Skip to main content

Regulation of exocytotic events by centrosome-analogous structures

  • Chapter
  • First Online:
Book cover Regulatory Mechanisms of Intracellular Membrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 10))

Abstract

Centrosomes, spindle pole bodies, and related structures, generally termed microtubule organising centres (MTOCs; Pickett-Heaps 1969), are best understood in the context of their function in the organisation of the mitotic spindle, spindle positioning via astral microtubule organisation, and regulation of cell cycle checkpoints (Doxsey 2001; Pereira and Schiebel 2001). However, cytological studies performed between 1960 and 1980 depict the involvement of MTOCs in membrane related events. These studies extend our definition of the processes that MTOCs regulate. In this review, we summarise some of this cytological knowledge in light of our current understanding of how centrosomes work. The focus of this review is on centrosome related membrane biogenesis processes, where a new membrane is formed from clearly distinct precursors. Central to this discussion is our current understanding of one example that takes place during yeast meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Aalto MK, Jantti J, Östling J, Keränen S, Ronne H (1997) Mso1p: a yeast protein that functions in secretion and interacts physically and genetically with Sec1p. Proc Natl Acad Sci USA 94:7331-7336

    Google Scholar 

  • 2. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570-574

    Article  CAS  PubMed  Google Scholar 

  • 3. Bajgier BK, Malzone M, Nickas M, Neiman AM (2001) SPO21 is required for meiosis-specific modification of the spindle pole body in yeast. Mol Biol Cell 12:1612-1621

    Google Scholar 

  • 4. Briza P, Ellinger A, Winkler G, Breitenbach M (1988) Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J biol Chem 263:11569-11574

    Google Scholar 

  • 5. Chapman MJ, Dolan MF, Margulis L (2000) Centrioles and kinetosomes: form, function, and evolution. Q Rev Biol 75:409-429

    Article  CAS  PubMed  Google Scholar 

  • 6. Davidow LS, Goetsch L, Byers B (1980) Preferential occurrence of nonsister spores in two-spored asci of Saccharomyces cerevisiae: evidence for regulation of spore-wall formation by the spindle pole body. Genetics 94:581-595

    Google Scholar 

  • 7. Doxsey S (2001) Centrosomes as command centres for cellular control. Nat Cell Biol 3:E105-E108

    Google Scholar 

  • 8. Esposito MS, Esposito RE (1969) The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics 61:79-89

    CAS  Google Scholar 

  • 9. Guo W, Sacher M, Barrowman J, Ferro-Novick S, Novick, P (2000) Protein complexes in transport vesicle targeting. Trends Cell Biol 10:251-255

    Article  CAS  PubMed  Google Scholar 

  • 10. Heywood P, Magee PT (1976) Meiosis in protists: some structural and physiological aspects of meiosis in algae, fungi and protozoa. Bact Rev 40:190-140

    CAS  PubMed  Google Scholar 

  • 11. Hu K, Roos DS, Murray JM (2002) A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J Cell Biol 156:1039-1050

    CAS  PubMed  Google Scholar 

  • 12. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686-691

    Article  CAS  PubMed  Google Scholar 

  • 13. Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143-148

    Google Scholar 

  • 14. Karpova TS, Reck-Peterson SL, Elkind NB, Mooseker MS, Novick PJ, Cooper JA (2000) Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol Biol Cell 11:1727-1737

    CAS  PubMed  Google Scholar 

  • 15. Knop M, Pereira G, Geissler S, Grein K, Schiebel E (1997) The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J 16:1550-1564

    Article  CAS  PubMed  Google Scholar 

  • 16. Knop M, Schiebel E (1998) Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. EMBO J 17:3952-3967

    Article  CAS  PubMed  Google Scholar 

  • 17. Knop M, Pereira G, Schiebel E (1999) Microtubule organization by the budding yeast spindle pole body. Biol Cell 91:291-304

    Article  CAS  PubMed  Google Scholar 

  • 18. Knop M, Strasser K (2000) Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J 19:3657-3667

    Article  CAS  PubMed  Google Scholar 

  • 19. Lange BM, Bachi A, Wilm M, Gonzalez C (2000) Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J 19:1252-1262

    Article  CAS  PubMed  Google Scholar 

  • 20. Lechtreck KF, Teltenkotter A, Grunow A (1999) A 210 kDa protein is located in a membrane-microtubule linker at the distal end of mature and nascent basal bodies. J Cell Sci 112:1633-1644

    CAS  PubMed  Google Scholar 

  • 21. Marshall WF (2001) Centrioles take center stage. Curr Biol 11:R487-R496

    Article  CAS  PubMed  Google Scholar 

  • 22. Moreno-Borchart AC, Strasser K, Finkbeiner MG, Shevchenko A, Shevchenko A, Knop M (2001) Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. EMBO J 20:6946-6957

    CAS  PubMed  Google Scholar 

  • 23. Moreno-Borchart AC, Knop M (2003) Prospore membrane formation: how budding yeast gets shaped in meiosis. Microbiol Res 158:83-90

    CAS  PubMed  Google Scholar 

  • 24. Morrissette NS, Murray JM, Roos DS (1997) Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110:35-42

    CAS  PubMed  Google Scholar 

  • 25. Morrissette NS, Sibley LD (2002) Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 115:1017-1025

    CAS  PubMed  Google Scholar 

  • 26. Neiman AM (1998) Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 140:29-37

    Article  CAS  PubMed  Google Scholar 

  • 27. Nickas ME, Schwartz C, Neiman AM (2003) Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot Cell 2:431-445

    CAS  PubMed  Google Scholar 

  • 28. Okamoto S, Iino T (1982) Genetic block of outer plaque morphogenesis at the second meiotic division in an hfd1-1 mutant of Saccharomyces cerevisiae. J Gen Microbiol 128:1309-1317

    CAS  PubMed  Google Scholar 

  • 29. Palazzo RE (2003) Centrosome and spindle pole body dynamics: a review of the EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies, Heidelberg, September 13-17. Cell Motil Cyto 54:148-154

    Google Scholar 

  • 30. Pelletier L, Stern CA, Pypaert M, Sheff D, Ngo HM, Roper N, He CY, Hu K, Toomre D, Coppens I, Roos DS, Joiner KA, Warren G (2002) Golgi biogenesis in Toxoplasma gondii. Nature 418:548-552

    Article  CAS  PubMed  Google Scholar 

  • 31. Pereira G, Knop M, Schiebel E (1998) Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol Biol Cell 9:775-793

    CAS  PubMed  Google Scholar 

  • 32. Pereira G, Schiebel E (2001) The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr Opin Cell Biol 13:762-769

    Article  CAS  PubMed  Google Scholar 

  • 33. Pickett-Heaps JD (1969) The evolution of the mitotic apparatus: an attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 3:257-280

    Google Scholar 

  • 34. Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550-1553

    Article  CAS  PubMed  Google Scholar 

  • 35. Russell DG, Burns RG (1984) The polar ring of Coccidian sporozoites: a unique microtubule-organizing centre. J Cell Sci 65:193-207

    CAS  PubMed  Google Scholar 

  • 36. Shaw MK, Compton HL, Roos DS, Tilney LG (2000) Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii. J Cell Sci 113:1241-1254

    CAS  PubMed  Google Scholar 

  • 37. Shimoda C (2004) Forespore membrane assembly in yeast: coordinating SPBs and membrane trafficking. J Cell Sci 26:389-396

    Google Scholar 

  • 38. Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207-230

    CAS  PubMed  Google Scholar 

  • 39. Stokkermans TJ, Schwartzman JD, Keenan K, Morrissette NS, Tilney LG, Roos DS (1996) Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol 84:355-370

    Article  CAS  PubMed  Google Scholar 

  • 40. Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151:1423-1434

    Article  CAS  PubMed  Google Scholar 

  • 41. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring g-tubulin ring complex. Mol Biol Cell 13:3235-3245

    Article  CAS  PubMed  Google Scholar 

  • 42. Tates AD (1971) Cytodifferentiation during spermatogenesis in Drosophila Melanogaster. PhD-thesis, Faculty of Natural Sciences, University of Leiden, Netherlands

    Google Scholar 

  • 43. Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M (2001) Phosphorylation of gamma-tubulin regulates microtubule organization in budding yeast. Dev Cell 1:621-631

    Article  CAS  PubMed  Google Scholar 

  • 44. Wendler F, Page L, Urbe S, Tooze SA (2001) Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 12:1699-1709

    CAS  PubMed  Google Scholar 

  • 45. Wigge PA, Jensen ON, Holmes S, Soues S, Mann M, Kilmartin JV (1998) Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J Cell Biol 141:967-977

    Article  CAS  PubMed  Google Scholar 

  • 46. Zheng YX, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378:578-583

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Taxis .

Editor information

Sirkka Keränen Jussi Jäntti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Taxis, C., Knop, M. Regulation of exocytotic events by centrosome-analogous structures. In: Keränen, S., Jäntti, J. (eds) Regulatory Mechanisms of Intracellular Membrane Transport. Topics in Current Genetics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b98734

Download citation

  • DOI: https://doi.org/10.1007/b98734

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22302-3

  • Online ISBN: 978-3-540-44476-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics