Skip to main content

Heterostructure, Confined-Field Lasers

  • Chapter
  • First Online:
  • 7036 Accesses

In Chapter 12, it was demonstrated that confining the optical field to the region of the laser in which the inverted population exists results in a substantial reduction of threshold current density and a corresponding increase in efficiency. As early as 1963, it was proposed that heterojunctions could be used to produce a waveguiding structure with the desired property of optical confinement [1, 2]. At about the same time, others proposed using a heterojunction laser structure not for optical field confinement, but to produce higher carrier injection efficiency at the p-n junction, and to confine the carriers to the junction region [3, 4]. Actually, all three of these mechanisms are present in a heterostructure laser, and their combined effects result in a device that is vastly superior to the basic p-n homojunction laser.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Diemer, B. Böger: Physics 29, 600 (1963)

    Google Scholar 

  2. T. Pecany: Phys. Stat. Sol. 6, 651 (1964)

    Article  ADS  Google Scholar 

  3. H. Kroemer: IEEE Proc. 51, 1782 (1963)

    Article  Google Scholar 

  4. Zh.I. Alferov: Sov. Phys.-Solid State 7, 1919 (1966)

    Google Scholar 

  5. I. Hayashi, M.B. Panish, P. Foy: IEEE J. QE-5, 211 (1969)

    Article  Google Scholar 

  6. H. Kressel, H. Nelson: RCA Rev. 30, 106 (1969)

    Google Scholar 

  7. Zh.I. Alferov, V. Andreev, E. Portnoi, M. Trukhan: Sov. Phys. – Semicond. 3, 1107 (1969)

    Google Scholar 

  8. K. Sheger, A. Milnes, D. Feught: Proc. Int’l Conf. on Chem. Semicond. Hetero-junction Layer Structures, Budapest (Hung. Acad. Sci., Budapest 1970) Vol. 1, p. 73

    Google Scholar 

  9. P.H. Holloway, T.J. Anderson: Compound Semiconductors: Growth, Processing and Devices (CRC Press, Boca Raton, FL 1989) p. 115

    Google Scholar 

  10. Q.H.F. Vrehen: J. Phys. Chem. Solids 29, 129 (1968)

    Article  ADS  Google Scholar 

  11. H. Yonezu, I. Sakuma, Y. Nannich: Jpn. J. Appl. Phys. 9, 231 (1970)

    Article  ADS  Google Scholar 

  12. A. Yariv, R.C.C. Leite: Appl. Phys. Lett. 2, 173 (1963)

    Article  Google Scholar 

  13. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Pt. B: Materials and Operating Characterizations (Academic, New York 1978) pp. 109–132

    Google Scholar 

  14. H. Kroemer: IEEE Trans. ED-39, 2635 (1992)

    Article  ADS  Google Scholar 

  15. K. Iga, S. Kinoshita: Semiconductor Lasers and Related Epitaxies, Springer Ser. Mater. Sci., Vol. 30 (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  16. A. McWhorter: Solid State Electron. 6, 417 (1963)

    Article  ADS  Google Scholar 

  17. H.C. Casey Jr., M.B. Panish: Heterostructure Lasers, Pt. A: Fundamental Principles (Academic, New York 1978) pp. 54–57

    Google Scholar 

  18. J. Kongas, P. Savolainen, M. Toivonen, S. Orsila, P. Corvini, M. Jansen, R. Nabiev, M. Pesa: High-efficiency AlGaInP single-mode laser. IEEE Photonics Tech. Lett. 10, 1533 (1998)

    Article  ADS  Google Scholar 

  19. R.J. Lang, N.W. Carlson, E. Beyer, M. Obara: Introduction to the issue on high-power and high brightness lasers. IEEE J. Select. Topics Quant. Electron. 6, 561 (2000)

    Google Scholar 

  20. W. Schulz, R. Poprawe: Manufacturing with novel high-power diode lasers. IEEE J. Select. Topics Quant. Electron, 6, 696 (2000)

    Article  Google Scholar 

  21. D. Greenaway, G. Harbeke: Optical Properties and Band Structure of Semiconductors (Pergamon, Oxford 1968) p. 67

    Google Scholar 

  22. D.N. Payne, W.A. Gambling: Electron. Lett. 11, 176 (1975)

    Article  Google Scholar 

  23. M.J. Li, C. Saravanos: Optical fiber design for field-mountable connectors. IEEE J. Lightwave Tech. 18, 314 (2000)

    Article  ADS  Google Scholar 

  24. H. Kressel (ed.): Semiconductor Devices for Optical Communications, 2nd edn., Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982) pp. 285–289

    Google Scholar 

  25. H. Mani, A. Joullie, G. Boissier, E. Tournie, F. Pitard, C.A. Ailibert: Electron. Lett. 24, 1542 (1988)

    Article  Google Scholar 

  26. R.V. Martinelli: LEOS’88, Santa Clara, CA. Digest p. 55

    Google Scholar 

  27. H. Ebe, Y. Nishijima, K. Shinohara: 11th IEEE Int’l Conf. on Semicond, Lasers, Boston, MA (1988) Digest p. 68

    Google Scholar 

  28. I.T. Sorokina, K.L. Vodopyanov, (eds.): Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics Series, vol. 89 (Springer, Berlin, Heidelberg, 2003)

    Google Scholar 

  29. J.C. Dyment: Appl. Phys. Lett. 10, 84 (1967)

    Article  ADS  Google Scholar 

  30. L.A. D’Asaro: J. Lumin. 7, 310 (1973)

    Article  Google Scholar 

  31. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannicki: Jpn. J. Appl. Phys. 12, 1585 (1973)

    Article  ADS  Google Scholar 

  32. T. Tsukada: J. Appl. Phys. 45, 4899 (1974)

    Article  ADS  Google Scholar 

  33. M. Nakamura: IEEE Trans. CAS-26, 1055 (1979)

    Article  Google Scholar 

  34. N. Chinone: J. Appl. Phys. 48, 3237 (1977)

    Article  ADS  Google Scholar 

  35. K. Seki, T. Kamiya, H. Yanai: Trans. IECE (Jpn.) E-62, 73 (1979)

    Google Scholar 

  36. W.O. Schlosser: Bell. Syst. Tech. J. 52, 887 (1973)

    Article  Google Scholar 

  37. W.T. Tsang, R.A. Logan, M. Ilegems: Appl. Phys. Lett. 32, 311 (1978)

    Article  ADS  Google Scholar 

  38. T. Kobayashi, H. Kawaguchi, Y. Furukawa: Jpn. J. Appl. Phys. 16, 601 (1977)

    Article  ADS  Google Scholar 

  39. I.P. Kaninow, R.S. Tucker: Mode-controlled semiconductor lasers, in Guided-Wave Optoelectronics, T. Tamir, 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) pp. 211–263

    Google Scholar 

  40. R. Baets: Solid State Electron. 30, 1175 (1987)

    Article  ADS  Google Scholar 

  41. C.E. Hurwitz, J.A. Rossi, J.J. Hsieh, C.M. Wolfe: Appl. Phys. Lett. 27, 241 (1975)

    Article  ADS  Google Scholar 

  42. L.A. Koszi, A.K. Chin, B.P. Segner, T.M. Shen, N.K. Dutta: Electron. Lett. 21, 1209 (1985)

    Article  Google Scholar 

  43. A. Antreasyn, C.Y. Chen, R.A. Logan: Electron. Lett. 21, 405 (1985)

    Article  Google Scholar 

  44. A. Antreasyn, S.G. Napholtz, D.P. Wilt, P.A. Garbinski: IEEE J. QE-22, 1064 (1986)

    Article  Google Scholar 

  45. M. Ishii, K. Karmon, M. Shimazu, M. Mihara, H. Kumabe, K. Isshiki: Electron. Lett. 23, 179 (1987)

    Article  ADS  Google Scholar 

  46. M. Ishii, K. Kamon, M. Shimazu, M. Mihara, H. Kumabe, K. Isshiki: Optoelectron. – Devices Technol. 2, 83 (1987)

    Google Scholar 

  47. S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, Y. Yamamoto: Transverse-junction-stripe GaAs-AlGaAs lasers for squeezed light generation. IEEE J. Quant. Electron. 35, 387 (1999)

    Article  ADS  Google Scholar 

  48. K. Oe, Y. Noguchi, C. Canea: IEEE Photon. Tech. Lett. 6, 479 (1994)

    Article  ADS  Google Scholar 

  49. M. Kawabe, H. Kotani, K. Masuda, S. Namba: Appl. Phys. Lett. 26, 46 (1975)

    Article  ADS  Google Scholar 

  50. K. Aiki, M. Nakamura, J. Umeda: Appl. Phys. Lett. 29, 506 (1976)

    Article  ADS  Google Scholar 

  51. A. Talneau, M. Allovon, N. Bouadma, S. Slempkes, A. Ougazzaden, H. Nakajima: Agile and fast switching monolithically integrated four wavelength selectable source at 1.55/μm. IEEE Photonics Tech. Lett. 11, 12 (1999)

    Article  ADS  Google Scholar 

  52. M. Krakowski, R. Blondeau, J. Ricciardi, J. Hirtz, M. Razeghi, B. de Cremoux: OSA/IEEE OFC/IGWO’86. Atlanta, GA. Paper TU33

    Google Scholar 

  53. D.I. Babic, K. Streubel, R.P. Mirin, N.M. Margalit, J.E. Bowers, E.L. Hu, D.E. Mars, L. Yang, K. Carey: Room-temperature continuous-wave operation of 1.54 μm vertical-cavity lasers. IEEE Photonics Tech. Lett. 7, 1225 (1995)

    Article  ADS  Google Scholar 

  54. M. Fukuda: Historical overview and future of optoelectronics reliability for optical fiber communications systems, Microelectron. Reliability 40, 27 (2000)

    Article  Google Scholar 

  55. T. Kallstenius, A. Landstedt, U. Smith, P. Granestrand: Role of nonradiative recombination in the degradation of InGaAsP/InP-based bulk lasers. IEE J. Quant. Electr. 36, 1312 (2000)

    Article  ADS  Google Scholar 

  56. A.V. Krishnamoorthy, L.M.F. Chirovsky, W.S. Hobson, R.E. Leibenguth, B.P. Hui, G.J. Zydzik, K.W. Goossen, J.D. Wynn, B.J. Tseng, J. Lopata, J.A. Walker, J.E. Cunningham, L.A. D’Asaro: Vertical-cavity surface-emitting lasers flip-chip bounded to gigabit-per-second CMOS circuits. IEEE Photonics Tech. Lett. 11, 128 (1999)

    Article  ADS  Google Scholar 

Supplementary Reading on Heterojunction Lasers

  • Z.I. Alferov: Nobel Lecture: The double heterostructure concept and its applications in physics, electronics and technology, Rev. Modern Phys. 73, 767–782 (2001)

    Article  ADS  Google Scholar 

  • P. Bhattacharya: Semiconductor Optoelectronic Devices, 2nd edn. (Prentice Hall, Upper Saddle River, New Jersey 1997) Chap. 7

    Google Scholar 

  • J.K. Butler (ed.): Semiconductor Injection Lasers (IEEE Press, New York 1980)

    Google Scholar 

  • H.C. Casey Jr., M.B. Panish: Heterostructure Lasers (Academic, New York 1978)

    Google Scholar 

  • N. Grote, H. Venghaus (eds.): Fiber Optic Communication Devices, Springer Series in Photonics, vol. 4 (Springer, Berlin, Heidelberg, 2001)

    Google Scholar 

  • H. Kressel (ed.): Semiconductor Devices for Optical Communication, 2nd edn., Topics Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1982) Chap. 2

    Google Scholar 

  • H. Kressel, J.K. Butler: Semiconductor Lasers and Heterojunction LEDs (Academic, New York 1977)

    Google Scholar 

  • W.B. Leigh: Devices for Optoelectronics (Marcel Dekker, New York 1996) Chap. 3

    MATH  Google Scholar 

  • T. Tamir (ed.): Guided-Wave Optoelectronics, 2nd edn., Springer Ser. Electron. Photon., Vol. 26 (Springer, Berlin, Heidelberg 1990) Chap. 5

    Google Scholar 

  • A. Yariv: Optical Electronics, 4th edn. (Saunders College Publishing-HRW, Philadelphia 1991) Chap. 15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Heterostructure, Confined-Field Lasers. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_14

Download citation

Publish with us

Policies and ethics