Skip to main content

Theory of Optical Waveguides

  • Chapter
  • First Online:
Integrated Optics

Chapter 2 has reviewed the key results of waveguide theory, particularly with respect to the various optical modes that can exist in the waveguide. A comparison has been made between the physical-optic approach and the ray-optic approach in describing light propagation in a waveguide. In this chapter, the electromagnetic wave theory of the physical-optic approach is developed in detail. Emphasis is placed on the two basic waveguide geometries that are used most often in optical integrated circuits, the planar waveguide and the rectangular waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Hayt, Jr.: Engineering Electromagnetics, 4th edn. (McGraw-Hill, New York 1981) p. 151 and p. 317

    Google Scholar 

  2. A. Yariv: Optical Electronics, 4th edn. (Holt, Rinehart and Winston, New York 1991) p. 490

    Google Scholar 

  3. D. Hall, A. Yariv, E. Garmire: Opt. Commun. 1, 403 (1970)

    Article  ADS  Google Scholar 

  4. D. Mergerian, E. Malarkey: Microwave J. 23, 37 (1980)

    Google Scholar 

  5. C.K. Madsen, J. Wagener, T.A. Strasser, D. Muhlner, M.A. Milbrodt, E.J. Laskowski, J. DeMarco: IEEE J. Selected Topics in Quantum Electronics 4, 925 (1998)

    Article  Google Scholar 

  6. H. Kressel, M. Ettenberg, J. Wittke, I. Laddany: Laser diodes and LEDs for fiber optical communications, in Semiconductor Devices, H. Kressel, (ed.), 2nd edn., Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982) pp. 23–25

    Google Scholar 

  7. S. Somekh, E. Germaire, A. Yariv, H. Garvin, R.G. Hunsperger: Appl. Opt. 13, 327 (1974)

    Article  ADS  Google Scholar 

  8. A.A.J. Marcatilli: Bell Syst. Tech. J. 48, 2071 (1969)

    Article  Google Scholar 

  9. J. Katz: Novel solution of 2-D waveguides using the finite element method, Appl. Opt. 21, 2747 (1982)

    Google Scholar 

  10. See, e.g., the following suppliers: Bay Technology (http://www.bay-technology.com) BBV-Software (http://www.bbv-software.com) Breault Research (http://www.breault.com/) Integrated Optical Software (http://www.ios-gmbh.de/) Optiwave (http://www.optiwave.com/) RSOFT (http://www.rsoftinc.com/home.htm) Stellar Software (http://www.stellarsoftware.com/) Catalog (A listing of additional software sources.) (http://home.earthlink.net/skywise711/LasersOptics/Software/PhotonicSoftware.html)

  11. H. Furuta, H. Noda, A. Ihaya: Appl. Opt. 13, 322 (1974)

    Article  ADS  Google Scholar 

  12. V. Ramaswamy: Bell Syst. Tech. J. 53, 697 (1974)

    Article  Google Scholar 

  13. H. Kogelnik: Theory of dielectric waveguides, in Integrated Optics, T. Tamir (ed.), 2nd edn., Topics Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg 1979) Chap. 2

    Google Scholar 

  14. J. Campbell, F. Blum, D. Shaw, K. Shaw, K. Lawley: Appl. Phys. Lett. 27, 202 (1975)

    Article  ADS  Google Scholar 

  15. F. Blum, D. Shaw, W. Holton: Appl. Phys. Lett. 25, 116 (1974)

    Article  ADS  Google Scholar 

  16. F. Reinhart, R. Logan, T. Lee: Appl. Phys. Lett. 24, 270 (1974)

    Article  ADS  Google Scholar 

  17. H.G. Unger: Planar Optical Waveguides and Fibers (Oxford University Press, Oxford 1978)

    Google Scholar 

  18. H. Kogelnik: Theory of optical waveguides, in Guided Wave Optoelectronics, T. Tamir (ed.) 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  19. F.A. Fernandez, Y. Lu: Microwave and Optical Waveguide Analysis by the Finite Element Method (Research Studies Press/ Wiley, Taunton/New York, 1996)

    Google Scholar 

  20. K. Okamoto: Fundamentals of Optical Waveguides, 2nd edn. (Elsevier Academic Press, New York, 2006)

    Google Scholar 

  21. M.L. Calvo and V. Lakshminarayanan: Optical Waveguides: From Theory to Applied Technologies (CRC Press, Taylor and Francis Group, Boca Raton, FL, 2007)

    Google Scholar 

  22. T. Tamir: Microwave modeling of periodic waveguides. IEEE Trans. MTT-29, 979 (1981)

    Article  Google Scholar 

  23. T. Tamir: Guided-wave methods for optical configurations. Appl. Phys. 25, 201 (1981)

    Article  ADS  Google Scholar 

  24. E.A. Kolosovsky, D.V. Petrov, A.V. Tsarey, I.B. Yakovkin: An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguides. Opt. Commun. 43, 21 (1982)

    Article  ADS  Google Scholar 

  25. K. Yasumoto, Y. Oishi: A new evaluation of the Goos Hänchen shift and associated time delay. J. Appl. Phys. 54, 2170 (1983)

    Article  ADS  Google Scholar 

  26. F.P. Payne: A new theory of rectangular optical waveguides. Opt. Quant. Electron. 14, 525 (1982)

    Article  ADS  Google Scholar 

  27. H. Yajima: Coupled-mode analysis of anisotropic dielectric planar branching waveguides. IEEE J. LT-1, 273 (1983)

    Google Scholar 

  28. S.A. Shakir, A.F. Turner: Method of poles for multiyer thin film waveguides. Appl. Phys. A 29, 151 (1982)

    Article  ADS  Google Scholar 

  29. W.H. Southwell: Ray tracing in gradient-index media. J. Opt. Soc. Am. 72, 909 (1982)

    Article  ADS  Google Scholar 

  30. J. Van Roey, J. Vander Donk, P.E. Lagasse: Beam-propagation method: Analysis and assessment. J. Opt. Soc. Am. 71, 803 (1981)

    Article  ADS  Google Scholar 

  31. J. Nezval: WKB approximation for optical modes in a periodic planar waveguide. Opt. Commun. 42, 320 (1982)

    Article  ADS  Google Scholar 

  32. Ch. Pichot: Exact numerical solution for the diffused channel waveguide. Opt. Commun. 41, 169 (1982)

    Article  ADS  Google Scholar 

  33. V. Ramaswamy, R.K. Lagu: Numerical field solution for an arbitary asymmetrical graded-index planar waveguide. IEEE J. LT-1, 408 (1983)

    Google Scholar 

  34. Y. Li: Method of successive approximations for calculating the eigenvalues of optical thin-film waveguides. Appl. Opt. 20, 2595 (1981)

    Article  ADS  Google Scholar 

  35. J.P. Meunier, J. Piggeon, J.N. Massot: A numerical technique for the determination of propagation characteristics of inhomogeneous planar optical waveguides. Opt. Quant. Electron. 15, 77 (1983)

    Article  ADS  Google Scholar 

  36. M. Belanger, G.L. Yip: Mode conversion analysis in a single-mode planar taper optical waveguide. J. Opt. Soc. Am. 72, 1822 (1982)

    ADS  Google Scholar 

  37. E. Khular, A. Kumar, A. Sharma, I.C. Goyal, A.K. Ghatak: Modes in buried planar optical waveguide with graded-index profiles. Opt. Quant. Electron. 13, 109 (1981) A.K. Ghatak: Exact modal analysis for buried planar optical waveguides with asymmetric graded refractive index. Opt. Quant. Electron. 13, 429 (1981)

    Article  ADS  Google Scholar 

  38. A. Hardy, E. Kapon, A. Katzir: Expression for the number of guided TE modes in periodic multilayer waveguides. J. Opt. Soc. Am. 71, 1283 (1981)

    Article  ADS  Google Scholar 

  39. L. Eyges, P. Wintersteiner: Modes in an array of dielectric waveguides. J. Opt. Soc. Am. 71, 1351 (1981) L. Eyges, P.D. Gianino: Modes of cladded guides of arbitrary cross-sectional shape. J. Opt. Soc. Am. 72, 1606 (1982)

    ADS  Google Scholar 

  40. P.M. Rodhe: On radiation in the time-dependent coupled power theory for optical waveguides. Opt. Quant. Electron. 15, 71 (1983)

    Article  ADS  Google Scholar 

  41. L. McCaughan, E.E. Bergmann: Index distribution of optical waveguides from their mode profile. IEEE J. LT-1, 241 (1983)

    Google Scholar 

  42. H. Kogelnik: Devices for lightwave communications, in Lasers and Applications, W.O.N. Guimaraes, C.-T. Lin, A. Mooradian (eds.) Springer Ser. Opt. Sci., Vol. 26 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  43. R.E. Smith, S.N. Houde-Walter, G.W. Forbes: Mode determination for planar waveguide using the four-sheeted dispersion relation. IEEE J. Quant. Electron. 28, 1520 (1992)

    Article  ADS  Google Scholar 

  44. H. Renner: Bending losses of coated single-mode fibers: a simple approach. IEEE J. Lightwave Tech. 10, 544 (1992)

    Article  ADS  Google Scholar 

  45. F. Olyslager, D. De Zutter: Rigorous boundary integral equation solution for general isotropic and uniaxial anisotropic dielectric waveguides in multilayered media including losses, gain and leakage. IEEE Trans. Micro. Theor. Tech. 41, 1385 (1993)

    Article  ADS  Google Scholar 

  46. J.W. Mink, F.K. Schwering: A hybrid dielectric slab-beam waveguide for the submillimeter wave region. IEEE Trans. Micro. Theor. Tech. 41, 1720 (1993)

    Article  ADS  Google Scholar 

  47. F. Di Pasquale, M. Zoboli, M. Federighi, I. Massarek: Finite-element modeling of silica waveguide amplifiers with high erbium concentration. IEEE J. Quant. Electron. 30, 1277 (1994)

    Article  ADS  Google Scholar 

  48. G.R. Hadley, R.E. Smith: Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions. IEEE J. Lightwave Tech. 13, 465 (1995)

    Article  ADS  Google Scholar 

  49. S.M. Tseng, J.H. Zhan: A new method of finding the propagation constants of guided modes in slab waveguides containing lossless and absorbing media. Proc. Lasers and Electro-Optics Society Annual Meeting, LEOS’97 (1997) pp. 512–513.

    Google Scholar 

  50. O. Mitomi, K. Kasaya: Wide-angle finite-element beam propagation method using Pade approximation. Electron. Lett. 33, 1461 (1997)

    Article  Google Scholar 

  51. K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, Y. Hasumi: 3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM). IEEE Photo. Tech. Lett. 10, 108 (1998)

    Article  ADS  Google Scholar 

  52. G. Tartarini, H. Renner: Efficient finite-element analysis of tilted open anisotropic optical channel waveguides. IEEE Micro. Guided Wave Lett. 9, 389 (1999)

    Article  Google Scholar 

  53. A.A. Abou El-Fadl, K.A. Mostafa, A.A. Abelenin. T.E. Taha: New technique for analysis of multimode diffused channel optical waveguides. Digest, IEEE Conf. Infrared and Millimeter Waves (2000) pp. 229–230

    Google Scholar 

  54. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert: Numerical techniques for modeling guided-wave photonic devices. IEEE J. Selected Topics in Quant. Electron. 6, 150 (2000)

    Article  Google Scholar 

  55. K. Saitoh, M. Koshiba: Approximate scalar finite-element beam-propagation method with perfectly matched layers for anisotropic optical waveguides. IEEE J. Lightwave Techno. 19, 786 (2001)

    Article  ADS  Google Scholar 

  56. C.R. Doerr: Beam propagation method tailored for step-index waveguides. IEEE Phot. Technol. Lett. 13, 130 (2001)

    Article  ADS  Google Scholar 

  57. A. Giorgio, A.G. Perri, M.N. Armenise: Modelling waveguiding photonic bandgap structures by leaky mode propagation method. Electron. Lett. 37, 835 (2001)

    Article  Google Scholar 

  58. A. Sharma: Analysis of integrated optical waveguides: variational method and effective-index method with built-in perturbation correction, J. Opt. Soc. Am. A 18, 1383 (2001)

    Article  ADS  Google Scholar 

  59. R. Pregla: Modeling of planar waveguides with anisotropic layers of variable thickness by the method of lines, Opt. Quant. Electron. 35, 533 (2003)

    Google Scholar 

  60. T. Miyamoto, M. Momoda, K. Yasumoto: Numerical analysis for three-dimensional optical waveguides with periodic structure using Fourier series expansion method, Electron. Communi. Jap. (Part II: Electron.) 86, 22 (2003)

    Article  Google Scholar 

  61. M.A. Boroujeni, M. Shahabadi: Full-wave analysis of lossy anisotropic optical waveguides using a transmission line approach based on a Fourier method, J. Opt. A: 8 1080 (2006)

    Article  ADS  Google Scholar 

  62. J. Costa, D. Pereira, A. Giarola: Analysis of optical waveguides using Mathematica (R) Microwave and Optoelectronics Conference, Proceedings, 1997, SBMO/IEEE MTT-S International 1, 91 (1997)

    Google Scholar 

  63. Y. Moreau, J. Porque, P. Coudray, P. Etienne, K. Kribich: New simulation tools for complex multilevel optical circuits, SPIE International Conference, Optical Design and Analysis Software, Denver, CO (1999)

    Google Scholar 

  64. M.F. van der Vliet, G. Beelen: Design and simulation tools for integrated optic circuits, Proc. SPIE 3620,174 (1999)

    Article  ADS  Google Scholar 

  65. M.R. Amersfoort: Design and Simulation Tools for Photonic Integrated Circuits, LEOS 2000 Annl. Meet. Conf. Proc. 2, 774 (2000)

    Google Scholar 

  66. M. Amersfoort: Simulation and Design Tools Address Demands of WDM, Laser Focus World, (March 2001), pp.129–32

    Google Scholar 

  67. T.G. Nguyen, A. Mitchell: Analysis of optical waveguides with multilayer dielectric coatings using plane wave expansion, J. Lightwave Techn. 24, 635 (2006)

    Article  ADS  Google Scholar 

  68. P.R. Chaudhuri, S. Roy: Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm, Opt. Quant. Electron. 39, 221 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Theory of Optical Waveguides. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_3

Download citation

Publish with us

Policies and ethics