Skip to main content

Optical Amplifiers

  • Chapter
  • First Online:
  • 6920 Accesses

In lightwave communications systems, just as in wired communication systems, there is a need for repeaters at regular intervals to amplify the signal to compensate for losses. In early lightwave systems this function was accomplished by using a photodetector to convert the lightwave signal to an electrical current waveform, amplifying it electronically, and then converting it back to an optical form with a laser or high-speed LED. This approach involved the use of additional components, which inevitably reduced the overall reliability of the system since each component has a certain probability of premature failure. Electronic amplification also limited the overall bandwidth of the lightwave system. In order to overcome these problems, researchers have studied and developed a number of different types of optical amplifiers, devices that directly amplify the optical signal without converting it to electronic form. The most commonly used optical amplifiers are the erbium doped fiber amplifier (EDFA), the semiconductor optical amplifier (SOA) and the Raman fiber amplifier (RFA). These devices are discussed in the following sections of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Bibliography

  1. M. Fake, D.G. Parker: Optical Amplifiers, in Photonic Devices and Systems, (ed.) R.G. Hunsperger, Marcel Dekker, Ser. Opt. Eng., Vol. 45 (Marcel Dekker, New York, Basel 1994)

    Google Scholar 

  2. C.K. Liu, F.S. Lal, J.J. Jou, M.C. Chang: Temperature and electromagnetic effects on erbium-doped fiber amplifier systems. Opt. Eng. 37, 2095 (1998)

    Article  ADS  Google Scholar 

  3. M. Yamada, M. Shimizu, K. Yoshino, M. Horiguchi, M. Okayasu: Temperature dependence of signal gain in erbium-doped fiber amplifiers IEEE J. Quant. Electron. 28, 640 (1992)

    Article  ADS  Google Scholar 

  4. M. Islam, M. Nietubyc: Raman amplification opens the S-band window. WDM Solutions (A supplement to Laser Focus World) 37, 53 (2001)

    Google Scholar 

  5. S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, N. Peyghambarian: New Er3+ -doped phosphate glass for ion-exchanged waveguide amplifiers. Opt. Eng. 37, 3282 (1998)

    Article  ADS  Google Scholar 

  6. S. Honkanen, T. Ohtsuki, S. Jiang, S. Najafi, N. Peyghambarian: High Er concentration phosphate glasses for planar waveguide amplifiers. Proc. SPIE 2996, 32 (1997)

    Article  ADS  Google Scholar 

  7. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, M. Horoguchi: Amplification in erbium-doped silica-based planar light-wave circuits. Electron. Lett. 28, 1818 (1992)

    Article  Google Scholar 

  8. R.N. Ghosh, J. Shmulovich, C.F. Kane, M.R.X. Barros, G. Nykolak, A.J. Bruce, P.C. Becher: 8 mW threshold Er3+ -doped planar waveguide amplifier. IEEE Photon. Technol. Lett. 8, 518 (1996)

    Article  ADS  Google Scholar 

  9. S. Jiang, J.D. Myers, D. Rhonehouse, M. Myers, R. Belford, S. Hamlin: Laser and thermal performance of a new erbium doped phosphate laser glass. Proc. SPIE 2138, 166 (1994)

    Article  ADS  Google Scholar 

  10. S.I. Najafi: Overview of Nd- and Er-doped glass integrated optics amplifiers and lasers. Proc. SPIE 2996, 54 (1997)

    Article  ADS  Google Scholar 

  11. V.P. Gapontsev, S.M. Matitsin, A.A. Isineer. V.B. Kravchenko: Erbium glass lasers and their applications. Opt. Laser Technol. 14, 189 (1982)

    Article  ADS  Google Scholar 

  12. J. Buns, R. Plastow: IEEE J. QE-21, 614 (1985)

    Google Scholar 

  13. S. Kobayashi, T. Kimura: IEEE Spectrum 21, 26–33 (May 1984)

    Google Scholar 

  14. Y.C. Zhang, Z.X. Qin, S.L. Wu, L.J. Wu, L.J. Wang, D.E. Lee: Fiber Integrated Opt. 8, 99 (1989)

    Article  Google Scholar 

  15. T. Brenner, R. Dall, A. Holtmann, P. Besse, N. Melchior: IEEE 5th Int’l Conf. on InP and Related Materials, Paris (1993) Digest p. 88

    Google Scholar 

  16. J.E. Johnson, L.J.-P. Ketelsen, J.A. Grenko, S.K. Sputz, J. Vandenberg, M.W. Focht, D.V. Stampone, L.J. Peticolas, L.E. Smith, K.G. Glogovsky, G.J. Przybylek, S.N.G. Chu, J.L. Lentz, N.N. Tzafaras, L.C. Luther, T.L. Pernell, ES. Walters. D.M. Romero, J.M. Freund, C.L. Reynolds, L.A. Gruezke, R. People, M.A. Alam: Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input. IEEE J. Select. Topics Quan. Electron. 6, 19 (2000)

    Article  Google Scholar 

  17. H. Hatakeyama, T. Tamanuki, K. Moriea, T. Sasaki, M. Yamaguchi: Uniform and high-performance eight-channel bent waveguide SOA array for hybrid PICs. IEEE Phot. Tech. Lett. 13, 418 (2001)

    Article  ADS  Google Scholar 

  18. C.K. Liu, F.S. Lai, J.J. Jou: Analysis of nonlinear response in erbium doped fiber amplifiers. Opt. Eng. 39, 418 (2001)

    Google Scholar 

  19. R. Paschotta, N. Moore, W.A. Clarkson, A.C. Tropper, D.C. Hanna, G. Maze: 250 mW of blue light from a thulium-doped upconversion fiber laser J. Select. Topics Quant. Electron. 3, 1100 (1997)

    Google Scholar 

  20. F.J. McAleavey, J. O’Gorman, J.F. Donegan, B.D. MacGraith, J. Hegarty, G. Maze: Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydro-carbon gas sensing. IEEE J. Select. topics Quant. Electron. 3, 1103 (1997)

    Article  Google Scholar 

  21. C. Wu, N.K. Dutta: High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser. IEEE J. Quant. Electron. 36, 145 (2000)

    Article  ADS  Google Scholar 

Supplementary Reading on Optical Amplifiers

  • M.J. Connelly: Semiconductor Optical Amplifiers (Springer, New York, 2002)

    Google Scholar 

  • N.K. Dutta, Q. Wang: Semiconductor Optical Amplifiers (World Scientific Publishing Company, Hackensack, NJ, 2006)

    Google Scholar 

  • M.J.F. Digonnet: Rare-Earth-Doped Fiber Lasers and Amplifiers, Second Edition, Revised and Expanded (Marcel Dekker, New York, 2001)

    Google Scholar 

  • A. Bjarklev Optical Fiber Amplifiers: Design and System Applications (Artech House, Norwood, MA, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunsperger, R.G. (2009). Optical Amplifiers. In: Integrated Optics. Springer, New York, NY. https://doi.org/10.1007/b98730_13

Download citation

Publish with us

Policies and ethics