Skip to main content

Polymer and Fiber Integrated Optics

  • Chapter
  • First Online:
Integrated Optics
  • 6983 Accesses

In recent years, the interest in making waveguides and other integrated optic devices in polymer materials has grown rapidly. The driving force behind this development is cost reduction. Semiconductor materials and dielectric materials such as lithium niobate are relatively expensive and the processes used to fabricate devices in those materials are very complex. As the size and complexity of fiber optic telecom and datacom systems has grown, leading to fiber connections to the office and home, the demand for large quantities of inexpensive integrated optic devices has increased. As a result, research has been directed toward producing in polymers many of the devices that formerly were made only in III–V semiconductors or in lithium niobate. It also has been demonstrated that some integrated optic devices can be made from glass or plastic optical fiber waveguides as well as polymers. An example of this latter type of device is the array waveguide (AWG), which performs a spatial dispersion of different wavelengths similar to that produced by a prism [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Keil, H.H. Yao, H.H.C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer. J. Schneider: Athermal all-polymer arrayed-waveguide grating multiplexer. Electron. Lett. 37, 579 (2001)

    Article  Google Scholar 

  2. L. Eldada, L.W. Shaklett: Advances in polymer integrated optics. IEEE J. Selected Topics in Quant. Electron. 6, 54 (2000).

    Google Scholar 

  3. J. Everhart: Analysis of polystyrene and polystyrene-poly(methyl methacrylate) diblock copolymer for the creation of optical waveguides. Masters Thesis, University of Delaware (University Microfilms, Ann Arbor, MI 1998)

    Google Scholar 

  4. D.P. Prakash, D.C. Scott, H.R. Fetterman, M. Matloubian, Q. Du, W. Wang: integration of polyimide waveguides with traveling-wave phototransistors, Phot. Technol. Lett. 9, 800 (1997)

    Article  ADS  Google Scholar 

  5. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, T. Maruno: Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches, J. Lightwave Technol. 16, 1024 (1998)

    Article  ADS  Google Scholar 

  6. Y-T. Lu, Z-L. Yang, S. Chi: Fabrication of a deep polyimide waveguide grating for wavelength selection, Opt. Commun. 216, 127 (2003)

    Article  ADS  Google Scholar 

  7. F. Zhang: Low loss coupling between lasers and other optoelectronic devices Masters Thesis. University of Delaware (University Microfilms, Ann Arbor, MI 1999)

    Google Scholar 

  8. R.K. Watts: Lithography, in VLSI Technology, S.M. Sze (ed.), 2nd edn. (McGraw Hill, New York 1988)

    Google Scholar 

  9. R.R. Krchnavek, G.R. Lalk, D.H. Hartman: J. Appl. Phys. 66, 5156 (1989)

    Article  ADS  Google Scholar 

  10. D.H. Hartman, G.R. Lalk, J.W. Howse, R.R. Krchnavek: Appl. Opt. 28, 40 (1989)

    Article  ADS  Google Scholar 

  11. J.H. Trewhella, J. Gelorme, B. Fan, A. Speth, D. Flagello, M. Oprysko: SPIE Proc. 1777, 379 (1989)

    Google Scholar 

  12. A. Guha, J. Bristow, C. Sullivan, A. Husain: Appl. Opt. 29, 1077 (1990)

    Article  ADS  Google Scholar 

  13. R. Selvaraj: IEEE J. L T-6, 1034 (1988)

    Google Scholar 

  14. A. Neyer, T. Knoche, L. Muller: Electron. Lett. 29, 399 (1993)

    Article  Google Scholar 

  15. D.P. Prakash, D.V. Plant, D. Zhang, H.R. Fetterman: SPIE Proc. 1774, 118 (1993)

    Article  ADS  Google Scholar 

  16. J.E. Thomson, H. Levesque, E. Savov, F. Horowitz, B.L. Booth, J.E. Marchegiano: Opt. Eng. 33, 939 (1994)

    Article  ADS  Google Scholar 

  17. B.L. Booth: Optical interconnection polymers, in Polymers for Lightwave and Integrated Optics: Technology and Applications, L.A. Hornak (ed.) (Dekker, New York 1992)

    Google Scholar 

  18. L. Eldada, R. Blomquist, L. Shaklette, M. McFarland: High performance polymetric componentry for telecom and datacom applications. Opt. Eng. 39, 596 (2000)

    Article  ADS  Google Scholar 

  19. J.T. Gallo, J.L. Hohman, B.P. Ellerbusch, R.J. Furmanak, L.M. Abbott, D.M. Graham, C.A. Schuetz, B.L. Booth: High-density interconnects for 2-dimensional VCSEL arrays suitable for mass scale production. SPIE ITCom2001 Conf. on Modeling and Design of Wireless Networks, Denver, USA, 23–24 August 2001

    Google Scholar 

  20. J.E. van der Linden, P.P. Van Daele, P.M. Dobbelaere, M.B. Diemeer: Compact multichannel in-line power meter. IEEE Photonics. Tech. Lett. 11, 263 (1999)

    Article  ADS  Google Scholar 

  21. T. Pliska, V. Ricci, A.C. Le Duff, M. Canva, P. Raymond, F. Kajzar, G.I. Stegeman: Low loss polymer waveguides fabricated by plasma etching for nonlinear-optical devices operating at telecommunication wavelengths. Tech. Digest Quantum Electronics and Laser Science Conference (1999) p. 138

    Google Scholar 

  22. A. Chen, V. Chuyanov, S. Garner, W.H. Steier, J. Chen, Y. Ra, S.S.H. Mao, G. Lan, L.R. Dalton: Fast maskless fabrication of electrooptic polymer devices by simultaneous direct laser writing and electric poling of channel waveguides. Proc. Lasers and Electro-Optics Society Annual Meeting, 1997. LEOS’97 2, 250 (1996)

    Article  Google Scholar 

  23. A. Chen, V. Chuyanov, F. Marti-Carrera, S. Garner, W.H. Steiner, J. Chen, S. Sun. L.R. Dalton: Vertically tapered polymer waveguide mode size transformer for improved fiber coupling. Opt. Eng. 39, 1507 (2000)

    Article  ADS  Google Scholar 

  24. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, I. Ogawa: Design and applications of silica-based planar lightwave circuits. IEEE J. Selected Topics in Quantum Elect. 5, 1227 (1999)

    Article  Google Scholar 

  25. A. Morand, S. Tedjini, P. Benesch, D. Bosc, B. Loisel: Proc. Glass electro-optic polymer structure for light modulation and switching. Proc. SPIE 3278, 63 (1998)

    Article  ADS  Google Scholar 

  26. A. Shoustikov, Y. You, M.E. Thompson: Electroluminescence color tuning by dye doping inorganic light emitting diodes. IEEE J. Selected topics in Quantum Electron. 4, 1077 (1998)

    Article  Google Scholar 

  27. A. Schulzgen, C. Spiegelberg, S.B. Mendes, P.M. Allemand, Y. Kawabe, M. Kuwata-Gonokami, S. Honkanen, M. Fallahi, B.N. Kippelen, N. Peyghambarian: Light amplification and laser emission in conjugated polymers. Opt. Eng. 37, 1149 (1998)

    Article  ADS  Google Scholar 

  28. R.H. Friend, R.W Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck: Electroluminescence in conjugated polymers, Nature 397, 121 (1999)

    Article  ADS  Google Scholar 

  29. R.B. Fletcher, D.G. Lidzey, D.D.C. Bradley, S. Walker, M. Inbasekaran, E.P. Woo: High brightness conjugated polymer LEDs, Synthetic Metals 111–112, 151 (2000)

    Article  Google Scholar 

  30. J. Ouellette: Semiconducting polymers on display, The Industrial Physicist 7, 22 (2001)

    Google Scholar 

  31. M.D. McGehee, A.J. Heeger: Semiconducting (conjugated) polymers as materials for solid-state lasers, Advanced Materials 12, 1655 (2000)

    Article  Google Scholar 

  32. N. Tessler: Lasers based on semiconducting organic materials, Advanced Materials 11, 363 (1999)

    Article  Google Scholar 

  33. D.W. Samuel, G.A. Turnbull: Polymer lasers: recent advances, Materials Today 7, 28 (2004)

    Article  Google Scholar 

  34. N. Madamopoulos, N.A. Riza: All-fiber connectorized compact fiber optic delay-line modules using three-dimensional polarization optics. Opt. Eng. 39, 2338 (2000)

    Article  ADS  Google Scholar 

  35. E. Meyer, D. Basting: Eximer-laser advances aid production of fiber gratings. Laser Focus World 36, 107 (April 2000)

    Google Scholar 

  36. S.J. Spammer, P.L. Fuhr: Temperature insensitive fiber optic accelerometer using a chirped Bragg grating. Opt. Eng. 39, 2177 (2000)

    Article  ADS  Google Scholar 

  37. P.L. Fuhr, D.R. Huston, B. MacCraith: Embedded fiber optic sensors for bridge deck chloride penetration measurement. Opt. Eng. 37, 1221 (1998)

    Article  ADS  Google Scholar 

  38. M. Bruendel, Y. Ichihashi, J. Mohr, M. Punke, D.G. Rabus, M. Worgull, V. Saile: Photonic integrated circuits fabricated by deep UV and hot embossing, Digest of the IEEE LEOS Summer Topical Meetings 23–25, 105 (2007)

    Article  Google Scholar 

  39. E.A. Dobisz, L.A Eldada (eds.): Nanoengineered polymers for photonic integrated circuits, Proc. SPIE, 5931, 121 (2005)

    Google Scholar 

  40. J.T. Gallo, J.L. Hohman, B.P. Ellerbusch, R.J. Furmanak, L.M. Abbott, D.M. Graham, C.Z. Schuetz, B.L. Booth, High-density interconnects for 2-dimensional VCSEL arrays suitable for mass scale production, Proc. SPIE 4532, 47 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Polymer and Fiber Integrated Optics. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_5

Download citation

Publish with us

Policies and ethics