Advertisement

Cytochrome c oxidase — structure, function, and physiology of a redox-driven molecular machine

  • O.-M. H. RichterEmail author
  • B. Ludwig
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 147)

Abstract

Cytochome c oxidase is the terminal member of the electron transport chains of mitochondria and many bacteria. Providing an efficient mechanism for dioxygen reduction on the one hand, it also acts as a redox-linked proton pump, coupling the free energy of water formation to the generation of a transmembrane electrochemical gradient to eventually drive ATP synthesis. The overall complexity of the mitochondrial enzyme is also reflected by its subunit structure and assembly pathway, whereas the diversity of the bacterial enzymes has fostered the notion of a large family of heme-copper terminal oxidases. Moreover, the successful elucidation of 3-D structures for both the mitochondrial and several bacterial oxidases has greatly helped in designing mutagenesis approaches to study functional aspects in these enzymes.

Keywords

Oxidase Subunit Rhodobacter Sphaeroides Bovine Heart Proton Translocation Paracoccus Denitrificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

EPR

electron paramagnetic resonance

mt

mitochondrial

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard A, Gilderson G, Mills DA, Ferguson-Miller S, Brzezinski P (2000) Redesign of the proton-pumping machinery of cytochrome c oxidase: proton pumping does not require glu(I-286). Biochemistry 39:15847–15850PubMedGoogle Scholar
  2. Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikström M (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat Struct Biol 7:910–917PubMedGoogle Scholar
  3. Affourtit C, Krab K, Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta 1504:58–69PubMedGoogle Scholar
  4. Affourtit C, Albury MS, Crichton PG, Moore AL (2002) Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett 510:121–126PubMedGoogle Scholar
  5. Aguilera I, García-Lozano J, Muñoz A, Arenas J, Campos Y, Chinchón I, Roldán AN, Bautista J (2001) Mitochondrial DNA point mutation in the COI gene in a patient with McArdle’s disease. J Neurol Sci 192:81–84PubMedGoogle Scholar
  6. Altmann R (1890) Die Elementarorganismen und ihre Beziehung zu den Zellen. Veit, LeipzigGoogle Scholar
  7. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedGoogle Scholar
  8. Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330PubMedGoogle Scholar
  9. Backgren C, Hummer G, Wikström M, Puustinen A (2000) Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I. Biochemistry 39:7863–7867PubMedGoogle Scholar
  10. Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OMH, van Spanning RJM (1998) Molecular genetics of the genus Paracoccus — Metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078PubMedGoogle Scholar
  11. Barrientos A, Barros MH, Valnot I, Rötig A, Rustin P, Tzagaloff A (2002a) Cytochrome oxidase in health and disease. Gene 286:53–63PubMedGoogle Scholar
  12. Barrientos A, Korr D, Tzagaloff A. (2002b) Shy 1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh’s syndrome. EMBO J 121:43–52Google Scholar
  13. Barros MH, Nobrega FG, Tzagaloff A (2002) Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae. J Biol Chem 277:9997–10002PubMedGoogle Scholar
  14. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304PubMedGoogle Scholar
  15. Behr J, Michel H, Mäntele W, Hellwig P (2000) Functional properties of the heme propionates in cytochrome c oxidase from Paracoccus denitrificans. Evidence from FTIR difference spectroscopy and site-directed mutagenesis. Biochemistry 39:1356–1363PubMedGoogle Scholar
  16. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130-134Google Scholar
  17. Berthold DA, Andersson ME, Nordlund P (2000) New insight into the structure and function of the alternative oxidase. Biochim Biophys Acta 1460:241–254PubMedGoogle Scholar
  18. Bonne G, Seibel P, Possekel S, Marsac C, Kadenbach B (1993) Expression of human cytochrome c oxidase subunits during fetal development. Eur J Biochem 217:1099–1107PubMedGoogle Scholar
  19. Bonnefoy N, Kermorgant M, Groudinsky O, Minet M, Slonomski PP, Dujardin G (1994) Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1 mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 91:11978–11982PubMedGoogle Scholar
  20. Bratton MR, Pressler MA, Hosler JP (1999) Suicide inactivation of cytochrome c oxidase: catalytic turnover in the absence of subunit III alters the active site. Biochemistry 38:16236–16245PubMedGoogle Scholar
  21. Bränden M, Tomson F, Gennis RB, Brzezinski P (2002) The entry point of the K-proton-transfer pathway in cytochrome c oxidase. Biochemistry 41:10794–10798PubMedGoogle Scholar
  22. Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971PubMedGoogle Scholar
  23. Bruno C, Martinuzzi A, Tang Y, Andreu AL, Pallotti F, Bonilla E, Shanske S, Fu J, Sue CM, Angelini C, DiMauro S, Manfredi G (1999) A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. Am J Hum Genet 65:611–620PubMedGoogle Scholar
  24. Buggy J, Bauer CE (1995) Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol 177:6958–65PubMedGoogle Scholar
  25. Buse G, Soulimane T, Dewor M, Meyer HE, Blüggel M (1999) Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase. Prot Sci 8:985–990Google Scholar
  26. Calhoun MW, Thomas JW, Gennis RB (1994) The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci 19:325–330PubMedGoogle Scholar
  27. Campos Y, Garcia-Redondo A, Fernandez-Moreno MA, Martinez-Pardo M, Goda G, Rubio JC, Martin MA, Del Hoyo P, Cabello A, Bornstein B, Garesse R, Arenas J (2001) Early onset multisystem mitochondrial disorder by a nonsense mutation in the mitochondrial DNA cytochrome c oxidase II gene. Ann Neurol 50:409–413PubMedGoogle Scholar
  28. Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59:569–596PubMedGoogle Scholar
  29. Carr HS, George GN, Winge DR (2002) Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I) binding protein. J Biol Chem 277:31237–31242PubMedGoogle Scholar
  30. Carrozzo R, Santorelli FM (2002) Complex IV. Structure, function and deficiency. In: Garcia JJ (ed) Recent Advances in Bioenergetics. Editorial Transworld Network, KalkuttaGoogle Scholar
  31. Clark KM, Taylor RW, Johnson MA, Chinnery PF, Chrzanowska-Lightowlers ZMA, Andrews RM, Nelson IP, Wood NW, Lamont PJ, Hanna MG, Lightowlers RN, Turnbull DM (1999) An mtDNA mutation in the initiation codon of the cytochrome c oxidase subunit II gene results in lower levels of the protein and a mitochondrial encephalomyopathy. Am J Hum Genet 64:1330–1339PubMedGoogle Scholar
  32. Comi GP, Bordoni A, Salani S, Franceschina L, Sciacco M, Prelle A, Fortunato F, Zeviani M, Napoli L, Bresolin N, Moggio M, Ausenda CD, Taanman JW, Scarlato G (1998) Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43:110–116PubMedGoogle Scholar
  33. Cooper CE (2002) Nitric oxide and cytochrome c oxidase: substrate, inhibitor or effector? Trends Biochem Sci 271:33–39Google Scholar
  34. D’Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, Beal MF, Manfredi G (2001) In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem 276:46925–46932PubMedGoogle Scholar
  35. da Silva CG, Ribeiro CAJ, Leipnitz G, Dutra-Filho CS, Wyse ÂTS, Wannmacher CMD, Sarkis JJF, Jakobs C, Wajner M (2002) Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. Biochim Biophys Acta 1586:81–91PubMedGoogle Scholar
  36. Dagsgaard C, Taylor LE, O’Brien KM, Poyton RO (2001) Effects of anoxia and the mitochondrion on expression of aerobic nuclear cox genes in yeast. J Biol Chem 276:7593–7601PubMedGoogle Scholar
  37. Das TK, Pecoraro C, Tomson FL, Gennis RB, Rousseau DL (1998) The posttranslational modification in cytochrome c oxidase is required to establish a functional environment of the catalytic site. Biochemistry 37:14471–14476PubMedGoogle Scholar
  38. DiMauro S, Andreu AL (2000) Mutations in mtDNA: Are we scraping the bottom of the barrel? Brain Pathol 10:431–441PubMedCrossRefGoogle Scholar
  39. DiMauro S, Schon EA (2001) Mitochondrial DNA mutations in human disease. Am J Med Genet 106:18–26PubMedGoogle Scholar
  40. Drosou V, Reincke B, Schneider M, Ludwig B (2002a) Specificity of interaction between the Paracoccus denitrificans oxidase and its substrate cytochrome c: comparing the mitochondrial to the homologous bacterial cytochrome c 552, and its truncated and site-directed mutants. Biochemistry 41:10629–10634PubMedGoogle Scholar
  41. Drosou V, Malatesta F, Brunori M, Ludwig B (2002b) Mutations in the docking site for cytochrome c on the Paracoccus heme aa 3 oxidase: electron entry and kinetic phases of the reaction. Eur J Biochem 269:2980–2988PubMedGoogle Scholar
  42. Epel B, Slutter CS, Neese F, Kroneck PMH, Zumft WG, Pecht I, Farver O, Lu Y, Goldfarb D (2002) Electron-mediating CuA centers in proteins: A comparative high field 1H ENDOR study. J Am Chem Soc 124:8152–8162PubMedGoogle Scholar
  43. Fetter JR, Qian J, Shapleigh J, Thomas JW, Garcia-Horsman A, Schmidt E, Hosler J, Babcock GT, Gennis RB, Ferguson-Miller S (1995) Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci USA 92:1604–1608PubMedGoogle Scholar
  44. Flöck D, Helms V (2002) Protein-protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c. Proteins 47:75–85PubMedGoogle Scholar
  45. Florens L, Schmidt B, McCracken J, Ferguson-Miller S (2001) Fast deuterium access to the buried magnesium/ manganese site in cytochrome c oxidase. Biochemistry 40:7491–7497PubMedGoogle Scholar
  46. Foury F, Kucej M (2002) Yeast mitochondrial biogenesis: a model system for humans? Curr Opin Chem Biol 6:106–111PubMedGoogle Scholar
  47. Frank V, Kadenbach B (1996) Regulation of the stoichiometry of cytochrome c oxidase from bovine heart by intramitochondrial ATP/ADP ratios. FEBS Lett 382:121–124PubMedGoogle Scholar
  48. Fry M, Green D (1980) Cardiolipin requirement by cytochrome c oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun 93:1238–1248PubMedGoogle Scholar
  49. Garcia-Horsman JA, Puustinen A, Gennis RB, Wikström M (1995) Proton transfer in cytochrome bo 3 ubiquinol oxidase of Escherichia coli: second-site mutations in subunit I that restore proton pumping in the mutant Asp135Asn. Biochemistry 34:4428–4433PubMedGoogle Scholar
  50. Garesse R, Vallejo CG (2001) Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263:1–16PubMedGoogle Scholar
  51. Gattermann N, Retzlaff S, Wang YL, Hofhaus G, Heinisch J, Aul C, Schneider W (1997) Heteroplasmic point mutations of mitochondrial DNA affecting subunit I of cytochrome c oxidase in two patients with acquired idiopathic sideroblastic anemia. Blood 90:4961–4972PubMedGoogle Scholar
  52. Grivell LA, Artal-Sanz M, Hakkaart G, yde Jong L, Nijtmans LGJ, van Oosterum K, Siep M, van der Spek H (1999) Mitochondrial assembly in yeast. FEBS Letters 452:57–60PubMedGoogle Scholar
  53. Haltia T (1997) Structural features of membrane proteins. Adv Mol Cell Biol 22A:229–277Google Scholar
  54. Haltia T, Puustinen A, Finel M (1988) The Paracoccus denitrificans cytochrome aa 3 has a third subunit. Eur J Biochem 172:543–546PubMedGoogle Scholar
  55. Haltia T, Finel M, Harms N, Nakari T, Raitio M, Wikström M, Saraste M (1989) Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J 8:3571–3579PubMedGoogle Scholar
  56. Han S, Takahashi S, Rousseau DL (2000) Time dependence of the catalytic intermediates in cytochrome c oxidase. J Biol Chem 275:1910–1919PubMedGoogle Scholar
  57. Hanna MG, Nelson IP, Rahman S, Lane RJM, Land J, Heales S, Cooper MJ, Schapira AHV, Morgan-Hughes JA, Wood NW (1998) Cytochrome c oxidase deficiency associated with the first stop-codon point mutation in human mtDNA. Am J Hum Genet 63:29–36PubMedGoogle Scholar
  58. Harrenga A, Michel H (1999) The cytochrome c oxidase from Paracoccus denitrificans does not change the metal center ligation upon reduction. J Biol Chem 274:33296–33299PubMedGoogle Scholar
  59. Harrison MD, Jones CE, Solioz M, Dameron CT (2000) Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32PubMedGoogle Scholar
  60. Hell K, Tzagoloff A, Neupert W, Stuart RA (2000) Identification of Cox20p, a novel protein involved in the maturation and assembly of cytochrome oxidase subunit 2. J Biol Chem 275:4571–4578PubMedGoogle Scholar
  61. Hell K, Neupert W, Stuart RA (2001) Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20:1281–1288PubMedGoogle Scholar
  62. Hellwig P, Behr J, Ostermeier C, Richter OMH, Pfitzner U, Odenwald A, Ludwig B, Michel H, Mäntele W (1998) Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy. Biochemistry 37:7390–7399PubMedGoogle Scholar
  63. Hellwig P, Pfitzner U, Behr J, Rost B, von Donk W, Michel H, Ludwig B, Mäntele W (2002) Vibrational modes of tyrosines in cytochrome c oxidase from Paracoccus denitrificans: FT-IR and electrochemical studies on Tyr-D4-labeled and on Tyr280His and Tyr35Phe mutant enzymes. Biochemistry 41:9116–9125PubMedGoogle Scholar
  64. Hendler RW, Pardhasaradhi K, Reynafarje B, Ludwig B (1991) Comparison of energy-transducing capabilities of the two-and three-subunit cytochromes aa 3 from Paracoccus denitrificans and the 13-subunit bovine heart enzyme. Biophys J 60:415–423PubMedGoogle Scholar
  65. Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000) Cox11p is required for stable formation of the CuB and magnesium centers of cytochrome c oxidase. J Biol Chem 275:619–623PubMedGoogle Scholar
  66. Hiser L, Hosler JP (2001) Heme A is not essential for assembly of the subunits of cytochrome c oxidase of Rhodobacter sphaeroides. J Biol Chem 276:45403–45407PubMedGoogle Scholar
  67. Hofacker I, Schulten K (1998) Oxygen and proton pathways in cytochrome c oxidase. Proteins 30:100–107PubMedGoogle Scholar
  68. Hoffbuhr KC, Davidson E, Filiano BA, Davidson M, Kennaway NG, King MP (2000) A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J Biol Chem 275:13994–14003PubMedGoogle Scholar
  69. Hosler JP, Ferguson-Miller S, Calhoun MW, Thomas JW, Hill J, Lemieux L, Ma J, Georgiou C, Fetter J, Shapleigh J, Tecklenburg MMJ, Babcock GT, Gennis RB (1993) Insight into the active-site structure and function of cytochrome oxidase by site-directed mutants of bacterial cytochrome aa 3 and cytochrome bo. J Bioenerg Biomembr 25:121–136PubMedGoogle Scholar
  70. Hosler JP, Espe MP, Zhen Y, Babcock GT, Ferguson-Miller S (1995) Analysis of site-directed mutants locates a nonredox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry 34:7586–7592PubMedGoogle Scholar
  71. Hüttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267:111–123PubMedGoogle Scholar
  72. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669PubMedGoogle Scholar
  73. Jaksch M, Paret C, Stucka R, Horn N, Müller-Höcker J, Horvath R, Trepesch N, Stecker G, Freisinger P, Thirion C, Müller J, Lunkwitz R, Rödel G, Shoubridge EA, Lochmöller H (2001) Cytochrome c oxidase deficiency due to mutations in sco2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Hum Mol Genet 10:3025–3035PubMedGoogle Scholar
  74. Jönemann S, Meunier B, Fisher N, Rich PR (1999) Effects of mutation of the conserved glutamic acid-286 in subunit I of cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry 38:5248–5255Google Scholar
  75. Kadenbach B, Reimann A (1992) Cytochrome c oxidase: tissue-specific expression of isoforms and regulation of activity. In: Ernster L (ed) Molecular mechanisms in Bioenergetics, Elsevier Science Publisher, Amsterdam, pp 241–263Google Scholar
  76. Kadenbach B, Arnold S (1999) A second mechanism of respiration control. FEBS Lett 447:131–134PubMedGoogle Scholar
  77. Kannt A, Lancaster CRD, Michel H (1998a) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J 74:708–721PubMedGoogle Scholar
  78. Kannt A, Lancaster CRD, Michel H (1998b) The role of electrostatic interactions for cytochrome c oxidase function. J Bioenerg Biomembr 30:81–87PubMedGoogle Scholar
  79. Kannt A, Soulimane T, Buse G, Becker A, Bamberg E, Michel H (1998c) Hectrical current generation and proton pumping catalyzed by the ba 3-type cytochrome c oxidase from Themus thermophilus. FEBS Lett 434:17–22PubMedGoogle Scholar
  80. Kannt A, Pfitzner U, Ruitenberg M, Hellwig P, Ludwig B, Mäntele W, Fendler K, Michel H (1999) Mutation of Arg-54 strongly influences heme composition and rate and directionality of electron transfer in Paracoccus denitrificans cytochrome c oxidase. J Biol Chem 274:37974–81PubMedGoogle Scholar
  81. Karadimas CL, Greenstein P, Sue CM, Joseph JT, Tanji K, Haller RG, Taivassalo T, Davidson MM, Shanske S, Bonilla E, DiMauro S (2000) Recurrent myoglobinwia due to a nonsense mutation in the coxI gene of mitochondrial DNA. Neurol 55:644–649Google Scholar
  82. Käß H, MacMillan F, Ludwig B, Prisner TF (2000) Investigation of the Mn binding site in cytochrome c oxidase from Paracoccus denitrificans by high-frequency EPR. J Phys Chem 104:5362–5371Google Scholar
  83. Keightley JA, Hoffbuhr KC, Burton MD, Salas VM, Johnston WSW, Penn AMW, Buist NRM, Kennaway NG (1996) A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myo globinuria. Nat Genet l2:410–416Google Scholar
  84. Kitagawa T, Ogura T (1997) Oxygen activation mechanism at the binuclear site of heme-copper oxidase superfamily as revealed by time-resolved resonance raman spectroscopy. In: Karlin KD (ed) Progress in inorganic chemistry. Wiley, New York, pp 431–479Google Scholar
  85. Konstantinov AA, Siletsky S, Mitchell D, Kaulen A (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci USA 94:9085–9090PubMedGoogle Scholar
  86. Kunz WS, Kudin A, Vielhaber S, Elger CE, Attardi G, Villani G (2000) Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem 275:27741–27745PubMedGoogle Scholar
  87. Larsson NG, Clayton DA (1995) Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet 29:151–178PubMedGoogle Scholar
  88. Larsson NG, Oldfors A (2001) Mitochondrial myopathies. Acta Physiol Scand 171:385–393PubMedGoogle Scholar
  89. Lee A, Kirichenko A, Vygodina T, Siletsky SA, Das TK, Rousseau DL, Gennis RB, Konstantinov AA (2002) Ca2+-binding site in Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 41:8886–8898PubMedGoogle Scholar
  90. Lee HMO, Das TK, Rousseau DL, Mills D, Ferguson-Miller S, Gennis RB (2000) Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a. Biochemistry 39:2989–2996PubMedGoogle Scholar
  91. Lee I, Kadenbach B (2001) Palmitate decreases proton pumping of liver-type cytochrome c oxidase. Eur J Biochem 268:6329–6334PubMedGoogle Scholar
  92. Lode A, Kuschel M, Paret C, Rödel G. (2000) Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p. FEBS Lett 485:19–24PubMedGoogle Scholar
  93. Lübben M, Prutsch A, Mamat B, Gerwert K (1999) Electron transfer induces side-chain conformational changes of glutamate-286 from cytochrome bo 3. Biochemistry 38:2048–2056PubMedGoogle Scholar
  94. Ludwig B, Schatz G (1980) A two-subunit cytochrome c oxidase (cytochrome aa 3) from Paracoccus denitrificans. Proc Natl Acad Sci USA 77:196–200PubMedGoogle Scholar
  95. Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B (2001) Cytochrome c oxidase and the regulation of oxidative phosphorylation. Chem Bio Chem 2:392–403PubMedGoogle Scholar
  96. Ma J, Tsatsos PH, Zaslavsky D, Barquera B, Thomas JW, Katsonouri A, Puustinen A, Wdcström M, Brzezinski P, Alben JO, Gennis RB (1999) Glutamate-89 in subunit II of cytochrome bo 3 from Escherichia coli is required for the function of the heme-copper oxidase. Biochemistry 38:150–156Google Scholar
  97. MacMillan F, Kannt A, Behr J, Prisner T, Michel H (1999) Direct evidence for a tyrosine radical in the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry 38:9179–9184PubMedGoogle Scholar
  98. Malatesta F, Nicoletti F, Zickerrnann V, Ludwig B, Brunori M (1998) Electron entry in a CuA mutant of cytochrome c oxidase from Paracoccus denitrificans. Conclusive evidence on the initial electron entry metal center. FEBS Lett 434:322–324PubMedGoogle Scholar
  99. Manfredi G, Schon EA, Moraes CT, Bonilla E, Berry GT, Sladyk JT, DiMauro S (1995) A new mutation associated with MELAS is located in a mitochondrial DNA polypeptidecoding gene. Neuromuscul Disord 5:391–398PubMedGoogle Scholar
  100. Manon S, Priault M, Camougrand N (2001) Mitochondrial AAA-type protease Ymelp is involved in Bax effects on cytochrome c oxidase. Biochem Biophys Res Com 289:1314–1319PubMedGoogle Scholar
  101. Mather MW, Rottenberg H (1998) Intrinsic uncoupling of cytochrome c oxidase may cause the maternally inherited mitochondrial hseases MELAS and LHON. FEBS Lett 433:93–97PubMedGoogle Scholar
  102. Mattatall NR, Jazairi J, Hill BC (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J Biol Chem 275:28808–28809Google Scholar
  103. Meunier B (2001) Site-directed mutations in the mitochonhally encoded subunits I and III of yeast cytochrome c oxidase. Biochem J 354:407–412PubMedGoogle Scholar
  104. Michel H (1998) The mechanism of proton pumping by cytochrorne c oxidase. Proc Natl Acad Sci USA 95:12819–12824PubMedGoogle Scholar
  105. Michel H, Behr J, Harrenga A, Kannt A (1998) Cytochrome c oxidase: Structure and spectroscopy. Annu Rev Biophys Biomol Struct 27:329–356PubMedGoogle Scholar
  106. Milani G, Jarmuszkiewicz W, Sluse-Goffart CM, Schreiberd AZ, Vercesia AE, Sluse FE (2001) Respiratory chain network in mitochondria of Candida parapsilosis: ADP/O appraisal of the multiple electron pathways. FEBS Letters 508:231–235PubMedGoogle Scholar
  107. Milatovic D, Zivin M, Gupta RC, Dettbarn WD (2001) Alterations in cytochrome c oxidase activity and energy metabolites in response to kainic acid-induced status epilepticus. Brain Res 912:67–78PubMedGoogle Scholar
  108. Morgan JE, Verkhovsky MI, Wikstrom M (1994) The histidme cycle: a new model for proton translocation in the respiratory heme-copper oxidases. J Bioenerg Biomembr 26:599–608PubMedGoogle Scholar
  109. Munnich A, Rustin P (2001) Clinical spectrum and hagnosis of mitochondrial disorders. Am J Med Genet 106:4–17PubMedGoogle Scholar
  110. Musatov A, Robinson NC (2002) Cholateinduced dimerization of detergent-or phospholipid-solubilized bovine cytochrome c oxidase. Biochemistry 41:4371–4376PubMedGoogle Scholar
  111. Napiwotzlu J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B (1997) ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem 378:1013–1021CrossRefGoogle Scholar
  112. Napiwotzki J, Kadenbach B (1998) Extramitochondrial ATPIADP ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem 379:335–339PubMedCrossRefGoogle Scholar
  113. Nass S, Nass M (1963) Intramitochondrial fibers with DNA characteristics. J Cell Biol 19:593–629PubMedGoogle Scholar
  114. Nijtmans LGJ, Taanman JW, Muijsers AO, Speijer D, van den Bogert C (1998) Assembly of cytochrome c oxidase in cultured human cells. Eur J Biochem 254:389–394PubMedGoogle Scholar
  115. Nunnari J, Fox TD, Walter P (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004PubMedGoogle Scholar
  116. Ostermeier C, Iwata S, Ludwig B, Michel H (1995) Fv fragment-mehated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Stmct Biol 2:842–846Google Scholar
  117. Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc Natl Acad Sci USA 95:10547–10553Google Scholar
  118. Pardhasaradhi K, Ludwig B, Hendler RW (1991) Potentiometric and spectral studies with the two-subunit cytochrome aa 3 from Paracoccus denitrificans-Comparison with the 13-subunit bovine heart enzyme. Biophys J 60:408–414PubMedCrossRefGoogle Scholar
  119. Paschen SA, Neupert W (2001) Protein import into mitochondria. IUBMB Life 52:101–112PubMedCrossRefGoogle Scholar
  120. Pecoraro C, Gennis RB, Vygodina TV, Konstanfinov AA (2001) Role of the K-channel in the pH-dependence of the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry 40:9695–9708PubMedGoogle Scholar
  121. Penta JS, Johnson FM, Wachsman JT, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mut Res 488:119–133Google Scholar
  122. Pereira MM, Santana M, Teixeiera M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208PubMedGoogle Scholar
  123. Souza RL, Green-Willms, Fox TD, Tzagaloff A, Nobrega FG (2000) Cloning and characterization of cox18, a Sacchuromyces cerevisiae pet gene required for the assembly of cytochrome oxidase. J Biol Chem 275:14898–14902PubMedGoogle Scholar
  124. St John J, Sakkas D, Dimitriadi K, Barnes A, Maclin V, Ramey J, Barratt C, De Jonge C (2000) Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet 355:200PubMedGoogle Scholar
  125. Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(1-286) mutant cytochrome c oxidase from Rhodobacter sphaeroides. J Mol Biol 321:329–339PubMedGoogle Scholar
  126. Szundi I, Liao GL, Einarsdottir O (2001a) Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen. Biochemistry 40:2332–2339PubMedGoogle Scholar
  127. Szundi I, Cappucino JA, Borovok N, Kotlyar B, Einaxsdottir O (2001b) Photo-induced electron transfer in the cytochrome c oxidase complex using thiouredopyrenetrisulfonate-labeled cytochrome c. Optical multichannel detection. Biochemistry 40:2186–2193PubMedGoogle Scholar
  128. Taanman JW (2001) A nuclear modifier for a mitochondrial DNA disorder. Trends Genet 17:609–611PubMedGoogle Scholar
  129. Taanman JW, Williams SL (2001) Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency? Biochem Soc Trans 29:446–451PubMedGoogle Scholar
  130. Thomas JW, Puustinen A, Alben JO, Gennis RB, Wikstrom M (1993) Substitution of aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. Biochemistry 32:10923–10928PubMedGoogle Scholar
  131. Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, Lamantea E, Nijfmans L, Uziel G, Zeviani M (2000) A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Gen 9:2733–2742PubMedGoogle Scholar
  132. Trumpower BL, Gennis RB (1994) Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem 63:675–716PubMedGoogle Scholar
  133. Truscott N, Pfanner N, Voos W (2001) Transport of proteins into mitochondria. In: Bamberg E et al. (eds) Reviews of physiology, biochemistry and pharmacology, vol 143. Springer, Berlin Heidelberg New York, pp 81–138Google Scholar
  134. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structure of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074PubMedGoogle Scholar
  135. Tsukihara T, Aoyama H, Yamashita E, Tomashi T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144PubMedGoogle Scholar
  136. Tzagaloff A, Nobrega M, Gorman N, Sinclair P (1993) On the function of the yeast cox10 and cox11 gene products. Biochem Mol Biol Int 31:593–598Google Scholar
  137. Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366924 nucleotides. Nat Genet 15:57–61PubMedGoogle Scholar
  138. Varlamov DA, Kudin AP, Vielhaber S, Schroder R, Sassen R, Becker A, Kunz D, Haug K, Rebstock J, Heils A, Eiger CE, Kunz WS (2002) Metabolic consequences of a novel missense mutation of the mtDNA CO I gene. Hum Mol Genet 11:1797–1805PubMedGoogle Scholar
  139. Wang K, Zhen Y, Sadoski R, Grinnell S, Geren L, Ferguson-Miller S, Durham B, Millett F (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase: II. Rapid kinetic analysis of electron transfer from cytochrome c to Rhodobacter sphaeroides cytochrome oxidase surface mutants. J Biol Chem 274:38042–50PubMedGoogle Scholar
  140. Watanabe T, Inoue S, Hiroi H, Orimo A, Kawashima H, Muramatsu M (1998) Isolation of estrogen-responsive genes with a CpG island library. Mol Cell Biol 18:442–49PubMedGoogle Scholar
  141. Weishaupt A, Kadenbach B (1992) Selective removal of subunit Vlb increases the activity of cytochrome c oxidase. Biochemistry 31:11477–11481PubMedGoogle Scholar
  142. Wiesner RJ, Kurowski TT, Zak R (1992) Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome c oxidase in rat liver and skeletal muscle. Mol Endocrinol 6:1458–1467PubMedGoogle Scholar
  143. Wikström M (ed.) (1998) Cytochrome oxidase: structure and mechanism. Minireview Series. J Bioenerg Biomembr 30:1–146Google Scholar
  144. Wikström M (2000) Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle. Biochim Biophys Acta 1458:188–198PubMedGoogle Scholar
  145. Wikström M, Babcock GT (1990) Cell respiration. Catalytic intermdates. Nature 348:16–17PubMedGoogle Scholar
  146. Wikström M, Bogachev A, Fine1 M, Morgan JE, Puustinen A, Raitio M, Verkhovskaya M, Verkhovsky MI (1994) Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochim Biophys Acta 1187:106–111PubMedGoogle Scholar
  147. Wikström M, Verkhovsky MI (2002) Proton translocation by cytochrome c oxidase in different phases of the catalytic cycle. Biochim Biophys Acta 1555:128–132PubMedGoogle Scholar
  148. Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E, Saraste M (1995) Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci USA 92:11949–11951Google Scholar
  149. Witt H, Ludwig B (1997) Isolation, analysis, and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans. J Biol Chem 272:5514–5517PubMedGoogle Scholar
  150. Witt H, Wittershagen A, Bill E, Kolbesen BO, Ludwig B (1997) Asp-193 and Glu-218 of subunit II are involved in the Mn2+-binding of Paracoccus denitrificans cytochrome c oxidase. FEBS Lett 409:128–130PubMedGoogle Scholar
  151. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998a) Tryptophan 121 of subunit 11 is the electron entry site to cytochrome c oxidase in Paracoccus denitrificans—involvement of a hydrophobic patch in the docking reaction. J Biol Chem 273:5132–5136PubMedGoogle Scholar
  152. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998b) Cytochrome c binding site on cytochrome oxidase in Paracoccus denitrificans. Eur J Biochem 251:367–373PubMedGoogle Scholar
  153. Wong LJC, Dai P, Tan D, Lipson M, Grix A, Sifry-Platt M, Gropman A, Chen TJ (2001) Severe lactic acidosis caused by a novel frame-shift mutation in mitochondrial-encoded cytochrome c oxidase subunit II. Am J Med Genet 102:95–99PubMedGoogle Scholar
  154. Wu H, Rao GN, Dai B, Singh P (2000) Autocrine gastrins in colon cancer cells up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-3. J Biol Chem 275:32491–32498PubMedGoogle Scholar
  155. Yaffe MP (1999) Dynamic mitochondria. Nat Cell Biol 1:E149–E150PubMedGoogle Scholar
  156. Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Peters-Libeu C, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729PubMedGoogle Scholar
  157. Zhen Y, Hoganson CW, Babcock GT, Ferguson-Miller S (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit 11 of Rhodobacter sphaeroides cytochrome aa 3. J Biol Chem 274:38032–38041Google Scholar
  158. Zsurka G, Gregán J, Schweyen RJ (2001) The human mitochondrial Mrs2 Protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics 72:158–168PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute of Biochemistry, BiocenterJ.W. Goethe-UniversitätFrankfurtGermany

Personalised recommendations