Skip to main content

Coupling Between Waveguides

  • Chapter
  • First Online:
Integrated Optics
  • 8318 Accesses

The phenomenon of optical tunneling can be used not only to couple energy from a fiber or a beam to a waveguide, as described in Chapter 7, but also to couple one waveguide to another. Couplers of this type are usually called directional couplers because the energy is transferred in a coherent fashion so that the direction of propagation is maintained. Directional couplers have been fabricated in two basic geometries: multilayer planar structures, and dual side-by-side channel waveguides. In this chapter the different types of waveguide to waveguide couplers are described and a concise theory of operation is developed. For a thorough mathematical treatment of these devices the reader is referred to the work of Burns and Milton [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.K. Burns, A.F. Milton: Waveguide transitions and junctions, in Guided-Wave Opto-electronics, T. Tamir, (ed.), 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) pp. 89–144

    Google Scholar 

  2. G.A. Vawter, J.L. Merz, L.A. Coldren: IEEE J. QE-25, 154 (1989)

    Article  Google Scholar 

  3. K. Utaka, Y. Suematsu, K. Kobayashi, H. Kawanishi: Room-temperature operation of GalnAsP/lnP integrated twin-guide lasers with first-order distributed Bragg reflectors. OSA Topical Meeting on Integrated Optics, Incline Village, NV (1980)

    Google Scholar 

  4. R. Todt, T. Jacke, R. Meyer, J. Adler, R. Laroy, G. Morthier, M-C. Amann: Sampled grating tunable twin-guide laser diodes with over 40-nm electronic tuning range, IEEE Phot. Technol. Lett. 17, 2514 (2005)

    Article  ADS  Google Scholar 

  5. A.J. Baden Fuller: Microwaves (Pergamon, Oxford 1979) pp. 237–238

    Google Scholar 

  6. S. Somekh, E. Garmire, A. Yariv, R.G. Hunsperger: Appl. Opt. 13, 327 (1974)

    Article  ADS  Google Scholar 

  7. A. Jervenen, S. Horikanen, S. Najafi: Opt. Eng. 32, 2083 (1993)

    Article  ADS  Google Scholar 

  8. A. Yariv: IEEE J. QE-9, 919 (1975)

    Google Scholar 

  9. A. Yariv: Quantum Electronics, 3rd edn. (Wiley, New York 1989) pp. 623–631

    Google Scholar 

  10. R.G. Peall, R.R.A. Syms: IEEE J. QE-7, 540 (1989)

    Google Scholar 

  11. A. von Hippel: Dielectrics, in Handbook of Physics. E.U. Condon, H. Odishaw (eds.) 2nd edn., (McGraw-Hill, New York 1967) pp. 4.110–112

    Google Scholar 

  12. S. Somekh: Theory, fabrication and performance of some integrated optical devices. PhD Thesis, California Institute of Technology (University Microfilms, Ann Arbor, MI 1974) p. 46

    Google Scholar 

  13. H. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv: Appl. Opt. 12, 455 (1973)

    Article  ADS  Google Scholar 

  14. M.A. Mentzer, R.G. Hunsperger, S. Sriram, J. Bartko, M.S. Wlodowski, J.M. Zavada, H.A. Jenkinson: Appl. Eng. 24, 225 (1985)

    Google Scholar 

  15. S. Somekh, E. Garmire, A. Yariv, H. Garvin, R.G. Hunsperger: Appl. Phys. Lett. 22, 46 (1973)

    Article  ADS  Google Scholar 

  16. E. Garmire, D. Lovelace, G.H.B. Thompson: Appl. Phys. Lett. 26, 329 (1975)

    Article  ADS  Google Scholar 

  17. N. Schulz, K. Bierwirth, F. Arndt: IEEE Trans. MTT-38, 722 (1990)

    Article  Google Scholar 

  18. W.E. Martin, D.B. Hall: Appl. Phys. Lett. 21, 325 (1972)

    Article  ADS  Google Scholar 

  19. J. Kondo, K. Aoki, T. Ejiri, Y. Iwata, A. Hamajimal, O. Mitomi, M. Minakata: Ti-diffused optical waveguide with thin LiNbO3 structure for high-speed and low-drive-voltage modulator, IEICE Trans. Commun. E89-B, 3428 (2006)

    Article  Google Scholar 

  20. L. Riviere, A. Carenco, A. Yi-Yan, R. Guglielmi: Normalized diagrams for diffused waveguides optical properties: Applications to Ti:LiNbO3 electrooptic directional coupler design, in Integrated Optics, H.P. Nolting, R. Ulrich (eds.), Springer Ser. Opt. Sci., Vol. 48 (Springer, Berlin, Heidelberg 1985) pp. 53–57

    Chapter  Google Scholar 

  21. J.C. Campbell, F.A. Blum, D.W. Shaw, K.L. Lawley: Appl. Phys. Lett. 27, 202 (1975)

    Article  ADS  Google Scholar 

  22. I.P. Kaminov, V. Ramaswamy, R.V. Schmidt, H. Turner: Appl. Phys. Lett. 24, 622 (1974)

    Article  ADS  Google Scholar 

  23. M. Kawabe, S. Hirata, S. Namba: IEEE Trans. CAS-26, 1109 (1978)

    Article  Google Scholar 

  24. M. Kawabe, M. Kubota, K. Masuda, S. Namba: J. Vac. Sci. Technol. 15, 1096 (1978)

    Article  ADS  Google Scholar 

  25. M. Koshiba, H. Saitoh, M. Eguch, K. Hirayama: IEE Part J. Optoelectron. 139, 166 (1992)

    Article  Google Scholar 

  26. B.L. Booth: Optical interconnection polymers, in Polymers for Lightwave and Integrated Optics: Technology and Applications, A. Hornak (ed.) (Dekker, New York 1992) p. 291

    Google Scholar 

  27. W.K. Burns, A.F. Milton: Waveguide transitions and junctions, in Guided-Wave Opto-electronics, T. Tamir, (ed.), 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) Chap. 3, in particular, pp. 102–125

    Google Scholar 

  28. M. Haruna, J. Koyama: IEEE J. LT-1, 223 (1983)

    Google Scholar 

  29. A. Beguin, T. Dumas, M.J. Hackert: IEEE J. LT-6, 1483 (1988)

    Google Scholar 

  30. P.B. Keck, A.J. Morrow, D.A. Nolan, D.A. Thompson: IEEE J. LT-7, 1623 (1989)

    Google Scholar 

  31. M. Donhowe: Optical fiber waveguides and couplers, in Photonic Devices and Systems, R.G. Hunsperger (ed.), (Marcel Dekker, New York, 1994)

    Google Scholar 

  32. R.B. Dyott, C.S. Peter, G.A.Clark: Process for optical waveguide coupler, U.S. Patent 3,579,316 9\, May 18,1971)

    Google Scholar 

  33. B.S. Kawasaki, K.O. Hill, R.G. Lamont: Biconical-taper single-mode fiber coupler, Opt. Lett. 6, 327 (1981)

    Article  ADS  Google Scholar 

  34. J. Bures, S. Lacroix, J. Lapierre: Analyse d’un coupleurbidirectional a fibres optiques monomode fusionnees, Appl. Opt. 22, 1918 (1983)

    Article  ADS  Google Scholar 

  35. F.P. Payne, C.D. Hussey, M.S. Yataki: Modelling fused single-mode fibre couplers Electron. Lett. 21, 461 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Coupling Between Waveguides. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_8

Download citation

Publish with us

Policies and ethics