Peroxisome biogenesis

  • J. H. Eckert
  • R. ErdmannEmail author
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 147)


Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.


Peroxisomal Membrane Peroxisome Biogenesis Peroxisomal Protein Endoplasmic Reticu Peroxisomal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553PubMedGoogle Scholar
  2. Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell (in press)Google Scholar
  3. Albertini M, Girzalsky W, Veenhuis M, Kunau WH (2001) Pex12p of Saccharomyces cerevisiae is a component of a multiprotein complex essential for peroxisomal matrix protein import. Eur J Cell Biol 80:257–270PubMedGoogle Scholar
  4. Albertini M, Rehling P, Erdmann R, Girzalsky W, Kiel JA, Veenhuis M, Kunau WH (1997) Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89:83–92PubMedGoogle Scholar
  5. Angermüller S, Leupold C, Zaar K, Fahimi HD (1986) Electron microscopic cytochemical localization of alpha-hydroxyacid oxidase in rat kidney cortex. Heterogeneous staining of peroxisomes. Histochemistry 85:411–418PubMedGoogle Scholar
  6. Ardail D, Gasnier F, Lerme F, Simonot C, Louisot P, Gateau-Roesch O (1993) Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J Biol Chem 268:25985–28992PubMedGoogle Scholar
  7. Baerends RJ, Faber KN, Kram AM, Kiel JA, Klei IJ van der, Veenhuis M (2000) A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. J Biol Chem 275:9986–9995PubMedGoogle Scholar
  8. Baerends RJ, Rasmussen SW, Hilbrands RE, Heide M van der, Faber KN, Reuvekamp PT, Kiel JA, Cregg JM, Klei IJ van der, Veenhuis M (1996) The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem 271:8887–8894PubMedGoogle Scholar
  9. Baker A (1996) In vitro systems in the study of peroxisomal protein import. Experientia 52:1055–1062PubMedGoogle Scholar
  10. Baker A, Charlton W, Johnson B, Lopez-Huertas E, Oh J, Sparkes I, Thomas J (2000) Biochemical and molecular approaches to understanding protein import into peroxisomes. Biochem Soc Trans 28:499–504PubMedGoogle Scholar
  11. Barnett P, Bottger G, Klein AT, Tabak HF, Distel B (2000) The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Embo J 19:6382–6391PubMedGoogle Scholar
  12. Baumgart E, Völkl A, Hashimoto T, Fahimi HD (1989) Biogenesis of Peroxisomes: Immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalasenegative membrane loops. J Cell Biol 108:2221–2231PubMedGoogle Scholar
  13. Bellion E, Goodman JM (1987) Proton ionophores prevent assembly of a peroxisomal protein. Cell 48:165–173PubMedGoogle Scholar
  14. Biardi L, Sreedhar A, Zokaei A, Vartak NB, Bozeat RL, Shackelford JE, Keller GA, Krisans SK (1994) Mevalonate kinase is predominantly localized in peroxisomes and is defective in patients with peroxisome deficiency disorders. J Biol Chem 269:1197–1205PubMedGoogle Scholar
  15. Birschmann I, Stroobants AK, Berg M van den, Schöfer A, Rosenkranz K, Kunau WH, Tabak HF (2003) Pex15p of Saccharomyces cerevisiae provides the molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mole Cell Biol (in press)Google Scholar
  16. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B (2000) Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventionalSaccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol Biol Cell 11:3963–3976PubMedGoogle Scholar
  17. Braverman N, Dodt G, Gould SJ, Valle D (1998) An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet 7:1195–1205PubMedGoogle Scholar
  18. Brickner DG, Harada JJ, Olsen LJ (1997) Protein transport into higher plant peroxisomes. In vitro import assay provides evidence for receptor involvement. Plant Physiol 113:1213–1221PubMedGoogle Scholar
  19. Brocard C, Kragler F, Simon MM, Schuster T, Hartig A (1994) The tetratricopeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem Biophys Res Commun 204:1016–1022PubMedGoogle Scholar
  20. Brocard C, Lametschwandtner G, Koudelka R, Hartig A (1997) Pex14p is a member of the protein linkage map of Pex5p. Embo J 16:5491–5500PubMedGoogle Scholar
  21. Brosius U, Dehmel T, Gartner J (2002) Two different targeting signals direct human peroxisomal membrane protein 22 to peroxisomes. J Biol Chem 277:774–784PubMedGoogle Scholar
  22. Brown TW, Titorenko VI, Rachubinski RA (2000) Mutants of the Yarrowia lipolytica PEX23 gene encoding an integral peroxisomal membrane peroxin mislocalize matrix proteins and accumulate vesicles containing peroxisomal matrix and membrane proteins. Mol Biol Cell 11:141–152PubMedGoogle Scholar
  23. Chang CC, Gould SJ (1998) Phenotype-genotype relationships in complementation group 3 of the peroxisome-biogenesis disorders. Am J Hum Genet 63:1294–1306PubMedGoogle Scholar
  24. Chang CC, Lee WH, Moser H, Valle D, Gould SJ (1997) Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat Genet 15:385–388PubMedGoogle Scholar
  25. Chang CC, Warren DS, Sacksteder KA, Gould SJ (1999) PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J Cell Biol 147:761–774PubMedGoogle Scholar
  26. Charlton W, Lopez-Huertas E (2002) PEX Genes in plants and other organisms. In: Graham ABaIA (ed) Plant peroxisomes: biochemistry, cell biology, and biotechnological applications. Kluwer Academic Publishers, New York, pp chapter 12Google Scholar
  27. Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ (2000) The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol Cell Biol 20:7516–7526PubMedGoogle Scholar
  28. Corpas FJ, Trelease RN (1997) The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. Eur J Cell Biol 73:49–57PubMedGoogle Scholar
  29. Crane DI, Kalish JE, Gould SJ (1994) The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugating enzyme required for peroxisome assembly. J Biol Chem 269:21835–21844PubMedGoogle Scholar
  30. Crookes WJ, Olsen LJ (1999) Peroxin puzzles and folded freight: peroxisomal protein import in review. Naturwissenschaften 86:51–61PubMedGoogle Scholar
  31. Dammai V, Subramani S (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196PubMedGoogle Scholar
  32. Diestelköter P, Just WW (1993) In vitro insertion of the 22-kD peroxisomal membrane protein into isolated rat liver peroxisomes. J Cell Biol 123:1717–1725Google Scholar
  33. Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, KleiI van der, Veldhoven PPvan, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3PubMedGoogle Scholar
  34. Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 9:115–125PubMedGoogle Scholar
  35. Dodt G, Gould SJ (1996) Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 135:1763–1774PubMedGoogle Scholar
  36. Dodt G, Warren D, Becker E, Rehling P, Gould SJ (2001) Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J Biol Chem 276:41769–41781PubMedGoogle Scholar
  37. Duve C de (1996) The peroxisome in retrospect. Ann NY Acad Sci 804:1–10PubMedGoogle Scholar
  38. Duve C de, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357PubMedGoogle Scholar
  39. Dyer JM, McNew JA, Goodman JM (1996) The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J Cell Biol 133:269–280PubMedGoogle Scholar
  40. Einwachter H, Sowinski S, Kunau WH, Schliebs W (2001) Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep 2:1035–1039PubMedGoogle Scholar
  41. Eitzen GA, Szilard RK, Rachubinski RA (1997) Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J Cell Biol 137:1265–1278PubMedGoogle Scholar
  42. Elgersma Y, Elgersma-Hooisma M, Wenzel T, McCaffery JM, Farquhar MG, Subramani S (1998) A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J Cell Biol 140:807–820PubMedGoogle Scholar
  43. Elgersma Y, Kwast L, Klein A, Voorn-Brouwer T, Berg M van den, Metzig B, America T, Tabak HF, Distel B (1996) The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins. J Cell Biol 135:97–109PubMedGoogle Scholar
  44. Elgersma Y, Kwast L, Berg M van den, Snyder WB, Distel B, Subramani S, Tabak HF (1997) Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S.cerevisiae, causes proliferation of the endoplasmic reticulum membrane. Embo J 16:7326–7341PubMedGoogle Scholar
  45. Elgersma Y, Tabak HF (1996) Proteins involved in peroxisome biogenesis and functioning. Biochim Biophys Acta 1286:269–283PubMedGoogle Scholar
  46. Elgersma Y, Roermund CWvan, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. Embo J 14:3472–3479PubMedGoogle Scholar
  47. Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128:509–523PubMedGoogle Scholar
  48. Erdmann R, Blobel G (1996) Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol 135:111–121PubMedGoogle Scholar
  49. Erdmann R, Veenhuis M, Kunau W-H (1997) Peroxisomes: organelles at the crossroads. Trends Cell Biol 7:400–407Google Scholar
  50. Erdmann R, Veenhuis M, Mertens D, Kunau WH (1989) Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:5419–5423PubMedGoogle Scholar
  51. Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU, Kunau WH (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64:499–510PubMedGoogle Scholar
  52. Faber KN, Heyman JA, Subramani S (1998) Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol Cell Biol 18:936–943PubMedGoogle Scholar
  53. Faber KN, van Dijk R, Keizer-Gunnink I, Koek A, van der Klei IJ, Veenhuis M (2002) Import of assembled PTS1 proteins into peroxisomes of the yeast Hansenula polymorpha: yes and no! Biochim Biophys Acta 1591:157–162PubMedGoogle Scholar
  54. Flynn CR, Mullen RT, Trelease RN (1998) Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes. Plant J 16:709–720PubMedGoogle Scholar
  55. Fransen M, Brees C, Baumgart E, Vanhooren JC, Baes M, Mannaerts GP, Van Veldhoven PP (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J Biol Chem 270:7731–7736PubMedGoogle Scholar
  56. Fransen M, Wylin T, Brees C, Mannaerts GP, Van Veldhoven PP (2001) Human Pex19p binds peroxisomal integral membrane proteins at regions distinct from their sorting sequences. Mol Cell Biol 21:4413–4424.PubMedGoogle Scholar
  57. S.E. Frederick SE, Newcomb EH (1969) Cytochemical localization of catalase in leaf microbodies (peroxisomes). J Cell Biol 43:343–353PubMedGoogle Scholar
  58. Fujiki Y (2000) Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett 476:42–46PubMedGoogle Scholar
  59. Fujiki Y, Rachubinski RA, Lazarow PB (1984) Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc Natl Acad Sci USA 81:7127–7131PubMedGoogle Scholar
  60. Gatto GJJr, Geisbrecht BV, Gould SJ, Berg JM (2000a) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 7:1091–1095PubMedGoogle Scholar
  61. Gatto GJJr, Geisbrecht BV, Gould SJ, Berg JM (2000b) A proposed model for the PEX5-peroxisomal targeting signal-1 recognition complex. Proteins 38:241–246PubMedGoogle Scholar
  62. Ghaedi K, Honsho M, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (2000a) PEX3 is the causal gene responsible for peroxisome membrane assembly-defective Zellweger syndrome of complementation group G. Am J Hum Genet 67:976–981PubMedGoogle Scholar
  63. Ghaedi K, Tamura S, Okumoto K, Matsuzono Y, Fujiki Y (2000b) The peroxin Pex3p initiates membrane assembly in peroxisome biogenesis. Mol Biol Cell 11:2085–2102PubMedGoogle Scholar
  64. Ghys K, Fransen M, Mannaerts GP, Van Veldhoven PP (2002) Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome-targeting signal type 2 and other peroxins. Biochem J 365:41–50PubMedGoogle Scholar
  65. Girzalsky W, Rehling P, Stein K, Kipper J, Blank L, Kunau WH, Erdmann R (1999) Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J Cell Biol 144:1151–1162PubMedGoogle Scholar
  66. Glover JR, Andrews DW, Rachubinski RA (1994a) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A 91:10541–10545PubMedGoogle Scholar
  67. Glover JR, Andrews DW, Subramani S, Rachubinski RA (1994b) Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J Biol Chem 269:7558–7563PubMedGoogle Scholar
  68. Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16:173–177PubMedGoogle Scholar
  69. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64PubMedGoogle Scholar
  70. Götte K, Girzalsky W, Linkert M, Baumgart E, Kammerer S, Kunau WH, Erdmann R (1998) Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18:616–628PubMedGoogle Scholar
  71. Gould SJ, Collins CS (2002) Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 3:382–389PubMedGoogle Scholar
  72. Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI (1996) Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor. J Cell Biol 135:85–95PubMedGoogle Scholar
  73. Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108:1657–1664PubMedGoogle Scholar
  74. Gould SJ, Valle D (2000) Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet 16:340–345PubMedGoogle Scholar
  75. Gouveia AM, Reguenga C, Oliveira ME, Sa-Miranda C, Azevedo JE (2000) Characterization of peroxisomal Pex5p from rat liver. Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J Biol Chem 275:32444–32451PubMedGoogle Scholar
  76. Harper CC, South ST, McCaffery JM, Gould SJ (2002) Peroxisomal membrane protein import does not require Pex17p. J Biol Chem 277:16498–16504PubMedGoogle Scholar
  77. Hashiguchi N, Kojidani T, Imanaka T, Haraguchi T, Hiraoka Y, Baumgart E, Yokota S, Tsukamoto T, Osumi T (2002) Peroxisomes are formed from complex membrane structures in PEX6-deficient CHO cells upon genetic complementation. Mol Biol Cell 13:711–722PubMedGoogle Scholar
  78. Häusler T, Stierhof YD, Wirt E, Clayton C (1996) Import of a DHFR hybrid protein into glycosomes in vivo is not inhibited by the folate-analogue aminopterin. J Cell Biol 132:311–324PubMedGoogle Scholar
  79. Hazra PP, Suriapranata I, Snyde WB, Subramani S (2002) Peroxisome remnants in pex3delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic 3:560–574PubMedGoogle Scholar
  80. Heinemann P, Just WW (1992) Peroxisomal protein import. In vivo evidence for a novel translocation competent compartment. FEBS Lett 300:179–182PubMedGoogle Scholar
  81. Hettema EH, Distel B, Tabak HF (1999) Import of proteins into peroxisomes. Biochim Biophys Acta 1451:17–34PubMedGoogle Scholar
  82. Hettema EH, Girzalsky W, Berg Mvan den, Erdmann R, Distel B (2000) Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. Embo J 19:223–233PubMedGoogle Scholar
  83. Hettema EH, Ruigrok CC, Koerkamp MG, Berg Mvan den, Tabak HF, Distel B, Braakman I (1998) The cytosolic DnaJ-like protein djp1p is involved specifically in peroxisomal protein import. J Cell Biol 142:421–434PubMedGoogle Scholar
  84. Heupel R, Heldt HW (1994) Protein organization in the matrix of leaf peroxisomes. A multienzyme complex involved in photorespiratory metabolism. Eur J Biochem 220:165–172PubMedGoogle Scholar
  85. Hoepfner D, Berg Mvan den, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155:979–990PubMedGoogle Scholar
  86. Höhfeld J, Veenhuis M, Kunau WH (1991) PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis. J Cell Biol 114:1167–1178PubMedGoogle Scholar
  87. Holroyd C, Erdmann R (2001) Protein translocation machineries of peroxisomes. FEBS Lett 501:6–10PubMedGoogle Scholar
  88. Honsho M, Fujiki Y (2001) Topogenesis of peroxisomal membrane protein requires a short, positively charged intervening-loop sequence and flanking hydrophobic segments. study using human membrane protein PMP34. J Biol Chem 276:9375–9382PubMedGoogle Scholar
  89. Honsho M, Hiroshige T, Fujiki Y (2002) The membrane biogenesis peroxin Pex16p: Topogenesis and functional roles in peroxisomal membrane assembly. J Biol ChemGoogle Scholar
  90. Honsho M, Tamura S, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1998) Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am J Hum Genet 63:1622–1630PubMedGoogle Scholar
  91. Huang K, Lazarow PB (1996) Targeting of green fluorescent protein to peroxisomes and peroxisome membranes in S.cerevisiae. Mol Biol Cell 7:494aGoogle Scholar
  92. Huang Y, Ito R, Miura S, Hashimoto T, Ito M (2000) A missense mutation in the RING finger motif of PEX2 protein disturbs the import of peroxisome targeting signal 1 (PTS1)-containing protein but not the PTS2-containing protein. Biochem Biophys Res Commun 270:717–721PubMedGoogle Scholar
  93. Huhse B, Rehling P, Albertini M, Blank L, Meller K, Kunau WH (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J Cell Biol 140:49–60PubMedGoogle Scholar
  94. Imanaka T, Small GM, Lazarow PB (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol 105105:2915–2922PubMedGoogle Scholar
  95. Imanaka T, Takano T, Osumi T, Hashimoto T (1996) Sorting of the 70-kDa peroxisomal membrane protein into rat liver peroxisomes in vitro. Ann N Y Acad Sci 804:663–665PubMedGoogle Scholar
  96. Jardim A, Liu W, Zheleznova E, Ullman B (2000) Peroxisomal targeting signal-1 receptor protein PEX5 from Leishmania donovani. Molecular, biochemical, and immunocytochemical characterization. J Biol Chem 275:13637–13644PubMedGoogle Scholar
  97. Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231PubMedGoogle Scholar
  98. Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552PubMedGoogle Scholar
  99. Johnson TL, Olsen LJ (2001) Building new models for peroxisome biogenesis. Plant Physiol 127:731–739PubMedGoogle Scholar
  100. Jones JM, Morrell JC, Gould SJ (2001) Multiple distinct targeting signals in integral peroxisomal membrane proteins. J Cell Biol 153:1141–1150PubMedGoogle Scholar
  101. Kalish JE, Theda C, Morrell JC, Berg JM, Gould SJ (1995) Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome. Mol Cell Biol 15:6406–6419PubMedGoogle Scholar
  102. Kammerer S, Arnold N, Gutensohn W, Mewes HW, Kunau WH, Hofler G, Roscher AA, Braun A (1997) Genomic organization and molecular characterization of a gene encoding HsPXF, a human peroxisomal farnesylated protein. Genomics 45:200–210PubMedGoogle Scholar
  103. Kammerer S, Holzinger A, Welsch U, Roscher AA (1998) Cloning and characterization of the gene encoding the human peroxisomal assembly protein Pex3p. FEBS Lett 429:53–60PubMedGoogle Scholar
  104. Kiel JA, Hilbrands RE, Klei IJvan der, Rasmussen SW, Salomons FA, Heide Mvan der, Faber KN, Cregg JM, Veenhuis M (1999) Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact. Yeast 15:1059–1078PubMedGoogle Scholar
  105. Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342PubMedGoogle Scholar
  106. Klei IJvan der, Hilbrands RE, Kiel JA, Rasmussen SW, Cregg JM, Veenhuis M (1998) The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. Embo J 17:3608–3618PubMedGoogle Scholar
  107. Klei IJvan der, Hilbrands RE, Swaving GJ, Waterham HR, Vrieling EG, Titorenko VI, Cregg JM, Harder W, Veenhuis M (1995) The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J Biol Chem 270:17229–17236PubMedGoogle Scholar
  108. Klein AT, Barnett P, Bottger G, Konings D, Tabak HF, Distel B (2001) Recognition of peroxisomal targeting signal type 1 by the import receptor Pex5p. J Biol Chem 276:15034–15041PubMedGoogle Scholar
  109. Klein AT, Berg Mvan den, Bottger G, Tabak HF, Distel B (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277:25011–25019PubMedGoogle Scholar
  110. Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S (1999a) Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 146:99–112PubMedGoogle Scholar
  111. Koller A, Spong AP, Luers GH, Subramani S (1999b) Analysis of the peroxisomal acyl-CoA oxidase gene product from Pichia pastoris and determination of its targeting signal. Yeast 15:1035–1044PubMedGoogle Scholar
  112. Komori M, Rasmussen SW, Kiel JA, Baerends RJ, Cregg JM, Klei IJvan der, Veenhuis M (1997) The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. Embo J 16:44–53PubMedGoogle Scholar
  113. Krisans SK (1992) The role of peroxisomes in cholesterol metabolism. Am J Respir Cell Mol Biol 7:358–364PubMedGoogle Scholar
  114. Krisans SK, Ericsson J, Edwards PA, Keller GA (1994) Farnesyl-diphosphate synthase is localized in peroxisomes. J Biol Chem 269:14165–14169PubMedGoogle Scholar
  115. Kryvi H, Kvannes J, Flatmark T (1990) Freeze-fracture study of rat liver peroxisomes: evidence for an induction of intramembrane particles by agents stimulating peroxisomal proliferation. Eur J Cell Biol 53:227–233PubMedGoogle Scholar
  116. Kunau WH (1998) Peroxisome biogenesis: from yeast to man. Curr Opin Microbiol 1:232–237PubMedGoogle Scholar
  117. Kunau WH, Erdmann R (1998) Peroxisome biogenesis: back to the endoplasmic reticulum? Curr Biol 8:299–302Google Scholar
  118. Lambkin GR, Rachubinski RA (2001) Yarrowia lipolytica cells mutant for the peroxisomal peroxin Pex19p contain structures resembling wild-type peroxisomes. Mol Biol Cell 12:3353–3364PubMedGoogle Scholar
  119. Lametschwandtner G, Brocard C, Fransen M, VanVeldhoven P, Berger J, Hartig A (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273:33635–33643PubMedGoogle Scholar
  120. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530PubMedGoogle Scholar
  121. Lee MS, Mullen RT, Trelease RN (1997) Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell 9:185–197PubMedGoogle Scholar
  122. Li X, Gould SJ (2002) PEX11 promotes peroxisome division independently of peroxisome metabolism. J Cell Biol 156:643–651PubMedGoogle Scholar
  123. Lin Y, Sun L, Nguyen LV, Rachubinski RA, Goodman HM (1999) The Pex16p homolog SSE1 and storage organelle formation in Arabidopsis seeds. Science 284:328–330PubMedGoogle Scholar
  124. Liu H, Tan X, Russell KA, Veenhuis M, Cregg JM (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem 270:10940–10951PubMedGoogle Scholar
  125. Lüers GH, Hashimoto T, Fahimi HD, Volkl A (1993) Biogenesis of peroxisomes: isolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver. J Cell Biol 121:1271–1280PubMedGoogle Scholar
  126. Makita T (1995) Molecular organization of hepatocyte peroxisomes. Int Rev Cytol 160:303–352PubMedGoogle Scholar
  127. Mannaerts GP, VanVeldhoven P (1993) Metabolic role of mammalian peroxisomes. In: Gibson G, Lake B (eds) Peroxisomes: biology and importance in toxicology and medicine. Taylor & Francis, London, pp 19–62Google Scholar
  128. Marshall ES, Raichlen JS, Kim SM, Intenzo CM, Sawyer DT, Brody EA, Tighe DA, Park CH (1995) Prognostic significance of ST-segment depression during adenosine perfusion imaging. Am Heart J 130:58–66PubMedGoogle Scholar
  129. Marshall PA, Dyer JM, Quick ME, Goodman JM (1996) Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J Cell Biol 135:123–137PubMedGoogle Scholar
  130. Marzioch M, Erdmann R, Veenhuis M, Kunau WH (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. Embo J 13:4908–4918PubMedGoogle Scholar
  131. Matsumura T, Otera H, Fujiki Y (2000) Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J Biol Chem 275:21715–21721PubMedGoogle Scholar
  132. Matsuzono Y, Kinoshita N, Tamura S, Shimozawa N, Hamasaki M, Ghaedi K, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y (1999) Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc Natl Acad Sci USA 96:2116–2121PubMedGoogle Scholar
  133. McCollum D, Monosov E, Subramani S (1993) The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells—the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol 121:761–774PubMedGoogle Scholar
  134. McNew JA, Goodman JM (1994) An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 127:1245–1257PubMedGoogle Scholar
  135. Miura S, Kasuya-Arai I, Mori H, Miyazawa S, Osumi T, Hashimoto T, Fujiki Y (1992) Carboxyl-terminal consensus Ser-Lys-Leu-related tripeptide of peroxisomal proteins functions in vitro as a minimal peroxisome-targeting signal. J Biol Chem 267:14405–14411PubMedGoogle Scholar
  136. Motley AM, Hettema EH, Ketting R, Plasterk R, Tabak HF (2000) Caenorhabditis elegans has a single pathway to target matrix proteins to peroxisomes. EMBO Rep 1:40–46PubMedGoogle Scholar
  137. Mukai S, Ghaedi K, Fujiki Y (2002) Intracellular localization, function, and dysfunction of the peroxisometargeting signal type 2 receptor, Pex7p, in mammalian cells. J Biol Chem 277:9548–9561PubMedGoogle Scholar
  138. Mullen RT, Lisenbee CS, Miernyk JA, Trelease RN (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11:2167–2185PubMedGoogle Scholar
  139. Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344PubMedGoogle Scholar
  140. Muntau AC, Mayerhofer PU, Paton BC, Kammerer S, Roscher AA (2000) Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am J Hum Genet 67:967–975PubMedGoogle Scholar
  141. Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115PubMedGoogle Scholar
  142. Nakagawa T, Imanaka T, Morita M, Ishiguro K, Yurimoto H, Yamashita A, Kato N, Sakai Y (2000) Peroxisomal membrane protein Pmp47 is essential in the metabolism of middle-chain fatty acid in yeast peroxisomes and Is associated with peroxisome proliferation. J Biol Chem 275:3455–3461PubMedGoogle Scholar
  143. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43PubMedGoogle Scholar
  144. Nito K, Hayashi M, Nishimura M (2002) Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana. Plant Cell Physiol 43:355–366PubMedGoogle Scholar
  145. Noguchi T, Fujiwara S (1988) Identification of mammalian aminotransferases utilizing glyoxylate or pyruvate as amino acceptor. Peroxisomal and mitochondrial asparagine aminotransferase. J Biol Chem 263:182–186PubMedGoogle Scholar
  146. Novikoff AB, Shin WY (1964) The endoplasmatic reticulum in the Golgi zone and its relations to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J Microsc 3:187–206Google Scholar
  147. Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure—diverse function. Genes Cells 6:575–597PubMedGoogle Scholar
  148. Okumoto K, Abe I, Fujiki Y (2000) Molecular anatomy of the peroxin Pex12p: ring finger domain is essential for Pex12p function and interacts with the peroxisome-targeting signal type 1-receptor Pex5p and a ring peroxin, Pex10p. J Biol Chem 275:25700–25710PubMedGoogle Scholar
  149. Okumoto K, Bogaki A, Tateishi K, Tsukamoto T, Osumi T, Shimozawa N, Suzuki Y, Orii T, Fujiki Y (1997) Isolation and characterization of peroxisome-deficient Chinese hamster ovary cell mutants representing human complementation group III. Exp Cell Res 233:11–20PubMedGoogle Scholar
  150. Okumoto K, Itoh R, Shimozawa N, Suzuki Y, Tamura S, Kondo N, Fujiki Y (1998a) Mutations in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B. Hum Mol Genet 7:1399–1405PubMedGoogle Scholar
  151. Okumoto K, Shimozawa N, Kawai A, Tamura S, Tsukamoto T, Osumi T, Moser H, Wanders RJ, Suzuki Y, Kondo N, Fujiki Y (1998b) PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p. Mol Cell Biol 18:4324–4336PubMedGoogle Scholar
  152. Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714PubMedGoogle Scholar
  153. Otera H, Okumoto K, Tateishi K, Ikoma Y, Matsuda E, Nishimura M, Tsukamoto T, Osumi T, Ohashi K, Higuchi O, Fujiki Y (1998) Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol 18:388–399PubMedGoogle Scholar
  154. Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol 22:1639–1655PubMedGoogle Scholar
  155. Passreiter M, Anton M, Lay D, Frank R, Harter C, Wieland FT, Gorgas K, Just WW (1998) Peroxisome biogenesis: involvement of ARF and coatomer. J Cell Biol 141:373–383PubMedGoogle Scholar
  156. Patarca R, Fletcher MA (1992) Ring finger in the peroxisome assembly factor-1. FEBS Lett 312:1–2PubMedGoogle Scholar
  157. Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71PubMedGoogle Scholar
  158. Pause B, Diestelkotter P, Heid H, Just WW (1997) Cytosolic factors mediate protein insertion into the peroxisomal membrane. FEBS Lett 414:95–98PubMedGoogle Scholar
  159. Pause B, Saffrich R, Hunziker A, Ansorge W, Just WW (2000) Targeting of the 22 kDa integral peroxisomal membrane protein. FEBS Lett 471:23–28PubMedGoogle Scholar
  160. Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R (2003) The ScPex13p SH3 domain exposes two distinct building sites for Pex5p and Pex14p. J Mol Biol (in press)Google Scholar
  161. Pool MR, Lopez-Huertas E, Baker A (1998) Characterization of intermediates in the process of plant peroxisomal protein import. Embo J 17:6854–6862PubMedGoogle Scholar
  162. Preisig-Müller R, Muster G, Kindl H (1994) Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes. Eur J Biochem 219:57–63PubMedGoogle Scholar
  163. Purdue PE, Lazarow PB (2001a) Peroxisome biogenesis. Annu Rev Cell Dev Biol 17:701–752PubMedGoogle Scholar
  164. Purdue PE, Lazarow PB (2001b) Pex18p is constitutively degraded during peroxisome biogenesis. J Biol Chem 276:47684–47689PubMedGoogle Scholar
  165. Purdue PE, Yang X, Lazarow PB (1998) Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J Cell Biol 143:1859–1869PubMedGoogle Scholar
  166. Reguenga C, Oliveira ME, Gouveia AM, Sa-Miranda C, Azevedo JE (2001) Characterization of the mammalian peroxisomal import machinery: Pex2p, Pex5p, Pex12p, and Pex14p are subunits of the same protein assembly. J Biol Chem 276:29935–29942PubMedGoogle Scholar
  167. Rehling P, Marzioch M, Niesen F, Wittke E, Veenhuis M, Kunau WH (1996) The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. Embo J 15:2901–2913PubMedGoogle Scholar
  168. Rehling P, Skaletz-Rorowski A, Girzalsky W, Voorn-Brouwer T, Franse MM, Distel B, Veenhuis M, Kunau WH, Erdmann R (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275:3593–3602PubMedGoogle Scholar
  169. Reumann S (2000) The structural properties of plant peroxisomes and their metabolic significance. Biol Chem 381:639–648PubMedGoogle Scholar
  170. Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed peroxisomal convoluted tubule cells of the mouse kidney. Stockholm University, Aktiebolaget Godvil, Stockholm, SwedenGoogle Scholar
  171. Roermund CWvan, Drissen R, Berg Mvan den, Ijlst L, Hettema EH, Tabak HF, Waterham HR, Wanders RJ (2001) Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329PubMedGoogle Scholar
  172. Roermund CWvan, Tabak HF, Berg Mvan den, Wanders RJ, Hettema EH (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150:489–498PubMedGoogle Scholar
  173. Rottensteiner H, Palmieri L, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A (2002) The peroxisomal transporter gene ANT1 is regulated by a deviant oleate response element (ORE): characterization of the signal for fatty acid induction. Biochem J 365:109–117PubMedGoogle Scholar
  174. Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ (2000) PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944PubMedGoogle Scholar
  175. Saidowsky J, Dodt G, Kirchberg K, Wegner A, Nastainczyk W, Kunau WH, Schliebs W (2001) The diaromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J Biol Chem 276:34524–34529PubMedGoogle Scholar
  176. Salomons FA, Kiel JA, Faber KN, Veenhuis M, van derKlei IJ (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J Biol Chem 275:12603–12611PubMedGoogle Scholar
  177. Salomons FA, Nico Faber K, Veenhuis M, Klei IJvan der (2001) Peroxisomal remnant structures in Hansenula polymorpha Pex5 cells can develop into normal peroxisomes upon induction of the PTS2 protein amine oxidase. J Biol Chem 276:4190–4198PubMedGoogle Scholar
  178. Salomons FA, Klei IJvan der, Kram AM, Harder W, Veenhuis M (1997) Brefeldin A interferes with peroxisomal protein sorting in the yeast Hansenula polymorpha. FEBS Lett 411:133–139PubMedGoogle Scholar
  179. Santos MJ, Imanaka T, Shio H, Lazarow PB (1988a) Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J Biol Chem 263:10502–10509PubMedGoogle Scholar
  180. Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB (1988b) Peroxisomal membrane ghosts in Zellweger syndrome—aberrant organelle assembly. Science 239:1536–1538PubMedGoogle Scholar
  181. Schliebs W, Saidowsky J, Agianian B, Dodt G, Herberg FW, Kunau WH (1999) Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J Biol Chem 274:5666–5673PubMedGoogle Scholar
  182. Schneiter R, Brugger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146:741–754PubMedGoogle Scholar
  183. Schrader M, Reuber BE, Morrell JC, Jimenez-Sanchez G, Obie C, Stroh TA, Valle D, Schroer TA, Gould SJ (1998) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614PubMedGoogle Scholar
  184. Shiao YJ, Lupo G, Vance JE (1995) Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem 270:11190–11198PubMedGoogle Scholar
  185. Shimozawa N, Suzuki Y, Tomatsu S, Nakamura H, Kono T, Takada H, Tsukamoto T, Fujiki Y, Orii T, Kondo N (1998a) A novel mutation, R125X in peroxisome assembly factor-1 responsible for Zellweger syndrome. Hum Mutat Suppl 1:S134–1346Google Scholar
  186. Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Ghaedi K, Fujiki Y, Kondo N (2000) Identification of PEX3 as the gene mutated in a Zellweger syndrome patient lacking peroxisomal remnant structures. Hum Mol Genet 9:1995–1999PubMedGoogle Scholar
  187. Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Kondo N, Kinoshita N, Fujiki Y, Tsukamoto T, Osumi T, Imanaka T, Orii T, Beemer F, Mooijer P, Dekker C, Wanders RJ (1998b) Genetic basis of peroxisomeassembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts. Am J Hum Genet 63:1898–1903PubMedGoogle Scholar
  188. Shimozawa N, Suzuki Y, Zhang Z, Imamura A, Tsukamoto T, Osumi T, Tateishi K, Okumoto K, Fujiki Y, Orii T, Barth PG, Wanders RJ, Kondo N (1998c) Peroxisome biogenesis disorders: identification of a new complementation group distinct from peroxisome-deficient CHO mutants and not complemented by human PEX 13. Biochem Biophys Res Commun 243:368–371PubMedGoogle Scholar
  189. Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner (2003) Pex7p and Pex20p of Neurospora crassa function together on PTS2-dependent protein import into peroxisomes. Mol Biol Cell 14:810–821PubMedGoogle Scholar
  190. Skoneczny M, Lazarow PB (1998) A novel, non-PTS1, peroxisomal import route dependent on the PTS1 receptor Pex5p. Mol Biol Cell 9:348aGoogle Scholar
  191. Small GM, Santos MJ, Imanaka T, Poulos A, Danks DM, Moser HW, Lazarow PB (1988) Peroxisomal integral membrane proteins in livers of patients with Zellweger syndrome, infantile Refsum’s disease and X-linked adrenoleukodystrophy. J Inherit Metab Dis 11:358–371PubMedGoogle Scholar
  192. Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ, Ideker T, Galitski T, Dimitrov K, Rachubinski RA, Aitchison JD (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 158:259–271PubMedGoogle Scholar
  193. Smith JJ, Rachubinski RA (2001) A role for the peroxin Pex8p in Pex20p-dependent thiolase import into peroxisomes of the yeast Yarrowia lipolytica. J Biol Chem 276:1618–1625PubMedGoogle Scholar
  194. Snyder WB, Faber KN, Wenzel TJ, Koller A, Luers GH, Rangell L, Keller GA, Subramani S (1999a) Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris. Mol Biol Cell 10:1745–1761PubMedGoogle Scholar
  195. Snyder WB, Koller A, Choy AJ, Johnson MA, Cregg JM, Rangell L, Keller GA, Subramani S (1999b) Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the peroxisome targeting signal-receptor docking complex in Pichia pastoris. Mol Biol Cell 10:4005–4019PubMedGoogle Scholar
  196. Soukupova M, Sprenger C, Gorgas K, Kunau WH, Dodt G (1999) Identification and characterization of the human peroxin PEX3. Eur J Cell Biol 78:357–374PubMedGoogle Scholar
  197. South ST, Baumgart E, Gould SJ (2001) Inactivation of the endoplasmic reticulum protein translocation factor, Sec61p, or its homolog, Ssh1p, does not affect peroxisome biogenesis. Proc Natl Acad Sci USA 98:12027–12031PubMedGoogle Scholar
  198. South ST, Gould SJ (1999) Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144:255–266PubMedGoogle Scholar
  199. South ST, Sacksteder KA, Li X, Liu Y, Gould SJ (2000) Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J Cell Biol 149:1345–1360PubMedGoogle Scholar
  200. Steel GJ, Brownsword J, Stirling CJ (2002) Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery. Biochemistry 41:11914–11920PubMedGoogle Scholar
  201. Stein K, Schell-Steven A, Erdmann R, Rottensteiner H (2002) Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import. Mol Cell Biol 22:6056–6069PubMedGoogle Scholar
  202. Stewart MQ, Esposito RD, Gowani J, Goodman JM (2001) Alcohol oxidase and dihydroxyacetone synthase, the abundant peroxisomal proteins of methylotrophic yeasts, assemble in different cellular compartments. J Cell Sci 114:2863–2868PubMedGoogle Scholar
  203. Subramani S (1992) Targeting of proteins into the peroxisomal matrix. J Membr Biol 125:99–106PubMedGoogle Scholar
  204. Subramani S (1993) Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9:445–478PubMedGoogle Scholar
  205. Subramani S (1996) Protein translocation into peroxisomes. J Biol Chem 271:32483–32486PubMedGoogle Scholar
  206. Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78:171–188PubMedGoogle Scholar
  207. Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418PubMedGoogle Scholar
  208. Suzuki Y, Orii T, Takiguchi M, Mori M, Hijikata M, Hashimoto T (1987a) Biosynthesis of membrane polypeptides of rat liver peroxisomes. J Biochem (Tokyo) 101:491–496Google Scholar
  209. Suzuki Y, Shimozawa N, Orii T, Aikawa J, Tada K, Kuwabara T, Hashimoto T (1987b) Biosynthesis of peroxisomal membrane polypeptides in infants with Zellweger syndrome. J Inherit Metab Dis 10:297–300PubMedGoogle Scholar
  210. Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. Embo J 10:3255–3262PubMedGoogle Scholar
  211. Szilard RK, Titorenko VI, Veenhuis M, Rachubinski RA (1995) Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J Cell Biol 131:1453–1469PubMedGoogle Scholar
  212. Tabak HF, Braakman I, Distel B (1999) Peroxisomes: simple in function but complex in maintenance. Trends Cell Biol 9:447–453PubMedGoogle Scholar
  213. Tam YY, Rachubinski RA (2002) Yarrowia lipolytica cells mutant for the PEX24 gene encoding a peroxisomal membrane peroxin mislocalize peroxisomal proteins and accumulate membrane structures containing both peroxisomal matrix and membrane proteins. Mol Biol Cell 13:2681–2691PubMedGoogle Scholar
  214. Tamura S, Okumoto K, Toyama R, Shimozawa N, Tsukamoto T, Suzuki Y, Osumi T, Kondo N, Fujiki Y (1998a) Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I. Proc Natl Acad Sci USA 95:4350–4355PubMedGoogle Scholar
  215. Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y (1998b) A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p. Biochem Biophys Res Commun 245:883–886PubMedGoogle Scholar
  216. Tan X, Waterham HR, Veenhuis M, Cregg JM (1995) The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J Cell Biol 128:307–319PubMedGoogle Scholar
  217. Terlecky SR, Legakis JE, Hueni SE, Subramani S (2001) Quantitative analysis of peroxisomal protein import in vitro. Exp Cell Res 263:98–106PubMedGoogle Scholar
  218. Terlecky SR, Nuttley WM, McCollum D, Sock E, Subramani S (1995) The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. Embo J 14:3627–3634PubMedGoogle Scholar
  219. Thompson SL, Krisans SK (1990) Rat liver peroxisomes catalyze the initial step in cholesterol synthesis. The condensation of acetyl-CoA units into acetoacetyl-CoA. J Biol Chem 265:5731–5735PubMedGoogle Scholar
  220. Titorenko VI, Chan H, Rachubinski RA (2000a) Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol 148:29–44PubMedGoogle Scholar
  221. Titorenko VI, Eitzen GA, Rachubinski RA (1996) Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause the accumulation of multiple subpopulations of peroxisomes. J Biol Chem 271:20307–20314PubMedGoogle Scholar
  222. Titorenko VI, Ogrydziak DM, Rachubinski RA (1997) Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol Cell Biol 17:5210–5226PubMedGoogle Scholar
  223. Titorenko VI, Rachubinski RA (1998a) The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem Sci 23:231–233PubMedGoogle Scholar
  224. Titorenko VI, Rachubinski RA (1998b) Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18:2789–2803PubMedGoogle Scholar
  225. Titorenko VI, Rachubinski RA (2000) Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J Cell Biol 150:881–886PubMedGoogle Scholar
  226. Titorenko VI, Rachubinski RA (2001a) Dynamics of peroxisome assembly and function. Trends Cell Biol 11:22–29PubMedGoogle Scholar
  227. Titorenko VI, Rachubinski RA (2001b) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368PubMedGoogle Scholar
  228. Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J Cell Biol 142:403–420PubMedGoogle Scholar
  229. Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA (2000b) Peroxisome biogenesis in the yeast Yarrowia lipolytica. Cell Biochem Biophys 32 Spring:21–26PubMedGoogle Scholar
  230. Tsukamoto T, Hata S, Yokota S, Miura S, Fujiki Y, Hijikata M, Miyazawa S, Hashimoto T, Osumi T (1994a) Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. J Biol Chem 269:6001–6010PubMedGoogle Scholar
  231. Tsukamoto T, Miura S, Fujiki Y (1991) Restoration by a 35 K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350:77–81PubMedGoogle Scholar
  232. Tsukamoto T, Miura S, Nakai T, Yokota S, Shimozawa N, Suzuki Y, Orii T, Fujiki Y, Sakai F, Bogaki A, et al. (1995) Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nat Genet 11:395–401PubMedGoogle Scholar
  233. Tsukamoto T, Shimozawa N, Fujiki Y (1994b) Peroxisome assembly factor 1: nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Mol Cell Biol 14:5458–5465PubMedGoogle Scholar
  234. Tsukamoto T, Yokota S, Fujiki Y (1990) Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes. J Cell Biol 110:651–660PubMedGoogle Scholar
  235. Urquhart AJ, Kennedy D, Gould SJ, Crane DI (2000) Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 275:4127–4136PubMedGoogle Scholar
  236. Veenhuis M, Mateblowski M, Kunau WH, Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3:77–84PubMedGoogle Scholar
  237. Voelker DR (1993) The ATP-dependent translocation of phosphatidylserine to the mitochondria is a process that is restricted to the autologous organelle. J Biol Chem 268:7069–7074PubMedGoogle Scholar
  238. Voorn-Brouwer T, Kragt A, Tabak HF, Distel B (2001) Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI-and COPII-mediated vesicular transport. J Cell Sci 114:2199–2204PubMedGoogle Scholar
  239. Voorn-Brouwer T, Leij Ivan der, Hemrika W, Distel B, Tabak HF (1993) Sequence of the PAS8 gene, the product of which is essential for biogenesis of peroxisomes in Saccharomyces cerevisiae. Biochim Biophys Acta 1216:325–328PubMedGoogle Scholar
  240. Walque Sde, Kiel JA, Veenhuis M, Opperdoes FR, Michels PA (1999) Cloning and analysis of the PTS-1 receptor in Trypanosoma brucei. Mol Biochem Parasitol 104:106–119PubMedGoogle Scholar
  241. Walton PA, Hill PE, Subramani S (1995) Import of stably folded proteins into peroxisomes. Mol Biol Cell 6:675–683PubMedGoogle Scholar
  242. Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ (1994) Involvement of 70-kD heatshock proteins in peroxisomal import. J Cell Biol 125:1037–1046PubMedGoogle Scholar
  243. Wanders RJ, Schutgens RB, Barth PG (1995) Peroxisomal disorders: a review. J Neuropathol Exp Neurol 54:726–739PubMedGoogle Scholar
  244. Wanders RJ, Tager JM (1998) Lipid metabolism in peroxisomes in relation to human disease. Mol Aspects Med 19:69–154PubMedGoogle Scholar
  245. Wang X, Unruh MJ, Goodman JM (2001) Discrete targeting signals direct Pmp47 to oleate-induced peroxisomes in Saccharomyces cerevisiae. J Biol Chem 276:10897–10905PubMedGoogle Scholar
  246. Waterham HR, Titorenko VI, Haima P, Cregg JM, Harder W, Veenhuis M (1994) The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy-and amino-terminal targeting signals. J Cell Biol 127:737–749PubMedGoogle Scholar
  247. Wendland M, Subramani S (1993) Presence of cytoplasmic factors functional in peroxisomal protein import implicates organelle-associated defects in several human peroxisomal disorders. J Clin Invest 92:2462–2468PubMedGoogle Scholar
  248. Wiebel FF, Kunau WH (1992) The Pas2 protein essential for peroxisome biogenesis is related to ubiquitinconjugating enzymes. Nature 359:73–76PubMedGoogle Scholar
  249. Wiemer EA, Luers GH, Faber KN, Wenzel T, Veenhuis M, Subramani S (1996) Isolation and characterization of Pas2p, a peroxisomal membrane protein essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J Biol Chem 271:18973–18980PubMedGoogle Scholar
  250. Wiemer EA, Nuttley WM, Bertolaet BL, Li X, Francke U, Wheelock MJ, Anne UK, Johnson KR, Subramani S (1995) Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol 130:51–65PubMedGoogle Scholar
  251. Will GK, Soukupova M, Hong X, Erdmann KS, Kiel JA, Dodt G, Kunau WH, Erdmann R (1999) Identification and characterization of the human orthologue of yeast Pex14p. Mol Cell Biol 19:2265–2277PubMedGoogle Scholar
  252. Wimmer B, Lottspeich F, Klei Ivan der, Veenhuis M, Gietl C (1997) The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc Natl Acad Sci USA 94:13624–13629PubMedGoogle Scholar
  253. Wirtz KW (1982) Phospholipid transfer proteins. In: Jost P, Griffith OH (eds) Lipid-protein interactions. Wiley, New York, NY, USA, pp 151–231Google Scholar
  254. Wirtz KW (1991) Phospholipid transfer proteins. Annu Rev Biochem 60:73–99PubMedGoogle Scholar
  255. Xie Y, Varshavsky A (1999) The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. Embo J 18:6832–6844PubMedGoogle Scholar
  256. Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ (1996) The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. Embo J 15:2914–2923PubMedGoogle Scholar
  257. Yamamoto K, Fahimi HD (1987) Three-dimensional reconstruction of a peroxisomal reticulum in regenerating rat liver: evidence of interconnections between heterogeneous segments. J Cell Biol 105:713–722PubMedGoogle Scholar
  258. Yamasaki M, Hashiguchi N, Fujiwara C, Imanaka T, Tsukamoto T, Osumi T (1999) Formation of peroxisomes from peroxisomal ghosts in a peroxisome-deficient mammalian cell mutant upon complementation by protein microinjection. J Biol Chem 274:35293–35296PubMedGoogle Scholar
  259. Yang X, Purdue PE, Lazarow PB (2001) Eci1p uses a PTS1 to enter peroxisomes: either its own or that of a partner, Dci1p. Eur J Cell Biol 80:126–138PubMedGoogle Scholar
  260. Zaar K, Angermuller S, Volkl A, Fahimi HD (1986) Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger’s cerebro-hepato-renal syndrome (CHRS). Exp Cell Res 164:267–271PubMedGoogle Scholar
  261. Zaar K, Volkl A, Fahimi HD (1987) Association of isolated bovine kidney cortex peroxisomes with endoplasmic reticulum. Biochim Biophys Acta 897:135–142PubMedGoogle Scholar
  262. Zhang JW, Lazarow PB (1996) Peb1p (Pas7p) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal targeting sequence of thiolase: Peb1p itself is targeted to peroxisomes by an NH2-terminal peptide. J Cell Biol 132:325–334PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institut für Physiologische Chemie, Medizinische FakultätRuhr-Universität BochumBochumGermany

Personalised recommendations