, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

    PubMed  CAS  Google Scholar 

  • Buschman E, Arceci RJ, Croop J M, Che M, Arias IM, Housman DE, Gros P (1992) Mdr2 encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform-specific antibodies. J Biol Chem 267:18093–18099

    PubMed  CAS  Google Scholar 

  • Bzoskie L, Blount L, Kashiwai K, Tseng YT, Hay WW, Jr., Padbury JF (1995) Placental norepinephrine clearance: in vivo measurement and physiological role. Am J Physiol 269:E145–E149

    PubMed  CAS  Google Scholar 

  • Bzoskie L, Blount L, Kashiwai K, Humme J, Padbury JF (1997) The contribution of transporter-dependent uptake to fetal catecholamine clearance. Biol Neonate 71:102–110

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Bernardi G (2000) Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23:S57–S63

    PubMed  CAS  Google Scholar 

  • Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238

    PubMed  CAS  Google Scholar 

  • Caspary WF, Creutzfeldt W (1971) Analysis of the inhibitory effect of biguanides on glucose absorption: inhibition of active sugar transport. Diabetologia 7:379–385

    PubMed  CAS  Google Scholar 

  • Catravas JD, Gillis CN (1980) Pulmonary clearance of [14C]-5-hydroxytryptamine and [3H]norepinephrine in vivo: effects of pretreatment with imipramine or cocaine. J Pharmacol Exp Ther 213:120–127

    PubMed  CAS  Google Scholar 

  • Cetinkaya I, Ciarimboli G, Yalcinkaya, G, Mehrens T, Velic A, Hirsch JR, Gorboulev V, Koepsell H, Schlatter E (2003) The human organic cation transporter hOCT2 is regulated by Ca2+/calmodulin-, cAMP-and phosphatidylinositol-3-dependent kinases. Am J Physiol Renal Physiol 284: F293–F302

    PubMed  CAS  Google Scholar 

  • Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H (2000) Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 275:4507–4512

    PubMed  CAS  Google Scholar 

  • Cha SH, Sekine T, Fukushima J-I, Kanai Y, Kobayashi Y, Goya T, Endou H (2001) Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 59:1277–1286

    PubMed  CAS  Google Scholar 

  • Chen JJ, Li Z, Pan H, Murphy DL, Tamir H, Koepsell H, Gershon MD (2001) Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J Neurosci 21:6348–6361

    PubMed  CAS  Google Scholar 

  • Chen J-X, Pan H, Rothman TP, Wade PR, Gershon MD (1998) Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am J Physiol Gastroenterol Liver Physiol 275:G433–G448

    CAS  Google Scholar 

  • Chen R, Nelson JA (2000) Role of organic cation transporters in the renal secretion of nucleosides. Biochem Pharmacol 60:215–219

    PubMed  CAS  Google Scholar 

  • Chen R, Jonker JW, Nelson J A (2002) Renal organic cation and nucleoside transport. Biochem Pharmacol 64:185–190

    PubMed  CAS  Google Scholar 

  • Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, Housman DE (1989) The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol 9:1346–1350

    PubMed  CAS  Google Scholar 

  • Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460

    PubMed  CAS  Google Scholar 

  • Davidson MB, Peters AL (1997) An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med 102:99–110

    PubMed  CAS  Google Scholar 

  • Diaz GA, Banikazemi M, Oishi K, Desnick R J, Gelb BD (1999) Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet 22:309–312

    PubMed  CAS  Google Scholar 

  • Dresser MJ, Gray AT, Giacomini KM (2000) Kinetic and selectivity differences between rodent, rabbit, and human organic cation transporters (OCT1). J Pharmacol Exp Ther 292:1146–1152

    PubMed  CAS  Google Scholar 

  • Dresser MJ, Leabman MK, Giacomini KM (2001) Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci 90:397–421

    PubMed  CAS  Google Scholar 

  • Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM (2002) Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharmac Res 19:1244–1247

    CAS  Google Scholar 

  • Durán JM, Peral MJ, Calonge ML, Ilundáin AA (2002) Functional characterization of intestinal L-carnitine transport. J Membr Biol 185:65–74

    PubMed  Google Scholar 

  • Dutta B, Huang W, Molero M, Kekuda R, Leibach FH, Devoe LD, Ganapathy V, Prasad PD (1999) Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem 274:31925–31929

    PubMed  CAS  Google Scholar 

  • Eckhardt U, Schroeder A, Stieger B, Höchli M, Landmann L, Tynes R, Meier PJ, Hagenbuch B (1999) Polyspecific substrate uptake by the hepatic organic anion transporter Oatp1 in stably transfected CHO cells. Am J Physiol Gastrointest Liver Physiol 276:G1037–G1042

    CAS  Google Scholar 

  • Eiden LE (1998) The cholinergic gene locus. J Neurochem 70:2227–2240

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62

    PubMed  CAS  Google Scholar 

  • Eisenhofer G, Åneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey, E (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871

    PubMed  CAS  Google Scholar 

  • El-Mir M-Y, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228

    PubMed  CAS  Google Scholar 

  • Elferink RPJO, Meijer DKF, Kuipers F, Jansen PLM, Groen AK, Groothuis GMM (1995) Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta 1241:215–268

    Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H (2002a) Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature 417:447–452

    PubMed  CAS  Google Scholar 

  • Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H (2002b) Molecular identification of a novel carnitine transporter specific to human testis: insights into the mechanism of carnitine recognition. J Biol Chem 277:36262–36271

    PubMed  CAS  Google Scholar 

  • Eraly SA, Nigam SK (2002) Novel human cDNAs homologous to drosophila Orct and mammalian carnitine transporters. Biochem Biophys Res Commun 297:1159–1166

    PubMed  CAS  Google Scholar 

  • Eraly SA, Hamilton BA, Nigam SK (2003) Organic anion and cation transporters occur in pairs of similar and similarly expressed genes Biochem Biophys Res Commun 300:333–342

    PubMed  CAS  Google Scholar 

  • Erickson JD, Varoqui H, Schafer MK, Modi W, Diebler MF, Weihe E, Rand J, Eiden LE, Bonner TI, Usdin TB (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J Biol Chem 269:21929–21932

    PubMed  CAS  Google Scholar 

  • Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH (2000) Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol Genet Metab 71:581–590

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1998) Phylogeny inference package (PHYLIP) version 3.5 C, distributed by author, Dept. of Genetics, University of Washington, Seattle. PHYLIP.

    Google Scholar 

  • Feng B, Dresser MJ, Shu Y, Johns SJ, Giacomini KM (2001) Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 40:5511–5520

    PubMed  CAS  Google Scholar 

  • Fleming JC, Tartaglini E, Steinkamp MP, Schorderet DF, Cohen N and Neufeld EJ (1999) The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet 22:305–308

    PubMed  CAS  Google Scholar 

  • Fleming JC, Steinkamp M P, Kawatsuji R, Tartaglini E, Pinkus JL, Pinkus GS, Fleming MD, Neufeld EJ (2001) Characterization of a murine high-affinity thiamine transporter, Slc19a2. Mol Genet Metab 74:273–280

    PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    PubMed  CAS  Google Scholar 

  • Friesema ECH, Docter R, Moerings EPCM, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ (1999) Identification of thyroid hormone transporters. Biochem Biophys Res Commun 254:497–501

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Caron MG (1999) Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46:303–311

    PubMed  CAS  Google Scholar 

  • Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, Leibach FH, Ganapathy V (2000) β-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem 275:1699–1707

    PubMed  CAS  Google Scholar 

  • Gelernter J, Kruger S, Pakstis A J, Pacholczyk T, Sparkes RS, Kidd KK, Amara S (1993) Assignment of the norepinephrine transporter protein (NET1) locus to chromosome 16. Genomics 18:690–692

    PubMed  CAS  Google Scholar 

  • Gerk PM, Oo CY, Paxton EW, Moscow JA, McNamara PJ (2001) Interactions between cimetidine, nitrofurantoin, and probenecid active transport into rat milk. J Pharmacol Exp Ther 296:175–180

    PubMed  CAS  Google Scholar 

  • Giros B, El Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–154

    PubMed  CAS  Google Scholar 

  • Giros B, El Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    PubMed  CAS  Google Scholar 

  • Goldstein DS, Mezey E, Yamamoto T, Aneman A, Friberg P, Eisenhofer G (1995) Is there a third peripheral catecholaminergic system? Endogenous dopamine as an autocrine/paracrine substance derived from plasma DOPA and inactivated by conjugation. Hypertens Res 18 Suppl 1:S93–S99

    PubMed  CAS  Google Scholar 

  • Gong S, Lu X, Xu Y, Swiderski CF, Jordan CT, Moscow JA (2002) Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias. Exp Hematol 30:1162–1169

    PubMed  CAS  Google Scholar 

  • Goralski KB, Lou G, Prowse M T, Gorboulev V, Volk C, Koepsell H, Sitar DS (2002) The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther 303:959–968

    PubMed  CAS  Google Scholar 

  • Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    PubMed  CAS  Google Scholar 

  • Gorboulev V, Volk C, Arndt P, Akhoundova A, Koepsell H (1999) Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Mol Pharmacol 56:1254–1261

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Bönisch H (1988) The transport of amines across the axonal membranes of noradrenergic and dopaminergic neurones. In Trendelenburg U and Weiner N (eds) Handbook of experimental pharmacology. Catecholamines I. Springer-Verlag, Berlin, pp 193–245

    Google Scholar 

  • Grohmann M, Trendelenburg U (1984) The substrate specificity of uptake2 in the rat heart. Naunyn Schmiedebergs Arch Pharmacol 328:164–173

    PubMed  CAS  Google Scholar 

  • Grover B, Auberger C, Sarangarajan R, Cacini W (2002) Functional impairment of renal organic cation transport in experimental diabetes. Pharmacol Toxicol 90:181–186

    PubMed  CAS  Google Scholar 

  • Gründemann D, Schömig E (2000) Gene structures of the human nonneuronal monoamine transporters EMT and OCT2. Hum Genet 106:627–635

    PubMed  Google Scholar 

  • Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552

    PubMed  Google Scholar 

  • Gründemann D, Babin-Ebell J, Martel F, Örding N, Schmidt A, Schömig E (1997) Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 272:10408–10413

    PubMed  Google Scholar 

  • Gründemann D, Schechinger B, Rappold GA, Schömig E (1998a) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nature neurosci 1:349–352

    PubMed  Google Scholar 

  • Gründemann D, Köster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermüller N, Schömig E (1998b) Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem 273:30915–30920

    PubMed  Google Scholar 

  • Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E (1999) Selective substrates for nonneuronal monoamine transporters. Mol Pharmacol 56:1–10

    PubMed  Google Scholar 

  • Haberberger RV, Pfeil U, Lips KS, Kummer W (2002). Expression of the high-affinity choline transporter, CHT1, in the neuronal and nonneuronal cholinergic system of human and rat skin. J Invest Dermatol 119:1–6

    Google Scholar 

  • Haga T (1971) Synthesis and release of (14C)acetylcholine in synaptosomes. J Neurochem 18:781–798

    PubMed  CAS  Google Scholar 

  • Haga T, Noda H (1973) Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta 291:564–575

    PubMed  CAS  Google Scholar 

  • Hagenbuch B, Meier PJ (2003) The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609:1–18

    PubMed  CAS  Google Scholar 

  • Halushka MK, Fan J-B, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A (1999) Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22:239–247

    PubMed  CAS  Google Scholar 

  • Harik SI, Hritz MA (1993) Effect of acetyl-L-carnitine on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Biochem Pharmacol 45:2170–2172

    PubMed  CAS  Google Scholar 

  • Hashimoto N, Suzuki F, Tamai I, Nikaido H, Kuwajima M, Hayakawa J-I, Tsuji A (1998) Gene-dose effect on carnitine transport activity in embryonic fibroblasts of JVS mice as a model of human carnitine transporter deficiency. Biochem Pharmacol 55:1729–1732

    PubMed  CAS  Google Scholar 

  • Hayakawa J, Koizumi T, Nikaido H (1990) Inheritance of juvenile visceral steatosis found in C3H-H-2° mice. Mouse Genome 86:261

    Google Scholar 

  • Hayer M, Bönisch H, Brüss M (1999) Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet 63:473–482

    PubMed  CAS  Google Scholar 

  • Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    PubMed  CAS  Google Scholar 

  • Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 330:379–381

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    PubMed  CAS  Google Scholar 

  • Higgins CF, Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci 17:18–21

    PubMed  CAS  Google Scholar 

  • Hoffman BJ, Hansson SR, Mezey E, Palkovits M (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 19:187–231

    PubMed  CAS  Google Scholar 

  • Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 97:3473–3478

    PubMed  CAS  Google Scholar 

  • Hohage H, Mörth DM, Querl IU, Greven J (1994) Regulation by protein kinase C of the contraluminal transport system for organic cations in rabbit kidney S2 proximal tubules. J Pharmacol Exp Ther 268:897–901

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Yoshida H, Kobayashi K, Kuriwaki K, Yoshimine K, Tomomura M, Koizumi T, Nikaido H, Hayakawa J, Kuwajima M, Saheki T (1993) Cardiac hypertrophy in juvenile visceral steatosis (jvs) mice with systemic carnitine deficiency. FEBS Lett 326:267–271

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Kobayashi K, Tomomura M, Kuwajima M, Imamura Y, Koizumi T, Nikaido H, Hayakawa J, Saheki T (1992) Carnitine administration to juvenile visceral steatosis mice corrects the suppressed expression of urea cycle enzymes by normalizing their transcription. J Biol Chem 267:5032–5035

    PubMed  CAS  Google Scholar 

  • Horiuchi M, Kobayashi K, Yamaguchi S, Shimizu N, Koizumi T, Nikaido H, Hayakawa J-I, Kuwajima M, Saheki T (1994) Primary defect of juvenile visceral steatosis (jvs) mouse with systemic carnitine deficiency is probably in renal carnitine transport system. Biochim Biophys Acta 1226:25–30

    PubMed  CAS  Google Scholar 

  • Hosoyamada M, Sekine T, Kanai Y, Endou H (1999) Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol Renal Physiol 276:F122–F128

    CAS  Google Scholar 

  • Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069

    PubMed  CAS  Google Scholar 

  • Hyde TM, Crook JM (2001) Cholinergic systems and schizophrenia: primary pathology or epiphenomena? J Chem Neuroanat 22:53–63

    PubMed  CAS  Google Scholar 

  • Ikeda E, Shiba K, Mori H, Ichikawa A, Sumiya H, Kuji I, Tonami N (2000) Reduction of vesicular acetylcholine transporter in beta-amyloid protein-infused rats with memory impairment. Nucl Med Commun 21:933–937

    PubMed  CAS  Google Scholar 

  • Inui K-I, Takano M, Okano T, Hori R (1985) H+gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system. J Pharmacol Exp Ther 233:181–185

    PubMed  CAS  Google Scholar 

  • Isacson O, Seo H, Lin L, Albeck D, Granholm AC (2002) Alzheimer’s disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 25:79–84

    PubMed  CAS  Google Scholar 

  • Iversen LL (1965) The uptake of catechol amines at high perfusion concentration in the rat isolated heart: a novel catechol amine uptake process. Br J Pharmacol 25:18–33

    CAS  Google Scholar 

  • Iversen LL, Salt P-J (1970) Inhibition of catecholamine uptake2 by steroids in the isolated rat heart. Br J Pharmacol 40:528–530

    PubMed  CAS  Google Scholar 

  • Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ (1994) Expression cloning of a rat liver Na+-independent organic anion transporter. Proc Natl Acad Sci USA 91:133–137

    PubMed  CAS  Google Scholar 

  • Ji L, Masuda S, Saito H, Inui K (2002) Downregulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int 62:514–524

    PubMed  CAS  Google Scholar 

  • Jonker JW, Wagenaar E, Mol CAAM, Buitelaar M, Koepsell H, Smit JW, Schinkel AH (2001) Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1[Slc22a1]) gene. Mol Cell Biol 21:5471–5477

    PubMed  CAS  Google Scholar 

  • Jung JS, Kim YK, Lee SH (1989) Characteristics of tetraethylamonium transport in rabbit renal plasma-membrane vesicles. Biochem J 259:377–383

    PubMed  CAS  Google Scholar 

  • Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, Hosoyamada M, Cha SH, Sekine T, Endou H (2001) Characterization of ochratoxin A transport by human organic anion transporters. Life Sci 69:2123–2135

    PubMed  CAS  Google Scholar 

  • Kakehi M, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Ohtani H, Sawada Y (2002) Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem Biophys Res Commun 296:644–650

    PubMed  CAS  Google Scholar 

  • Kanai N, Lu R, Bao Y, Wolkoff AW, Schuster VL (1996a) Transient expression of Oatp organic anion transporter in mammalian cells: identification of candidate substrates. Am J Physiol Renal Physiol 270:F319–F325

    CAS  Google Scholar 

  • Kanai N, Lu R, Bao Y, Wolkoff AW, Vore M, Schuster VL (1996b) Estradiol 17 β-D-glucuronide is a high-affinity substrate for Oatp organic anion transporter. Am J Physiol Renal Phsiol 270:F326–F331

    CAS  Google Scholar 

  • Kanner BI (1994) Sodium-coupled neurotransmitter transport: structure, function and regulation. J Exp Biol 196:237–249

    PubMed  CAS  Google Scholar 

  • Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, Kaissling B, Bachmann S, Koepsell H (2000) Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol 279: F679–F687

    PubMed  CAS  Google Scholar 

  • Karpati G, Carpenter S, Engel AG, Watters G, Allen J, Rothman S, Klassen G, Mamer OA (1975) The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology 25:16–24

    PubMed  CAS  Google Scholar 

  • Kekuda R, Prasad PD, Wu X, Wang H, Fei Y-J, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979

    PubMed  CAS  Google Scholar 

  • Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V, Mornhinweg E, Keil A, Eichelbaum M, Koepsell H (2002) Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 12:591–595

    PubMed  CAS  Google Scholar 

  • Kerner J, Hoppel C (1998) Genetic disorders of carnitine metabolism and their nutritional management. Annu Rev Nutr 18:179–206

    PubMed  CAS  Google Scholar 

  • Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, Piyachaturawat P, Endou H (2002) Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 303:534–539

    PubMed  CAS  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579

    PubMed  CAS  Google Scholar 

  • Kimelblatt BJ, Cerra F B, Calleri G, Berg MJ, McMillen MA, Schentag JJ (1980) Dose and serum concentration relationships in cimetidine-associated mental confusion. Gastroenterology 78:791–795

    PubMed  CAS  Google Scholar 

  • Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther 301:293–298

    PubMed  CAS  Google Scholar 

  • Kinsella JL, Holohan PD, Pessah NI, Ross CR (1979) Transport of organic ions in renal cortical luminal and antiluminal membrane vesicles. J Pharmacol Exp Ther 209:443–450

    PubMed  CAS  Google Scholar 

  • Kippenberger AG, Palmer DJ, Comer AM, Lipski J, Burton LD, Christie DL (1999) Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells: evidence for its association with secretory granules in PC12 cells. J Neurochem 73:1024–1032

    PubMed  CAS  Google Scholar 

  • Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I (2001) The nonneuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Jpn J Pharmacol 85:24–28

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Okuda T, Fujioka Y, Matsumura G, Nishimura Y, Haga T (2002) Distribution of the high-affinity choline transporter in the human and macaque monkey spinal cord. Neurosci Lett 317:25–28

    PubMed  CAS  Google Scholar 

  • Koehler MR, Wissinger B, Gorboulev V, Koepsell H, Schmid M (1997) The two human organic cation transporter genes SLC22A1 and SLC22A2 are located on chromosome 6q26. Cytogenet Cell Genet 79:198–200

    PubMed  CAS  Google Scholar 

  • Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266

    PubMed  CAS  Google Scholar 

  • Koepsell H, Gorboulev V, Arndt P (1999) Molecular pharmacology of organic cation transporters in kidney. J Membrane Biol 167:103–117

    CAS  Google Scholar 

  • Koizumi A, Nozaki J-I, Ohura T, Kayo T, Wada Y, Nezu J-I, Ohashi R, Tamai I, Shoji Y, Takada G, Kibira S, Matsuishi T, Tsuji A (1999) Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency. Hum Mol Genet 8: 2247–2254

    PubMed  CAS  Google Scholar 

  • Koizumi T, Nikaido H, Hayakawa J, Nonomura A, Yoneda T (1988) Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the C3H-H-2° strain of mouse with similarities to Reye’s syndrome. Lab Anim 22:83–87

    PubMed  CAS  Google Scholar 

  • Kristufek D, Rudorfer W, Pifl C, Huck S (2002) Organic cation transporter mRNA and function in the rat superior cervical ganglion. J Physiol 543:117–134

    PubMed  CAS  Google Scholar 

  • Kuhar MJ, Murrin LC (1978) Sodium-dependent, high affinity choline uptake. J Neurochem 30:15–21

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699

    PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Hagenbuch B, Stieger B, Wolkoff AW, Meier P J (1994) Functional characterization of the basolateral rat liver organic anion transporting polypeptide. Hepatology 20:411–416

    PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Hagenbuch B, Stieger B, Schteingart CD, Hofmann AF, Wolkoff AW, Meier PJ (1995) Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109:1274–1282

    PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Beuers U, Paumgartner G (1996) Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology 23:1053–1060

    PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Glasa J, Böker C, Oswald M, Grützner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305

    PubMed  CAS  Google Scholar 

  • Kullak-Ublick GA, Ismair M G, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120:525–533

    PubMed  CAS  Google Scholar 

  • Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, Kanai Y, Endou H (1999) Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem 274:13675–13680

    PubMed  CAS  Google Scholar 

  • Kuwajima M, Kono N, Horiuchi M, Imamura Y, Ono A, Inui Y, Kawata S, Koizumi T, Hayakawa J, Saheki T (1991) Animal model of systemic carnitine deficiency: Analysis in C3H-H-2 degrees strain of mouse associated with juvenile visceral steatosis. Biochem Biophys Res Commun 174:1090–1094

    PubMed  CAS  Google Scholar 

  • Kwong SC, Brubacher J (1998) Phenformin and lactic acidosis: a case report and review. J Emerg Med 16:881–886

    PubMed  CAS  Google Scholar 

  • Lamhonwah A-M, Olpin SE, Pollitt RJ, Vianey-Saban C, Divry P, Guffon N, Besley GTN, Onizuka R, De Meirleir LJ, Cvitanovic-Sojat L, Baric I, Dionisi-Vici C, Fumic K, Maradin M, Tein I (2002) Novel OCTN2 mutations: no genotype-phenotype correlations: early carnitine therapy prevents cardiomyopathy. Am J Med Genet 111:271–284

    PubMed  Google Scholar 

  • Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D, Ferrin TE, DeYoung J, Taylor T, Clark AG, Herskowitz I, Giacomini KM (2002) Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12:395–405

    PubMed  CAS  Google Scholar 

  • Lecureur V, Guillouzo A, Fardel O (1998) Differential expression of the polyspecific drug transporter OCT1 in rat hepatocarcinoma cells. Cancer Lett 126:227–233

    PubMed  CAS  Google Scholar 

  • Lesch KP, Wolozin BL, Estler HC, Murphy DL, Riederer P (1993) Isolation of a cDNA encoding the human brain serotonin transporter. J Neural Transm Gen Sect 91:67–72

    PubMed  CAS  Google Scholar 

  • Lips KS, Pfeil U, Haberberger RV, Kummer W (2002) Localization of the high-affinity choline transporter-1 in the rat skeletal motor unit. Cell Tissue Res 307:275–280

    PubMed  CAS  Google Scholar 

  • Lockman PR, Allen DD (2002) The transport of choline. Drug Dev Ind Pharm 28:749–771

    PubMed  CAS  Google Scholar 

  • Lu K-M, Nishimori H, Nakamura Y, Shima K, Kuwajima M (1998) A missense mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the juvenile visceral steatosis mouse. Biochem Biophys Res Commun 252:590–594

    PubMed  CAS  Google Scholar 

  • Marger MD, Saier MH, Jr. (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport, and antiport. Trends Biochem Sci 18:13–20

    PubMed  CAS  Google Scholar 

  • Martel F, Keating E, Calhau C, Gründemann D, Schömig E, Azevedo I (2001) Regulation of human extraneuronal monoamine transporter (hEMT) expressed in HEK293 cells by intracellular second messenger systems. Naunyn Schmiedebergs Arch Pharmacol 364:487–495

    PubMed  CAS  Google Scholar 

  • Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464

    PubMed  CAS  Google Scholar 

  • Matsuoka M, Igisu H (1993) Comparison of the effects of L-carnitine, D-carnitine and acetyl-L-carnitine on the neurotoxicity of ammonia. Biochem Pharmacol 46:159–164

    PubMed  CAS  Google Scholar 

  • Mayatepek E, Nezu J, Tamai I, Oku A, Katsura M, Shimane M, Tsuji A (1999) Two novel missense mutations of the OCTN2 gene (W283R and V446F) in a patient with primary systemic carnitine deficiency. Hum Mutat 15:118

    Google Scholar 

  • McCleskey EW, Almers W (1985) The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci USA 82:7149–7153

    PubMed  CAS  Google Scholar 

  • McKinney TD, Kunnemann ME (1985) Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am J Physiol Renal Physiol 249:F532–F541

    CAS  Google Scholar 

  • Mehrens T, Lelleck S, Çetinkaya I, Knollmann M, Hohage H, Gorboulev V, Boknik P, Koepsell H, Schlatter E (2000) The affinity of the organic cation transporter rOCT1 is increased by protein kinase C-dependent phosphorylation. J Am Soc Nephrol 11:1216–1224

    PubMed  CAS  Google Scholar 

  • Meijer DKF, Smit JW, Müller M (1997) Hepatobiliary elimination of cationic drugs: the role of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev 25:159–200

    CAS  Google Scholar 

  • Meyer-Wentrup F, Karbach U, Gorboulev V, Arndt P, Koepsell H (1998) Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem Biophys Res Commun 248:673–678

    PubMed  CAS  Google Scholar 

  • Mezey E, Eisenhofer G, Harta G, Hansson S, Gould L, Hunyady B, Hoffman BJ (1996) A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci USA 93:10377–10382

    PubMed  CAS  Google Scholar 

  • Mezey E, Eisenhofer G, Hansson S, Hunyady B, Hoffman BJ (1998) Dopamine produced by the stomach may act as a paracrine/autocrine hormone in the rat. Neuroendocrinology 67:336–348

    PubMed  CAS  Google Scholar 

  • Mezey E, Eisenhofer G, Hansson S, Harta G, Hoffman BJ, Gallatz K, Palkovits M, Hunyady B (1999) Nonneuronal dopamine in the gastrointestinal system. Clin Exp Pharmacol Physiol 26:S14–S22

    CAS  Google Scholar 

  • Mooslehner KA, Allen ND (1999) Cloning of the mouse organic cation transporter 2 gene, Slc22a2, from an enhancer-trap transgene integration locus. Mamm Genome 10:218–224

    PubMed  CAS  Google Scholar 

  • Moseley RH, Morrissette J, Johnson TR (1990) Transport of N 1-methylnicotinamide by organic cation-proton exchange in rat liver membrane vesicles. Am J Physiol Gastroenterol 259:G973–G982

    CAS  Google Scholar 

  • Moseley RH, Jarose SM, Permoad P (1992a) Organic cation transport by rat liver plasma membrane vesicles: studies with TEA. Am J Physiol Gastroenterol Liver Physiol 263:G775–G785

    CAS  Google Scholar 

  • Moseley RH, Vashi P G, Jarose SM, Dickinson CJ, Permoad PA (1992b) Thiamine transport by basolateral rat liver plasma membrane vesicles. Gastroenterology 103:1056–1065

    PubMed  CAS  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui KI (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    PubMed  CAS  Google Scholar 

  • Nagao M, Misawa H, Kato S, Hirai S (1998) Loss of cholinergic synapses on the spinal motor neurons of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 57:329–333

    PubMed  CAS  Google Scholar 

  • Nagel G, Volk C, Friedrich T, Ulzheimer J C, Bamberg E, Koepsell H (1997) A reevaluation of substrate specificity of the rat cation transporter rOCT1. J Biol Chem 272:31953–31956

    PubMed  CAS  Google Scholar 

  • Nestler JE (2001) Metformin and the polycystic ovary syndrome. J Clin Endocrinol Metab 86:1430

    PubMed  CAS  Google Scholar 

  • Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, Koizumi A, Shoji Y, Takada G, Matsuishi T, Yoshino M, Kato H, Ohura T, Tsujimoto G, Hayakawa J, Shimane M, Tsuji A (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21:91–94

    PubMed  CAS  Google Scholar 

  • Nguyen TT, Tseng Y T, McGonnigal B, Stabila JP, Worrell L A, Saha S, Padbury JF (1999) Placental biogenic amine transporters: in vivo function, regulation and pathobiological significance. Placenta 20:3–11

    PubMed  CAS  Google Scholar 

  • Nicholas TE, Strum J M, Angelo LS, Junod AF (1974) Site and mechanism of uptake of 3H-norepinephrine by isolated perfused rat lungs. Circ Res 35:670–680

    PubMed  CAS  Google Scholar 

  • Nishiwaki T, Daigo Y, Tamari M, Fujii Y, Nakamura Y (1998) Molecular cloning, mapping, and characterization of two novel human genes, ORCTL3 and ORCTL4, bearing homology to organic-cation transporters. Cytogenet Cell Genet 83:251–255

    PubMed  CAS  Google Scholar 

  • O’Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM (2000) An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc Natl Acad Sci USA 97:1835–1840

    PubMed  CAS  Google Scholar 

  • Ohashi R, Tamai I, Yabuuchi H, Nezu J-I, Oku A, Sai Y, Shimane M and Tsuji A (1999) Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther 291:778–784

    PubMed  CAS  Google Scholar 

  • Ohashi R, Tamai I, Nezu J-I, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A (2001) Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol 59:358–366

    PubMed  CAS  Google Scholar 

  • Ohashi R, Tamai I, Inano A, Katsura M, Sai Y, Nezu J, Tsuji A (2002) Studies on functional sites of organic cation/carnitine transporter OCTN2 (SLC22A5) using a Ser467Cys mutant protein. J Pharmacol Exp Ther 302:1286–1294

    PubMed  CAS  Google Scholar 

  • Oishi K, Hirai T, Gelb BD, Diaz GA (2001) Slc19a2: Cloning and characterization of the murine thiamin transporter cDNA and genomic sequence, the orthologue of the human TRMA gene. Mol Genet Metab 73:149–159

    PubMed  CAS  Google Scholar 

  • Okuda M, Saito H, Urakami Y, Takano M, Inui K-I (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    PubMed  CAS  Google Scholar 

  • Okuda M, Urakami Y, Saito H, Inui K-I (1999) Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta 1417:224–231

    PubMed  CAS  Google Scholar 

  • Okuda T, Haga T (2000) Functional characterization of the human high-affinity choline transporter. FEBS Lett 484:92–97

    PubMed  CAS  Google Scholar 

  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I (2000) Identification and characterization of the high-affinity choline transporter. Nat Neurosci 3:120–125

    PubMed  CAS  Google Scholar 

  • Okuda T, Okamura M, Kaitsuka C, Haga T, Gurwitz D (2002) Single nucleotide polymorphism of the human high-affinity choline transporter alters transport rate. J Biol Chem 277:45314–45322

    Google Scholar 

  • Ott RJ, Hui AC, Yuan G, Giacomini KM (1991) Organic cation transport in human renal brush-border membrane vesicles. Am J Physiol Renal Physiol 261:F443–F451

    CAS  Google Scholar 

  • Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its antidiabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614

    PubMed  CAS  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    PubMed  CAS  Google Scholar 

  • Pan BF, Sweet DH, Pritchard JB, Chen R, Nelson JA (1999) A transfected cell model for the renal toxin transporter, rOCT2. Toxicol Sci 47:181–186

    PubMed  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH, Jr. (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  CAS  Google Scholar 

  • Parsons SM, Prior C, Marshall IG (1993) Acetylcholine transport, storage, and release. Int Rev Neurobiol 35:279–390

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Klunk WE, Panchalingam K, Kanfer JN, McClure R (1995) Clinical and neurochemical effects of acetyl-L-carnitine in Alzheimer’s disease. Neurobiol Aging 16:1–4

    PubMed  CAS  Google Scholar 

  • Phillips JK, Dubey R, Sesiashvilvi E, Takeda M, Christie DL and Lipski J (2001) Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat 21:95–104

    PubMed  CAS  Google Scholar 

  • Pietig G, Mehrens T, Hirsch JR, Çetinkaya I, Piechota H, Schlatter E (2001) Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem 276:33741–33746

    PubMed  CAS  Google Scholar 

  • Prasad PD, Huang W, Ramamoorthy S, Carter AL, Leibach FH, Ganapathy V (1996) Sodium-dependent carnitine transport in human placental choriocarcinoma cells. Biochim Biophys Acta 1284:109–117

    PubMed  Google Scholar 

  • Rajgopal A, Edmondnson A, Goldman ID, Zhao R (2001) SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta 1537:175–178

    PubMed  CAS  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant-and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90:2542–2546

    PubMed  CAS  Google Scholar 

  • Rebouche CJ and Mack DL (1984) Sodium gradient-stimulated transport of L-carnitine into renal brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Arch Biochem Biophys 235:393–402

    PubMed  CAS  Google Scholar 

  • Reichel C, Gao B, Van Montfoort J, Cattori V, Rahner C, Hagenbuch B, Stieger B, Kamisako T, Meier PJ (1999) Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 117:688–695

    PubMed  CAS  Google Scholar 

  • Reid G, Wolff NA, Dautzenberg FM, Burckhard G (1998) Cloning of a human renal p-aminohippurate transporter, hROAT1. Kidney Blood Press Res 21:233–237

    PubMed  CAS  Google Scholar 

  • Rindi G, Laforenza U (2000) Thiamine intestinal transport and related issues: recent aspects. Proc Soc Exp Biol Med 224:246–255

    PubMed  CAS  Google Scholar 

  • Roch-Ramel F, Besseghir K, Murer H (1992) Renal excretion and tubular transport of organic anions and cations. In Windhager EE (ed) Handbook of physiology (a critical, comprehensive presentation of physiological knowledge and concepts). Oxford University Press, New York, Oxford, pp 2189–2262

    Google Scholar 

  • Roque AS, Prasad P D, Bhatia JS, Leibach FH, Ganapathy V (1996) Sodium-dependent high-affinity binding of carnitine to human placental brush border membranes. Biochim Biophys Acta 1282:274–282

    PubMed  Google Scholar 

  • Russ H, Staust K, Martel F, Gliese M, Schömig E (1996) The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia. Eur J Neurosc 8:1256–1264

    CAS  Google Scholar 

  • Sakaeda T, Nakamura T, Okumura K (2002) MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol Pharm Bull 25:1391–1400

    PubMed  CAS  Google Scholar 

  • Schentag JJ, Cerra FB, Calleri G, DeGlopper E, Rose JQ, Bernhard H (1979) Pharmacokinetic and clinical studies in patients with cimetidine-associated mental confusion. Lancet 1:177–181

    PubMed  CAS  Google Scholar 

  • Schlatter E, Monnich V, Çetinkaya I, Mehrens T, Ciarimboli G, Hirsch JR, Popp C, Koepsell H (2002) The organic cation transporters rOCT1 and hOCT2 are inhibited by cGMP. J Membr Biol 189:237–244

    PubMed  CAS  Google Scholar 

  • Schmitt A, Mössner R, Gossmann A, Fischer I G, Gorboulev V, Murphy DL, Koepsell H, Lesch KP (2003) An organic cation transporter capable of transporting serotonin is upregulated in serotonin transporter deficient-mice. J Neurosci Res (in press)

    Google Scholar 

  • Schömig E, Schönfeld C-L (1990) Extraneuronal noradrenaline transport (uptake2) in a human cell line (Caki-1 cells). Naunyn Schmiedeberg Arch Pharmacol 341:404–410

    Article  Google Scholar 

  • Schömig E, Spitzenberger F, Engelhardt M, Martel F, Örding N, Gründemann D (1998) Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Letters 425:79–86

    PubMed  Google Scholar 

  • Schweifer N, Barlow DP (1996) The Lx1 gene maps to mouse chromosome 17 and codes for a protein that is homologous to glucose and polyspecific transmembrane transporters. Mamm Genome 7:735–740

    PubMed  CAS  Google Scholar 

  • Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H (1997) Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 272:18526–18529

    PubMed  CAS  Google Scholar 

  • Sekine T, Kusuhara H, Utsunomiya-Tate N, Tsuda M, Sugiyama Y, Kanai Y, Endou H (1998) Molecular cloning and characterization of high-affinity carnitine transporter from rat intestine. Biochem Biophys Res Commun 251:586–591

    PubMed  CAS  Google Scholar 

  • Sekine T, Cha S H, Endou H (2000) The multispecific organic anion transporter (OAT) family. Pflügers Arch 440:337–350

    PubMed  CAS  Google Scholar 

  • Seth P, Wu X, Huang W, Leibach FH, Ganapathy V (1999) Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. J Biol Chem 274:33388–33392

    PubMed  CAS  Google Scholar 

  • Shi X, Bai S, Ford AC, Burk RD, Jacquemin E, Hagenbuch B, Meier PJ, Wolkoff AW (1995) Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 270:25591–25595

    PubMed  CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin C-L, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    PubMed  CAS  Google Scholar 

  • Shu Y, Bello CL, Mangravite LM, Feng B, Giacomini KM (2001) Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin-Darby canine kidney cells. J Pharmacol Exp Ther 299:392–398

    PubMed  CAS  Google Scholar 

  • Simon JR, Kuhar MG (1975) Impulse-flow regulation of high affinity choline uptake in brain cholinergic nerve terminals. Nature 255:162–163

    PubMed  CAS  Google Scholar 

  • Slitt AL, Cherringtion NJ, Hartley DP, Leazer TM, Klaassen CD (2002) Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug Metab Dispos 30:212–219

    PubMed  CAS  Google Scholar 

  • Smit JW, Schinkel AH, Weert B, Meijer DKF (1998) Hepatobiliary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdr1a and mdr1b genes have been disrupted. Br J Pharmacol 124:416–424

    PubMed  CAS  Google Scholar 

  • Sokol PP, Holohan PD, Ross CR (1985) Electroneutral transport of organic cations in canine renal brush border membrane vesicles (BBMV). J Pharmacol Exp Ther 233:694–699

    PubMed  CAS  Google Scholar 

  • Spangeus A, El-Salhy M (2001) Myenteric plexus of obese diabetic mice (an animal model of human type 2 diabetes). Histol Histopathol 16:159–165

    PubMed  CAS  Google Scholar 

  • Stanley CA, DeLeeuw S, Coates PM, Vianey-Liaud C, Divry P, Bonnefont JP, Saudubray JM, Haymond M, Trefz FK, Breningstall GN (1991) Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann Neurol 30:709–716

    PubMed  CAS  Google Scholar 

  • Steffen V, Santiago M, de la Cruz CP, Revilla E, Machado A, Cano J (1995) Effect of intraventricular injection of MPP: protection by acetyl-L-carnitine. Hum Exp Toxicol 14:865–871

    Article  PubMed  CAS  Google Scholar 

  • Stieger B, O’Neill B, Krähenbühl S (1995) Characterization of L-carnitine transport by rat kidney brush-border-membrane vesicles. Biochem J 309:643–647

    PubMed  CAS  Google Scholar 

  • Streich S, Brüss M, Bönisch H (1996) Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells. Naunyn-Schmiedeberg’s Arch Pharmacol 353:328–333

    CAS  Google Scholar 

  • Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, Naruse T, Inui K-I, Takata K (2000) Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol 114:175–180

    PubMed  CAS  Google Scholar 

  • Sun W, Wu RR, van Poelje PD, Erion MD (2001) Isolation of a family of organic anion transporters from human liver and kidney. Biochem Biophys Res Commun 283:417–422.

    PubMed  CAS  Google Scholar 

  • Suzuki M, Desmond TJ, Albin RL, Frey KA (2002) Cholinergic vesicular transporters in progressive supra-nuclear palsy. Neurology 58:1013–1018

    PubMed  Google Scholar 

  • Sweet DH, Pritchard JB (1999a) rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. Am J Physiol Renal Physiol 277:F890–F898

    CAS  Google Scholar 

  • Sweet DH, Pritchard JB (1999b) The molecular biology of renal organic anion and organic cation transporters. Cell Biochem Biophys 31:89–118

    PubMed  CAS  Google Scholar 

  • Sweet DH, Wolff NA, Pritchard JB (1997) Expression cloning and characterization of ROAT1, the basolateral organic anion transporter in rat kidney. J Biol Chem 272:30088–30095

    PubMed  CAS  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB (2001) Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 276:41611–41619

    PubMed  CAS  Google Scholar 

  • Sweet DH, Chan LMS, Walden R, Yang X-P, Miller DS, Pritchard JB (2003) Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am J Physiol Renal Physiol (in press)

    Google Scholar 

  • Takano M, Inui K-I, Okano T, Saito H, Hori R (1984) Carrier-mediated transport systems of TEA in rat renal brush-border and basolateral membrane vesicles. Biochim Biophys Acta 773:113–124

    PubMed  CAS  Google Scholar 

  • Takano M, Katsura T, Tomita Y, Yasuhara M, Hori R (1993) Transport mechanism of choline in rat renal brush-border membrane. Biol Pharm Bull 16:889–894

    PubMed  CAS  Google Scholar 

  • Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Endou H (2002) Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 300:918–924

    PubMed  CAS  Google Scholar 

  • Tamai I, Yabuuchi H, Nezu J-I, Sai Y, Oku A, Shimane M, Tsuji A (1997) Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Letters 419:107–111

    PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu J-I, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382

    PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu J-I, Sai Y, Kobayashi D, Oku A, Shimane M, Tsuji A (2000) Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 275:40064–40072

    PubMed  CAS  Google Scholar 

  • Tamai I, China K, Sai Y, Kobayashi D, Nezu J-I, Kawahara E, Tsuji A (2001) Na(+)-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta 1512:273–284

    PubMed  CAS  Google Scholar 

  • Tang NLS, Ganapathy V, Wu X, Hui J, Seth P, Yuen PMP, Fok TF, Hjelm NM (1999) Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet 8:655–660

    PubMed  CAS  Google Scholar 

  • Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, Komano T, Hori R (1992) Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther 263:840–845

    PubMed  CAS  Google Scholar 

  • Tein I, De Vivo DC, Bierman F, Pulver P, De Meirleir LJ, Cvitanovic-Sojat L, Pagon R A, Bertini E, Dionisi-Vici C, Servidei S. (1990) Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr Res 28:247–255

    PubMed  CAS  Google Scholar 

  • Terashita S, Dresser MJ, Zhang L, Gray AT, Yost SC, Giacomini KM (1998) Molecular cloning and functional expression of a rabbit renal organic cation transporter. Biochim Biophys Acta 1369:1–6

    PubMed  CAS  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738

    PubMed  CAS  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1989) Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 37:159–164

    PubMed  CAS  Google Scholar 

  • Tomomura M, Imamura Y, Horiuchi M, Koizumi T, Nikaido H, Hayakawa J, Saheki T (1992) Abnormal expression of urea cycle enzyme genes in juvenile visceral steatosis (jvs) mice. Biochim Biophys Acta 1138:167–171

    PubMed  CAS  Google Scholar 

  • Treem WR, Stanley CA, Finegold DN, Hale DE, Coates PM (1988) Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med 319:1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1988) The extraneural uptake and metabolism of catecholamines. In Trendelenburg U, Weiner N (eds) Handbook of experimental pharmacology 90. Catecholamines I. Springer-Verlag, Berlin, pp 279–319

    Google Scholar 

  • Turnheim K, Lauterbach FO (1977) Absorption and secretion of monoquaternary ammonium compounds by the isolated intestinal mucosa. Biochem Pharmac 26:99–108

    CAS  Google Scholar 

  • Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252

    PubMed  CAS  Google Scholar 

  • Ullrich KJ (1994) Specificity of transporters for “organic anions” and “organic cations” in the kidney. Biochim Biophys Acta 1197:45–62

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G (1996) Luminal transport system for choline+ in relation to the other organic cation transport systems in the rat proximal tubule. Kinetics, specificity: alkyl/arylamines, alkylamines with OH, O, SH, NH2, ROCO, RSCO, and H2PO4-groups, methylaminostyryl, rhodamine, acridine, phenanthrene, and cyanine compounds. Pflügers Arch 432:471–485

    PubMed  CAS  Google Scholar 

  • Urakami Y, Okuda M, Masuda S, Saito H, Inui K-I (1998) Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287:800–805

    PubMed  CAS  Google Scholar 

  • Urakami Y, Nakamura N, Takahashi K, Okuda M, Saito H, Hashimoto Y, Inui K-I (1999) Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 461:339–342

    PubMed  CAS  Google Scholar 

  • Urakami Y, Okuda M, Saito H, Inui K-I (2000) Hormonal regulation of organic cation rransporter OCT2 expression in rat kidney. FEBS Lett 473:173–176

    PubMed  CAS  Google Scholar 

  • Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K-I (2001) Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res 18:1528–1534

    PubMed  CAS  Google Scholar 

  • Urakami Y, Akazawa M, Saito H, Okuda M, Inui K-I (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13:1703–1710

    PubMed  CAS  Google Scholar 

  • Van Montfoort J E, Hagenbuch B, Fattinger KE, Müller M, Groothuis GMM, Meijer DKF, Meier PJ (1999) Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations. J Pharmacol Exp Ther 291:147–152

    PubMed  Google Scholar 

  • Van Montfoort JE, Müller M, Groothuis GMM, Meijer DKF, Koepsell H, Meier PJ (2001) Comparison of “type I” and “type II” organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther 298:110–115

    PubMed  Google Scholar 

  • Varoqui H, Erickson JD (1996) Active transport of acetylcholine by the human vesicular acetylcholine transporter. J Biol Chem 271:27229–27232

    PubMed  CAS  Google Scholar 

  • Vaz FM, Scholte HR, Ruiter J, Hussaarts-Odijk LM, Pereira RR, Schweitzer S, de Klerk JBC, Waterham HR, Wanders RJA (1999) Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum Genet 105:157–161

    PubMed  CAS  Google Scholar 

  • Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ (1994) Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism 43:647–654

    PubMed  CAS  Google Scholar 

  • Verhaagh S, Schweifer N, Barlow DP, Zwart R (1999) Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26–q27. Genomics 55:209–218

    PubMed  CAS  Google Scholar 

  • Vialli M (1966) Histology of the enterochromaffin cell system. In: Erspamer V (ed) Handbook of experimental pharmacology: 5-hydroxytryptamine and related indolealkyklaminase 19. Springer, New York, pp 1–65

    Google Scholar 

  • Wagner CA, Lükewille U, Kaltenbach S, Moschen I, Bröer A, Risler T, Bröer S, Lang F (2000) Functional and pharmacological characterization of the human Na+/carnitine cotransporter hOCTN2. Am J Physiol Renal Physiol 279:F584–F591

    PubMed  CAS  Google Scholar 

  • Walker JK, Gainetdinov RR, Mangel AW, Caron MG and Shetzline MA (2000) Mice lacking the dopamine transporter display altered regulation of distal colonic motility. Am J Physiol Gastrointest Liver Physiol 279:G311–G318

    PubMed  CAS  Google Scholar 

  • Walker PS, Donovan JA, Van Ness BG, Fellows RE, Pessin JE (1988) Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J Biol Chem 263:15594–15601

    PubMed  CAS  Google Scholar 

  • Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302:510–515

    PubMed  CAS  Google Scholar 

  • Wang Y, Ye J, Ganapathy V, Longo N (1999) Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci USA 96:2356–2360

    PubMed  CAS  Google Scholar 

  • Wang Y, Taroni F, Garavaglia B, Longo N (2000a) Functional analysis of mutations in the OCTN2 transporter causing primary carnitine deficiency: lack of genotype-phenotype correlation. Hum Mutat 16:401–407

    PubMed  CAS  Google Scholar 

  • Wang Y, Kelly MA, Cowan TM, Longo N (2000b) A missense mutation in the OCTN2 gene associated with residual carnitine transport activity. Hum Mutat 15:238–245

    PubMed  CAS  Google Scholar 

  • Wang Y, Meadows TA, Longo N (2000c) Abnormal sodium stimulation of carnitine transport in primary carnitine deficiency. J Biol Chem 275:20782–20786

    PubMed  CAS  Google Scholar 

  • Wang Y, Korman SH, Ye J, Gargus JJ, Gutman A, Taroni F, Garavaglia B, Longo N (2001) Phenotype and genotype variation in primary carnitine deficiency. Genet Med 3:387–392

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1999) The cholinergic “pitfall”: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 26:198–205

    PubMed  CAS  Google Scholar 

  • Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, Kilbinger H (2001a) Release of nonneuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol 134:951–956

    PubMed  CAS  Google Scholar 

  • Wessler I, Roth E, Schwarze S, Weikel W, Bittinger F, Kirkpatrick CJ, Kilbinger H (2001b) Release of nonneuronal acetylcholine from the human placenta: difference to neuronal acetylcholine. Naunyn Schmiedebergs Arch Pharmacol 364:205–212

    PubMed  CAS  Google Scholar 

  • Wolff NA, Werner A, Burkhardt S, Burckhardt G (1997) Expression cloning and characterization of a renal organic anion transporter from winter flounder. FEBS Letters 417:287–291

    PubMed  CAS  Google Scholar 

  • Wolff NA, Grünwald B, Friedrich B, Lang F, Godehardt S, Burckhardt G (2001) Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter. J Am Soc Nephrol 12:2012–2018

    PubMed  CAS  Google Scholar 

  • Wright EM, Loo DDF, Panayotova-Heiermann M, Hirayama BA, Turk E, Eskandari S, Lam JT (1998) Structure and function of the Na+/glucose cotransporter. Acta Physiol Scand 163:257–264

    CAS  Google Scholar 

  • Wright SH (1985) Transport of N 1-methylnicotinamide across brush border membrane vesicles from rabbit kidney. Am J Physiol Renal Physiol 249:F903–F911

    CAS  Google Scholar 

  • Wright SH, Wunz TM, Wunz TP (1992) A choline transporter in renal brush-border membrane vesicles: energetics and structural specificity. J Membrane Biol 126:51–65

    CAS  Google Scholar 

  • Wu X, Prasad PD, Leibach FH and Ganapathy V (1998a) cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun 246:589–595

    PubMed  CAS  Google Scholar 

  • Wu X, Kekuda R, Huang W, Fei Y-J, Leibach FH, Chen J, Conway SJ, Ganapathy V (1998b) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786

    PubMed  CAS  Google Scholar 

  • Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J, Conway SJ, Ganapathy V (1999) Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther 290:1482–1492

    PubMed  CAS  Google Scholar 

  • Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, Ganapathy V (2000a) Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta 1466:315–327

    PubMed  CAS  Google Scholar 

  • Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, Leibach FH, Ganapathy V (2000b) Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol 279:F449–F458

    PubMed  CAS  Google Scholar 

  • Yabuuchi H, Tamai I, Nezu J-I, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A (1999) Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther 289:768–773

    PubMed  CAS  Google Scholar 

  • Yamamura HI, Snyder SH (1972) Choline: high-affinity uptake by rat brain synaptosomes. Science 178:626–628

    PubMed  CAS  Google Scholar 

  • Yokogawa K, Yonekawa M, Tamai I, Ohashi R, Tatsumi Y, Higashi Y, Nomura M, Hashimoto N, Nikaido H, Hayakawa J, Nezu J, Oku A, Shimane M, Miyamoto K, Tsuji A (1999) Loss of wild-type carrier-mediated L-carnitine transport activity in hepatocytes of juvenile visceral steatosis mice. Hepatology 30:997–1001

    PubMed  CAS  Google Scholar 

  • Yoshioka K (1984) Some properties of the thiamine uptake system in isolated rat hepatocytes. Biochim Biophys Acta 778:201–209

    PubMed  CAS  Google Scholar 

  • Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini K M (1997a) Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 51:913–921

    PubMed  CAS  Google Scholar 

  • Zhang L, Dresser MJ, Chun JK, Babbitt PC, Giacomini KM (1997b) Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J Biol Chem 272:16548–16554

    PubMed  CAS  Google Scholar 

  • Zhang L, Brett CM, Giacomini KM (1998a) Role of organic cation transporters in drug absorption and elimination. Annu Rev Pharmacol Toxicol 38:431–460

    PubMed  CAS  Google Scholar 

  • Zhang L, Schaner ME, Giacomini KM (1998b) Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther 286:354–361

    PubMed  CAS  Google Scholar 

  • Zhang L, Gorset W, Dresser MJ, Giacomini KM (1999) The interaction of n-tetra-alkylammonium compounds with a human organic cation transporter, hOCT1. J Pharmacol Exp Ther 288:1192–1198

    PubMed  CAS  Google Scholar 

  • Zhang L, Gorset W, Washington CB, Blaschke TF, Kroetz DL, Giacomini KM (2000) Interactions of HIV protease inhibitors with a human organic cation transporter in a mammalian expression system. Drug Metab Dispos 28:329–334

    PubMed  CAS  Google Scholar 

  • Zhang X, Evans KK, Wright SH (2002) Molecular cloning of rabbit organic cation transporter rbOCT2 and functional comparisons with rbOCT1. Am J Physiol Renal Physiol 283:F124–F133

    PubMed  CAS  Google Scholar 

  • Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Koepsell .

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Koepsell, H., Schmitt, B.M., Gorboulev, V. (2003). Organic cation transporters. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-003-0017-x

Download citation

  • DOI: https://doi.org/10.1007/s10254-003-0017-x

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20214-1

  • Online ISBN: 978-3-540-45207-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics