Skip to main content

Electro-Optic Modulators

  • Chapter
  • First Online:
Integrated Optics
  • 7085 Accesses

This Chapter begins the discussion of optical-signal modulation and switching. In many cases, the same device can function as either a modulator or a switch depending on the strength of the interaction between the optical waves and the controlling electrical signal, as well as on the arrangement of input and output ports. The device is considered to be a modulator if its primary function is to impress information on a light wave by temporally varying one of its properties. A switch, on the other hand, changes the spatial position of the light, or else turns it off and on. Many of the same factors must be considered in designing or evaluating both modulators and switches. Hence, it is logical to discuss them together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Pinnow: IEEE J. QE-6, 223 (1970)

    Article  Google Scholar 

  2. J.M. Hammer: Modulation and switching of light in dielectric waveguides, in Integrated Optics, T. Tamir, (ed.), 2nd edn., Topics Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg 1979) p. 142

    Google Scholar 

  3. A. Yariv: Quantum Electronics, 3rd edn. (Wiley, New York 1989) pp. 298–307

    Google Scholar 

  4. J.F. Nye: Physical Properties of Crystals (Oxford University Press, New York 1957) p. 123

    MATH  Google Scholar 

  5. L.A. Shuvalov (ed.): Modern Crystallography IV, Springer Ser. Solid-State Sci., Vol. 37 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  6. R.C. Alferness: Titanium-diffused lithium niobate waveguide devices, in Guided-Wave Optoelectronics, T. Tamir (ed.), 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) Chap. 4, in particular, pp. 155–157

    Google Scholar 

  7. D. Hall, A. Yariv, E. Garmire: Appl. Phys. Lett. 17, 127 (1970)

    Article  ADS  Google Scholar 

  8. I.P. Kaminov, V. Ramaswamy, R.V. Schmidt, F.H. Turner: Appl. Phys. Lett. 27, 555 (1975)

    Article  ADS  Google Scholar 

  9. I.P. Kaminov, L.W. Stultz, E.H. Turner: Appl. Phys. Lett. 27, 555 (1975)

    Article  ADS  Google Scholar 

  10. Y. Shuto, M. Amano, T. Kaino: IEEE Photon. Tech. Lett. 3, 1003 (1991)

    Article  Google Scholar 

  11. J.-M. Brosi, C. Koos, L.C. Andreani, M. Waldow, J. Leuthold, W. Freude: High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide, Opt. Express 16, 4177 (2008)

    Article  ADS  Google Scholar 

  12. J.C. Campbell, F.A. Blum, D.W. Shaw: Appl. Phys. Lett. 26, 640 (1975)

    Article  ADS  Google Scholar 

  13. M. Kawabe, S. Hirata, S. Namba: IEEE Trans. CAS-26, 1109 (1979)

    Article  Google Scholar 

  14. J.I. Pamkove: Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, NJ 1971) p. 29

    Google Scholar 

  15. B.G. Streetman: Solid State Electronic Devices, 4th edn. (Prentice Hall, Englewood Cliffs, NJ 1995) pp. 301–307

    Google Scholar 

  16. V.S. Vavilov: Sov. Phys. – Uspekhi 4, 761 (1962)

    Article  ADS  Google Scholar 

  17. F.K. Reinhart: Appl. Phys. Lett. 22, 372 (1973)

    Article  ADS  Google Scholar 

  18. Y. Node: IEEE J. LT-4, 1445 (1986)

    Google Scholar 

  19. H. Soda, K. Nakai, H. Ishikawa: High-speed and low-chirp GaInAsP/InP optical intensity modulator. Integrated and Guided Wave Optics, 1988 Techn. Digest Ser., Vol. 5 (Opt. Soc. Am., Washington, DC 1988) p. 28

    Google Scholar 

  20. A. Yariv: IEEE J. QE-9, 919 (1975)

    Google Scholar 

  21. E.A.J. Marcatili: Bell Syst. Techn. J. 48, 2130 (1969)

    Google Scholar 

  22. S. Somekh, E. Garmire, A. Yariv, H.L. Garvin, R.G. Hunsperger: Appl. Phys. Lett. 22, 46 (1973)

    Article  ADS  Google Scholar 

  23. S. Somekh, E. Garmire. A. Yariv, H.L. Garvin, R.G. Hunsperger: Appl. Opt. 13, 327 (1974)

    Article  ADS  Google Scholar 

  24. H.F. Taylor: J. Appl. Phys. 44, 3257 (1973)

    Article  ADS  Google Scholar 

  25. J.C. Campbell, F.A. Blum, D.W. Shaw, K.I. Lawley: Appl. Phys. Lett. 27, 202 (1975)

    Article  ADS  Google Scholar 

  26. M. Papuchon, Y. Combernale, X. Mathieu, D.B. Ostrowsky, L. Reiber, A.M. Roy, B. Sejourne, M. Werner: Appl. Phys. Lett. 27, 289 (1975)

    Article  ADS  Google Scholar 

  27. H. Kogelnik, R.V. Schmidt: IEEE J. QE-12, 396 (1976)

    Article  Google Scholar 

  28. Y. Zhou, W. Qiu, Y. Chen: Optica Sinica 14, 264 (1994)

    Google Scholar 

  29. R.C. Alferness: Titanium diffused lithium niobate devices, in Guided-Wave Optoelectronics, T. Tamir (ed.), 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) Chap. 4, in particular, ps. 179, 180

    Google Scholar 

  30. J.J. Veselka, D.A. Herr, T.O. Murphy, L.L. Buhl, S.K. Korotky: IEEE J. LT-7, 908 (1989)

    Google Scholar 

  31. R.A. Steinberg, T.G. Giallorenzi: IEEE J. QE-13, 122 (1977)

    Article  Google Scholar 

  32. R.A. Steinberg, T.G. Giallorenzi, R.G. Priest: Appl. Opt. 16, 2166 (1977)

    Article  ADS  Google Scholar 

  33. Y. Sikorski, R.T. Deck, A.L. Sala, B.G. Bagley: Analysis of crosstalk between single-mode rectangular optical waveguides. Opt. Eng. 39, 2015 (2000)

    Article  ADS  Google Scholar 

  34. F. Zernike: Integrated optic switch. OSA Topical Meeting on Integrated Optics, New Orleans, LA (1974)

    Google Scholar 

  35. W.E. Martin: Appl. Phys. Lett. 26, 562 (1975)

    Article  ADS  Google Scholar 

  36. R.A. Becker: Appl. Phys. Lett. 43, 131 (1983)

    Article  ADS  Google Scholar 

  37. C.C. Teng: Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth. Appl. Phys. Lett. 60, 1538 (1992)

    Article  ADS  Google Scholar 

  38. V. Ramaswami, M.D. Divino, R.D. Standley: Appl. Phys. Lett. 32, 644 (1978)

    Article  ADS  Google Scholar 

  39. K. Izuka: Engineering Optics, 2nd edn., Springer Ser. Opt. Sci., Vol. 35 (Springer, Berlin, Heidelberg 1985) p. 395

    Book  Google Scholar 

  40. J.M. Hammer: Modulation and switching of light in dielectric waveguides, in Integrated Optics, T. Tamir (ed.) 2nd edn., (Springer, Berlin, Heidelberg 1979) p. 182

    Google Scholar 

  41. J.M. Hammer: Appl. Phys. Lett. 18, 147 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  42. D.P. Giarusso, J.H. Harris: Appl. Opt. 10, 27861 (1971)

    Google Scholar 

  43. J.M. Hammer, D.J. Channin, M.T. Duffy: Appl. Phys. Lett. 23, 176 (1973)

    Article  ADS  Google Scholar 

  44. J.M. Hammer, W. Phillips: Appl. Phys. Lett. 24, 545 (1974)

    Article  ADS  Google Scholar 

  45. Y. Lee, S. Wang: Appl. Opt. 15, 1565 (1976)

    Article  ADS  Google Scholar 

  46. C. Xin, C.S. Tsai: Electrooptic Bragg-diffraction modulators in GaAs/AlGaAs heterostructure waveguides, IEEE J. Lightwave Technol. 6, 809 (1988)

    Article  ADS  Google Scholar 

  47. G.L. Tangonan, L. Persechini, J.F. Lotspeich, M.K. Barnoski: Appl. Opt. 17, 3259 (1978)

    Article  ADS  Google Scholar 

  48. C.S. Tsai, B. Kim, F.R. El-Akkari: IEEE J. QE-14, 513 (1978)

    Article  Google Scholar 

  49. S.K. Sheem: Appl. Opt. 17, 3679 (1978)

    Article  ADS  Google Scholar 

  50. K. Oh, K. Park, D. Oh, H. Kim, H. Park, K. Lee: IEEE Photon. Tech. Lett. 6, 65 (1994)

    Article  Google Scholar 

  51. R.L. Jungerman, D.W. Dolfi: Lithium Niobate traveling-wave optical modulators to 50 GHz. IEEE/LEOS Topical Meeting on Optical-Microwave Interactions, Santa Barbara, CA, July 1993

    Google Scholar 

  52. S. Zhang, Y. Chiu, P. Abraham, J. Bowers: Traveling-wave Electroabsorption Modulator. IEEE Phot. Technol. Lett. 11, 191 (1999)

    Article  ADS  Google Scholar 

  53. N.A.F. Jaeger, Z.K.F. Lee: Slow-wave electrode for use in compound semiconductor electrooptic modulators, IEEE J. Quant. Electron. 28, 1778 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Electro-Optic Modulators. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_9

Download citation

Publish with us

Policies and ethics